// // Copyright 2016-2018 Pixar // // Licensed under the Apache License, Version 2.0 (the "Apache License") // with the following modification; you may not use this file except in // compliance with the Apache License and the following modification to it: // Section 6. Trademarks. is deleted and replaced with: // // 6. Trademarks. This License does not grant permission to use the trade // names, trademarks, service marks, or product names of the Licensor // and its affiliates, except as required to comply with Section 4(c) of // the License and to reproduce the content of the NOTICE file. // // You may obtain a copy of the Apache License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the Apache License with the above modification is // distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the Apache License for the specific // language governing permissions and limitations under the Apache License. // #ifndef OPENSUBDIV3_OSD_PATCH_BASIS_H #define OPENSUBDIV3_OSD_PATCH_BASIS_H /// This is an implementation of the functionality from far/patchBasis.h /// which can be used from client shader and kernel code, i.e for /// GLSL, HLSL, CUDA, OpenCL, Metal, and C++ shaders and kernels. /// /// This is defined within the OpenSubdiv::Osd namespace for C++, but /// the methods and types also have an Osd prefix for consistency with /// environments (e.g. GLSL, etc.) where C++ namespaces are not available. #if !defined(OSD_PATCH_BASIS_GLSL) && \ !defined(OSD_PATCH_BASIS_HLSL) && \ !defined(OSD_PATCH_BASIS_CUDA) && \ !defined(OSD_PATCH_BASIS_OPENCL) && \ !defined(OSD_PATCH_BASIS_METAL) #include "../version.h" #include "../osd/patchBasisTypes.h" namespace OpenSubdiv { namespace OPENSUBDIV_VERSION { namespace Osd { #endif OSD_FUNCTION_STORAGE_CLASS // template int Osd_EvalBasisLinear(OSD_REAL s, OSD_REAL t, OSD_OUT_ARRAY(OSD_REAL, wP, 4), OSD_OUT_ARRAY(OSD_REAL, wDs, 4), OSD_OUT_ARRAY(OSD_REAL, wDt, 4), OSD_OUT_ARRAY(OSD_REAL, wDss, 4), OSD_OUT_ARRAY(OSD_REAL, wDst, 4), OSD_OUT_ARRAY(OSD_REAL, wDtt, 4)) { OSD_REAL sC = 1.0f - s; OSD_REAL tC = 1.0f - t; if (OSD_OPTIONAL(wP)) { wP[0] = sC * tC; wP[1] = s * tC; wP[2] = s * t; wP[3] = sC * t; } if (OSD_OPTIONAL(wDs && wDt)) { wDs[0] = -tC; wDs[1] = tC; wDs[2] = t; wDs[3] = -t; wDt[0] = -sC; wDt[1] = -s; wDt[2] = s; wDt[3] = sC; if (OSD_OPTIONAL(wDss && wDst && wDtt)) { for(int i = 0; i < 4; ++i) { wDss[i] = 0.0f; wDtt[i] = 0.0f; } wDst[0] = 1.0f; wDst[1] = -1.0f; wDst[2] = 1.0f; wDst[3] = -1.0f; } } return 4; } // namespace { // // Cubic BSpline curve basis evaluation: // OSD_FUNCTION_STORAGE_CLASS // template void Osd_evalBSplineCurve(OSD_REAL t, OSD_OUT_ARRAY(OSD_REAL, wP, 4), OSD_OUT_ARRAY(OSD_REAL, wDP, 4), OSD_OUT_ARRAY(OSD_REAL, wDP2, 4)) { const OSD_REAL one6th = OSD_REAL_CAST(1.0f / 6.0f); OSD_REAL t2 = t * t; OSD_REAL t3 = t * t2; wP[0] = one6th * (1.0f - 3.0f*(t - t2) - t3); wP[1] = one6th * (4.0f - 6.0f*t2 + 3.0f*t3); wP[2] = one6th * (1.0f + 3.0f*(t + t2 - t3)); wP[3] = one6th * ( t3); if (OSD_OPTIONAL(wDP)) { wDP[0] = -0.5f*t2 + t - 0.5f; wDP[1] = 1.5f*t2 - 2.0f*t; wDP[2] = -1.5f*t2 + t + 0.5f; wDP[3] = 0.5f*t2; } if (OSD_OPTIONAL(wDP2)) { wDP2[0] = - t + 1.0f; wDP2[1] = 3.0f * t - 2.0f; wDP2[2] = -3.0f * t + 1.0f; wDP2[3] = t; } } // // Weight adjustments to account for phantom end points: // OSD_FUNCTION_STORAGE_CLASS // template void Osd_adjustBSplineBoundaryWeights( int boundary, OSD_INOUT_ARRAY(OSD_REAL, w, 16)) { if ((boundary & 1) != 0) { for (int i = 0; i < 4; ++i) { w[i + 8] -= w[i + 0]; w[i + 4] += w[i + 0] * 2.0f; w[i + 0] = 0.0f; } } if ((boundary & 2) != 0) { for (int i = 0; i < 16; i += 4) { w[i + 1] -= w[i + 3]; w[i + 2] += w[i + 3] * 2.0f; w[i + 3] = 0.0f; } } if ((boundary & 4) != 0) { for (int i = 0; i < 4; ++i) { w[i + 4] -= w[i + 12]; w[i + 8] += w[i + 12] * 2.0f; w[i + 12] = 0.0f; } } if ((boundary & 8) != 0) { for (int i = 0; i < 16; i += 4) { w[i + 2] -= w[i + 0]; w[i + 1] += w[i + 0] * 2.0f; w[i + 0] = 0.0f; } } } OSD_FUNCTION_STORAGE_CLASS // template void Osd_boundBasisBSpline( int boundary, OSD_INOUT_ARRAY(OSD_REAL, wP, 16), OSD_INOUT_ARRAY(OSD_REAL, wDs, 16), OSD_INOUT_ARRAY(OSD_REAL, wDt, 16), OSD_INOUT_ARRAY(OSD_REAL, wDss, 16), OSD_INOUT_ARRAY(OSD_REAL, wDst, 16), OSD_INOUT_ARRAY(OSD_REAL, wDtt, 16)) { if (OSD_OPTIONAL(wP)) { Osd_adjustBSplineBoundaryWeights(boundary, wP); } if (OSD_OPTIONAL(wDs && wDt)) { Osd_adjustBSplineBoundaryWeights(boundary, wDs); Osd_adjustBSplineBoundaryWeights(boundary, wDt); if (OSD_OPTIONAL(wDss && wDst && wDtt)) { Osd_adjustBSplineBoundaryWeights(boundary, wDss); Osd_adjustBSplineBoundaryWeights(boundary, wDst); Osd_adjustBSplineBoundaryWeights(boundary, wDtt); } } } // } // end namespace OSD_FUNCTION_STORAGE_CLASS int Osd_EvalBasisBSpline(OSD_REAL s, OSD_REAL t, OSD_OUT_ARRAY(OSD_REAL, wP, 16), OSD_OUT_ARRAY(OSD_REAL, wDs, 16), OSD_OUT_ARRAY(OSD_REAL, wDt, 16), OSD_OUT_ARRAY(OSD_REAL, wDss, 16), OSD_OUT_ARRAY(OSD_REAL, wDst, 16), OSD_OUT_ARRAY(OSD_REAL, wDtt, 16)) { OSD_REAL sWeights[4], tWeights[4], dsWeights[4], dtWeights[4], dssWeights[4], dttWeights[4]; Osd_evalBSplineCurve(s, sWeights, OSD_OPTIONAL_INIT(wDs, dsWeights), OSD_OPTIONAL_INIT(wDss, dssWeights)); Osd_evalBSplineCurve(t, tWeights, OSD_OPTIONAL_INIT(wDt, dtWeights), OSD_OPTIONAL_INIT(wDtt, dttWeights)); if (OSD_OPTIONAL(wP)) { for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { wP[4*i+j] = sWeights[j] * tWeights[i]; } } } if (OSD_OPTIONAL(wDs && wDt)) { for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { wDs[4*i+j] = dsWeights[j] * tWeights[i]; wDt[4*i+j] = sWeights[j] * dtWeights[i]; } } if (OSD_OPTIONAL(wDss && wDst && wDtt)) { for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { wDss[4*i+j] = dssWeights[j] * tWeights[i]; wDst[4*i+j] = dsWeights[j] * dtWeights[i]; wDtt[4*i+j] = sWeights[j] * dttWeights[i]; } } } } return 16; } // namespace { // // Cubic Bezier curve basis evaluation: // OSD_FUNCTION_STORAGE_CLASS // template void Osd_evalBezierCurve( OSD_REAL t, OSD_OUT_ARRAY(OSD_REAL, wP, 4), OSD_OUT_ARRAY(OSD_REAL, wDP, 4), OSD_OUT_ARRAY(OSD_REAL, wDP2, 4)) { // The four uniform cubic Bezier basis functions (in terms of t and its // complement tC) evaluated at t: OSD_REAL t2 = t*t; OSD_REAL tC = 1.0f - t; OSD_REAL tC2 = tC * tC; wP[0] = tC2 * tC; wP[1] = tC2 * t * 3.0f; wP[2] = t2 * tC * 3.0f; wP[3] = t2 * t; // Derivatives of the above four basis functions at t: if (OSD_OPTIONAL(wDP)) { wDP[0] = -3.0f * tC2; wDP[1] = 9.0f * t2 - 12.0f * t + 3.0f; wDP[2] = -9.0f * t2 + 6.0f * t; wDP[3] = 3.0f * t2; } // Second derivatives of the basis functions at t: if (OSD_OPTIONAL(wDP2)) { wDP2[0] = 6.0f * tC; wDP2[1] = 18.0f * t - 12.0f; wDP2[2] = -18.0f * t + 6.0f; wDP2[3] = 6.0f * t; } } // } // end namespace OSD_FUNCTION_STORAGE_CLASS int Osd_EvalBasisBezier(OSD_REAL s, OSD_REAL t, OSD_OUT_ARRAY(OSD_REAL, wP, 16), OSD_OUT_ARRAY(OSD_REAL, wDs, 16), OSD_OUT_ARRAY(OSD_REAL, wDt, 16), OSD_OUT_ARRAY(OSD_REAL, wDss, 16), OSD_OUT_ARRAY(OSD_REAL, wDst, 16), OSD_OUT_ARRAY(OSD_REAL, wDtt, 16)) { OSD_REAL sWeights[4], tWeights[4], dsWeights[4], dtWeights[4], dssWeights[4], dttWeights[4]; Osd_evalBezierCurve(s, OSD_OPTIONAL_INIT(wP, sWeights), OSD_OPTIONAL_INIT(wDs, dsWeights), OSD_OPTIONAL_INIT(wDss, dssWeights)); Osd_evalBezierCurve(t, OSD_OPTIONAL_INIT(wP, tWeights), OSD_OPTIONAL_INIT(wDt, dtWeights), OSD_OPTIONAL_INIT(wDtt, dttWeights)); if (OSD_OPTIONAL(wP)) { for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { wP[4*i+j] = sWeights[j] * tWeights[i]; } } } if (OSD_OPTIONAL(wDs && wDt)) { for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { wDs[4*i+j] = dsWeights[j] * tWeights[i]; wDt[4*i+j] = sWeights[j] * dtWeights[i]; } } if (OSD_OPTIONAL(wDss && wDst && wDtt)) { for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { wDss[4*i+j] = dssWeights[j] * tWeights[i]; wDst[4*i+j] = dsWeights[j] * dtWeights[i]; wDtt[4*i+j] = sWeights[j] * dttWeights[i]; } } } } return 16; } OSD_FUNCTION_STORAGE_CLASS int Osd_EvalBasisGregory(OSD_REAL s, OSD_REAL t, OSD_OUT_ARRAY(OSD_REAL, wP, 20), OSD_OUT_ARRAY(OSD_REAL, wDs, 20), OSD_OUT_ARRAY(OSD_REAL, wDt, 20), OSD_OUT_ARRAY(OSD_REAL, wDss, 20), OSD_OUT_ARRAY(OSD_REAL, wDst, 20), OSD_OUT_ARRAY(OSD_REAL, wDtt, 20)) { // Indices of boundary and interior points and their corresponding Bezier points // (this can be reduced with more direct indexing and unrolling of loops): // OSD_DATA_STORAGE_CLASS const int boundaryGregory[12] = OSD_ARRAY_12(int, 0, 1, 7, 5, 2, 6, 16, 12, 15, 17, 11, 10 ); OSD_DATA_STORAGE_CLASS const int boundaryBezSCol[12] = OSD_ARRAY_12(int, 0, 1, 2, 3, 0, 3, 0, 3, 0, 1, 2, 3 ); OSD_DATA_STORAGE_CLASS const int boundaryBezTRow[12] = OSD_ARRAY_12(int, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3, 3 ); OSD_DATA_STORAGE_CLASS const int interiorGregory[8] = OSD_ARRAY_8(int, 3, 4, 8, 9, 13, 14, 18, 19 ); OSD_DATA_STORAGE_CLASS const int interiorBezSCol[8] = OSD_ARRAY_8(int, 1, 1, 2, 2, 2, 2, 1, 1 ); OSD_DATA_STORAGE_CLASS const int interiorBezTRow[8] = OSD_ARRAY_8(int, 1, 1, 1, 1, 2, 2, 2, 2 ); // // Bezier basis functions are denoted with B while the rational multipliers for the // interior points will be denoted G -- so we have B(s), B(t) and G(s,t): // // Directional Bezier basis functions B at s and t: OSD_REAL Bs[4], Bds[4], Bdss[4]; OSD_REAL Bt[4], Bdt[4], Bdtt[4]; Osd_evalBezierCurve(s, Bs, OSD_OPTIONAL_INIT(wDs, Bds), OSD_OPTIONAL_INIT(wDss, Bdss)); Osd_evalBezierCurve(t, Bt, OSD_OPTIONAL_INIT(wDt, Bdt), OSD_OPTIONAL_INIT(wDtt, Bdtt)); // Rational multipliers G at s and t: OSD_REAL sC = 1.0f - s; OSD_REAL tC = 1.0f - t; // Use <= here to avoid compiler warnings -- the sums should always be non-negative: OSD_REAL df0 = s + t; df0 = (df0 <= 0.0f) ? 1.0f : (1.0f / df0); OSD_REAL df1 = sC + t; df1 = (df1 <= 0.0f) ? 1.0f : (1.0f / df1); OSD_REAL df2 = sC + tC; df2 = (df2 <= 0.0f) ? 1.0f : (1.0f / df2); OSD_REAL df3 = s + tC; df3 = (df3 <= 0.0f) ? 1.0f : (1.0f / df3); // Make sure the G[i] for pairs of interior points sum to 1 in all cases: OSD_REAL G[8] = OSD_ARRAY_8(OSD_REAL, s*df0, (1.0f - s*df0), t*df1, (1.0f - t*df1), sC*df2, (1.0f - sC*df2), tC*df3, (1.0f - tC*df3) ); // Combined weights for boundary and interior points: for (int i = 0; i < 12; ++i) { wP[boundaryGregory[i]] = Bs[boundaryBezSCol[i]] * Bt[boundaryBezTRow[i]]; } for (int j = 0; j < 8; ++j) { wP[interiorGregory[j]] = Bs[interiorBezSCol[j]] * Bt[interiorBezTRow[j]] * G[j]; } // // For derivatives, the basis functions for the interior points are rational and ideally // require appropriate differentiation, i.e. product rule for the combination of B and G // and the quotient rule for the rational G itself. As initially proposed by Loop et al // though, the approximation using the 16 Bezier points arising from the G(s,t) has // proved adequate (and is what the GPU shaders use) so we continue to use that here. // // An implementation of the true derivatives is provided and conditionally compiled for // those that require it, e.g.: // // dclyde's note: skipping half of the product rule like this does seem to change the // result a lot in my tests. This is not a runtime bottleneck for cloth sims anyway // so I'm just using the accurate version. // if (OSD_OPTIONAL(wDs && wDt)) { bool find_second_partials = OSD_OPTIONAL(wDs && wDst && wDtt); // Combined weights for boundary points -- simple tensor products: for (int i = 0; i < 12; ++i) { int iDst = boundaryGregory[i]; int tRow = boundaryBezTRow[i]; int sCol = boundaryBezSCol[i]; wDs[iDst] = Bds[sCol] * Bt[tRow]; wDt[iDst] = Bdt[tRow] * Bs[sCol]; if (find_second_partials) { wDss[iDst] = Bdss[sCol] * Bt[tRow]; wDst[iDst] = Bds[sCol] * Bdt[tRow]; wDtt[iDst] = Bs[sCol] * Bdtt[tRow]; } } #ifndef OPENSUBDIV_GREGORY_EVAL_TRUE_DERIVATIVES // Approximation to the true Gregory derivatives by differentiating the Bezier patch // unique to the given (s,t), i.e. having F = (g^+ * f^+) + (g^- * f^-) as its four // interior points: // // Combined weights for interior points -- tensor products with G+ or G-: for (int j = 0; j < 8; ++j) { int iDst = interiorGregory[j]; int tRow = interiorBezTRow[j]; int sCol = interiorBezSCol[j]; wDs[iDst] = Bds[sCol] * Bt[tRow] * G[j]; wDt[iDst] = Bdt[tRow] * Bs[sCol] * G[j]; if (find_second_partials) { wDss[iDst] = Bdss[sCol] * Bt[tRow] * G[j]; wDst[iDst] = Bds[sCol] * Bdt[tRow] * G[j]; wDtt[iDst] = Bs[sCol] * Bdtt[tRow] * G[j]; } } #else // True Gregory derivatives using appropriate differentiation of composite functions: // // Note that for G(s,t) = N(s,t) / D(s,t), all N' and D' are trivial constants (which // simplifies things for higher order derivatives). And while each pair of functions // G (i.e. the G+ and G- corresponding to points f+ and f-) must sum to 1 to ensure // Bezier equivalence (when f+ = f-), the pairs of G' must similarly sum to 0. So we // can potentially compute only one of the pair and negate the result for the other // (and with 4 or 8 computations involving these constants, this is all very SIMD // friendly...) but for now we treat all 8 independently for simplicity. // //float N[8] = OSD_ARRAY_8(float, s, t, t, sC, sC, tC, tC, s ); OSD_REAL D[8] = OSD_ARRAY_8(OSD_REAL, df0, df0, df1, df1, df2, df2, df3, df3 ); OSD_DATA_STORAGE_CLASS const OSD_REAL Nds[8] = OSD_ARRAY_8(OSD_REAL, 1.0f, 0.0f, 0.0f, -1.0f, -1.0f, 0.0f, 0.0f, 1.0f ); OSD_DATA_STORAGE_CLASS const OSD_REAL Ndt[8] = OSD_ARRAY_8(OSD_REAL, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, -1.0f, -1.0f, 0.0f ); OSD_DATA_STORAGE_CLASS const OSD_REAL Dds[8] = OSD_ARRAY_8(OSD_REAL, 1.0f, 1.0f, -1.0f, -1.0f, -1.0f, -1.0f, 1.0f, 1.0f ); OSD_DATA_STORAGE_CLASS const OSD_REAL Ddt[8] = OSD_ARRAY_8(OSD_REAL, 1.0f, 1.0f, 1.0f, 1.0f, -1.0f, -1.0f, -1.0f, -1.0f ); // Combined weights for interior points -- (scaled) combinations of B, B', G and G': for (int k = 0; k < 8; ++k) { int iDst = interiorGregory[k]; int tRow = interiorBezTRow[k]; int sCol = interiorBezSCol[k]; // Quotient rule for G' (re-expressed in terms of G to simplify (and D = 1/D)): OSD_REAL Gds = (Nds[k] - Dds[k] * G[k]) * D[k]; OSD_REAL Gdt = (Ndt[k] - Ddt[k] * G[k]) * D[k]; // Product rule combining B and B' with G and G': wDs[iDst] = (Bds[sCol] * G[k] + Bs[sCol] * Gds) * Bt[tRow]; wDt[iDst] = (Bdt[tRow] * G[k] + Bt[tRow] * Gdt) * Bs[sCol]; if (find_second_partials) { OSD_REAL Dsqr_inv = D[k]*D[k]; OSD_REAL Gdss = 2.0f * Dds[k] * Dsqr_inv * (G[k] * Dds[k] - Nds[k]); OSD_REAL Gdst = Dsqr_inv * (2.0f * G[k] * Dds[k] * Ddt[k] - Nds[k] * Ddt[k] - Ndt[k] * Dds[k]); OSD_REAL Gdtt = 2.0f * Ddt[k] * Dsqr_inv * (G[k] * Ddt[k] - Ndt[k]); wDss[iDst] = (Bdss[sCol] * G[k] + 2.0f * Bds[sCol] * Gds + Bs[sCol] * Gdss) * Bt[tRow]; wDst[iDst] = Bt[tRow] * (Bs[sCol] * Gdst + Bds[sCol] * Gdt) + Bdt[tRow] * (Bds[sCol] * G[k] + Bs[sCol] * Gds); wDtt[iDst] = (Bdtt[tRow] * G[k] + 2.0f * Bdt[tRow] * Gdt + Bt[tRow] * Gdtt) * Bs[sCol]; } } #endif } return 20; } OSD_FUNCTION_STORAGE_CLASS // template int Osd_EvalBasisLinearTri(OSD_REAL s, OSD_REAL t, OSD_OUT_ARRAY(OSD_REAL, wP, 3), OSD_OUT_ARRAY(OSD_REAL, wDs, 3), OSD_OUT_ARRAY(OSD_REAL, wDt, 3), OSD_OUT_ARRAY(OSD_REAL, wDss, 3), OSD_OUT_ARRAY(OSD_REAL, wDst, 3), OSD_OUT_ARRAY(OSD_REAL, wDtt, 3)) { if (OSD_OPTIONAL(wP)) { wP[0] = 1.0f - s - t; wP[1] = s; wP[2] = t; } if (OSD_OPTIONAL(wDs && wDt)) { wDs[0] = -1.0f; wDs[1] = 1.0f; wDs[2] = 0.0f; wDt[0] = -1.0f; wDt[1] = 0.0f; wDt[2] = 1.0f; if (OSD_OPTIONAL(wDss && wDst && wDtt)) { wDss[0] = wDss[1] = wDss[2] = 0.0f; wDst[0] = wDst[1] = wDst[2] = 0.0f; wDtt[0] = wDtt[1] = wDtt[2] = 0.0f; } } return 3; } // namespace { OSD_FUNCTION_STORAGE_CLASS // template void Osd_evalBivariateMonomialsQuartic( OSD_REAL s, OSD_REAL t, OSD_OUT_ARRAY(OSD_REAL, M, 15)) { M[0] = 1.0; M[1] = s; M[2] = t; M[3] = s * s; M[4] = s * t; M[5] = t * t; M[6] = M[3] * s; M[7] = M[4] * s; M[8] = M[4] * t; M[9] = M[5] * t; M[10] = M[6] * s; M[11] = M[7] * s; M[12] = M[3] * M[5]; M[13] = M[8] * t; M[14] = M[9] * t; } OSD_FUNCTION_STORAGE_CLASS // template void Osd_evalBoxSplineTriDerivWeights( OSD_INOUT_ARRAY(OSD_REAL, /*stMonomials*/M, 15), int ds, int dt, OSD_OUT_ARRAY(OSD_REAL, w, 12)) { // const OSD_REAL M[15] = stMonomials; OSD_REAL S = 1.0f; int totalOrder = ds + dt; if (totalOrder == 0) { S *= OSD_REAL_CAST(1.0f / 12.0f); w[0] = S * (1 - 2*M[1] - 4*M[2] + 6*M[4] + 6*M[5] + 2*M[6] - 6*M[8] - 4*M[9] - M[10] - 2*M[11] + 2*M[13] + M[14]); w[1] = S * (1 + 2*M[1] - 2*M[2] - 6*M[4] - 4*M[6] + 6*M[8] + 2*M[9] + 2*M[10] + 4*M[11] - 2*M[13] - M[14]); w[2] = S * ( 2*M[6] - M[10] - 2*M[11] ); w[3] = S * (1 - 4*M[1] - 2*M[2] + 6*M[3] + 6*M[4] - 4*M[6] - 6*M[7] + 2*M[9] + M[10] + 2*M[11] - 2*M[13] - M[14]); w[4] = S * (6 -12*M[3] -12*M[4] -12*M[5] + 8*M[6] +12*M[7] +12*M[8] + 8*M[9] - M[10] - 2*M[11] - 2*M[13] - M[14]); w[5] = S * (1 + 4*M[1] + 2*M[2] + 6*M[3] + 6*M[4] - 4*M[6] - 6*M[7] -12*M[8] - 4*M[9] - M[10] - 2*M[11] + 4*M[13] + 2*M[14]); w[6] = S * ( M[10] + 2*M[11] ); w[7] = S * (1 - 2*M[1] + 2*M[2] - 6*M[4] + 2*M[6] + 6*M[7] - 4*M[9] - M[10] - 2*M[11] + 4*M[13] + 2*M[14]); w[8] = S * (1 + 2*M[1] + 4*M[2] + 6*M[4] + 6*M[5] - 4*M[6] -12*M[7] - 6*M[8] - 4*M[9] + 2*M[10] + 4*M[11] - 2*M[13] - M[14]); w[9] = S * ( 2*M[6] + 6*M[7] + 6*M[8] + 2*M[9] - M[10] - 2*M[11] - 2*M[13] - M[14]); w[10] = S * ( 2*M[9] - 2*M[13] - M[14]); w[11] = S * ( 2*M[13] + M[14]); } else if (totalOrder == 1) { S *= OSD_REAL_CAST(1.0f / 6.0f); if (ds != 0) { w[0] = S * (-1 + 3*M[2] + 3*M[3] - 3*M[5] - 2*M[6] - 3*M[7] + M[9]); w[1] = S * ( 1 - 3*M[2] - 6*M[3] + 3*M[5] + 4*M[6] + 6*M[7] - M[9]); w[2] = S * ( 3*M[3] - 2*M[6] - 3*M[7] ); w[3] = S * (-2 + 6*M[1] + 3*M[2] - 6*M[3] - 6*M[4] + 2*M[6] + 3*M[7] - M[9]); w[4] = S * ( -12*M[1] - 6*M[2] +12*M[3] +12*M[4] + 6*M[5] - 2*M[6] - 3*M[7] - M[9]); w[5] = S * ( 2 + 6*M[1] + 3*M[2] - 6*M[3] - 6*M[4] - 6*M[5] - 2*M[6] - 3*M[7] + 2*M[9]); w[6] = S * ( 2*M[6] + 3*M[7] ); w[7] = S * (-1 - 3*M[2] + 3*M[3] + 6*M[4] - 2*M[6] - 3*M[7] + 2*M[9]); w[8] = S * ( 1 + 3*M[2] - 6*M[3] -12*M[4] - 3*M[5] + 4*M[6] + 6*M[7] - M[9]); w[9] = S * ( 3*M[3] + 6*M[4] + 3*M[5] - 2*M[6] - 3*M[7] - M[9]); w[10] = S * ( - M[9]); w[11] = S * ( M[9]); } else { w[0] = S * (-2 + 3*M[1] + 6*M[2] - 6*M[4] - 6*M[5] - M[6] + 3*M[8] + 2*M[9]); w[1] = S * (-1 - 3*M[1] + 6*M[4] + 3*M[5] + 2*M[6] - 3*M[8] - 2*M[9]); w[2] = S * ( - M[6] ); w[3] = S * (-1 + 3*M[1] - 3*M[3] + 3*M[5] + M[6] - 3*M[8] - 2*M[9]); w[4] = S * ( - 6*M[1] -12*M[2] + 6*M[3] +12*M[4] +12*M[5] - M[6] - 3*M[8] - 2*M[9]); w[5] = S * ( 1 + 3*M[1] - 3*M[3] -12*M[4] - 6*M[5] - M[6] + 6*M[8] + 4*M[9]); w[6] = S * ( + M[6] ); w[7] = S * ( 1 - 3*M[1] + 3*M[3] - 6*M[5] - M[6] + 6*M[8] + 4*M[9]); w[8] = S * ( 2 + 3*M[1] + 6*M[2] - 6*M[3] - 6*M[4] - 6*M[5] + 2*M[6] - 3*M[8] - 2*M[9]); w[9] = S * ( + 3*M[3] + 6*M[4] + 3*M[5] - M[6] - 3*M[8] - 2*M[9]); w[10] = S * ( 3*M[5] - 3*M[8] - 2*M[9]); w[11] = S * ( 3*M[8] + 2*M[9]); } } else if (totalOrder == 2) { if (ds == 2) { w[0] = S * ( + M[1] - M[3] - M[4]); w[1] = S * ( - 2*M[1] + 2*M[3] + 2*M[4]); w[2] = S * ( M[1] - M[3] - M[4]); w[3] = S * ( 1 - 2*M[1] - M[2] + M[3] + M[4]); w[4] = S * (-2 + 4*M[1] + 2*M[2] - M[3] - M[4]); w[5] = S * ( 1 - 2*M[1] - M[2] - M[3] - M[4]); w[6] = S * ( M[3] + M[4]); w[7] = S * ( + M[1] + M[2] - M[3] - M[4]); w[8] = S * ( - 2*M[1] - 2*M[2] + 2*M[3] + 2*M[4]); w[9] = S * ( M[1] + M[2] - M[3] - M[4]); w[10] = 0; w[11] = 0; } else if (dt == 2) { w[0] = S * ( 1 - M[1] - 2*M[2] + M[4] + M[5]); w[1] = S * ( + M[1] + M[2] - M[4] - M[5]); w[2] = 0; w[3] = S * ( + M[2] - M[4] - M[5]); w[4] = S * (-2 + 2*M[1] + 4*M[2] - M[4] - M[5]); w[5] = S * ( - 2*M[1] - 2*M[2] + 2*M[4] + 2*M[5]); w[6] = 0; w[7] = S * ( - 2*M[2] + 2*M[4] + 2*M[5]); w[8] = S * ( 1 - M[1] - 2*M[2] - M[4] - M[5]); w[9] = S * ( + M[1] + M[2] - M[4] - M[5]); w[10] = S * ( M[2] - M[4] - M[5]); w[11] = S * ( M[4] + M[5]); } else { S *= OSD_REAL_CAST(1.0f / 2.0f); w[0] = S * ( 1 - 2*M[2] - M[3] + M[5]); w[1] = S * (-1 + 2*M[2] + 2*M[3] - M[5]); w[2] = S * ( - M[3] ); w[3] = S * ( 1 - 2*M[1] + M[3] - M[5]); w[4] = S * (-2 + 4*M[1] + 4*M[2] - M[3] - M[5]); w[5] = S * ( 1 - 2*M[1] - 4*M[2] - M[3] + 2*M[5]); w[6] = S * ( + M[3] ); w[7] = S * (-1 + 2*M[1] - M[3] + 2*M[5]); w[8] = S * ( 1 - 4*M[1] - 2*M[2] + 2*M[3] - M[5]); w[9] = S * ( + 2*M[1] + 2*M[2] - M[3] - M[5]); w[10] = S * ( - M[5]); w[11] = S * ( M[5]); } } else { // assert(totalOrder <= 2); } } OSD_FUNCTION_STORAGE_CLASS // template void Osd_adjustBoxSplineTriBoundaryWeights( int boundaryMask, OSD_INOUT_ARRAY(OSD_REAL, weights, 12)) { if (boundaryMask == 0) return; // // Determine boundary edges and vertices from the lower 3 and upper // 2 bits of the 5-bit mask: // int upperBits = (boundaryMask >> 3) & 0x3; int lowerBits = boundaryMask & 7; int eBits = lowerBits; int vBits = 0; if (upperBits == 1) { // Boundary vertices only: vBits = eBits; eBits = 0; } else if (upperBits == 2) { // Opposite vertex bit is edge bit rotated one to the right: vBits = ((eBits & 1) << 2) | (eBits >> 1); } bool edge0IsBoundary = (eBits & 1) != 0; bool edge1IsBoundary = (eBits & 2) != 0; bool edge2IsBoundary = (eBits & 4) != 0; // // Adjust weights for the 4 boundary points and 3 interior points // to account for the 3 phantom points adjacent to each // boundary edge: // if (edge0IsBoundary) { OSD_REAL w0 = weights[0]; if (edge2IsBoundary) { // P0 = B1 + (B1 - I1) weights[4] += w0; weights[4] += w0; weights[8] -= w0; } else { // P0 = B1 + (B0 - I0) weights[4] += w0; weights[3] += w0; weights[7] -= w0; } // P1 = B1 + (B2 - I1) OSD_REAL w1 = weights[1]; weights[4] += w1; weights[5] += w1; weights[8] -= w1; OSD_REAL w2 = weights[2]; if (edge1IsBoundary) { // P2 = B2 + (B2 - I1) weights[5] += w2; weights[5] += w2; weights[8] -= w2; } else { // P2 = B2 + (B3 - I2) weights[5] += w2; weights[6] += w2; weights[9] -= w2; } // Clear weights for the phantom points: weights[0] = weights[1] = weights[2] = 0.0f; } if (edge1IsBoundary) { OSD_REAL w0 = weights[6]; if (edge0IsBoundary) { // P0 = B1 + (B1 - I1) weights[5] += w0; weights[5] += w0; weights[4] -= w0; } else { // P0 = B1 + (B0 - I0) weights[5] += w0; weights[2] += w0; weights[1] -= w0; } // P1 = B1 + (B2 - I1) OSD_REAL w1 = weights[9]; weights[5] += w1; weights[8] += w1; weights[4] -= w1; OSD_REAL w2 = weights[11]; if (edge2IsBoundary) { // P2 = B2 + (B2 - I1) weights[8] += w2; weights[8] += w2; weights[4] -= w2; } else { // P2 = B2 + (B3 - I2) weights[8] += w2; weights[10] += w2; weights[7] -= w2; } // Clear weights for the phantom points: weights[6] = weights[9] = weights[11] = 0.0f; } if (edge2IsBoundary) { OSD_REAL w0 = weights[10]; if (edge1IsBoundary) { // P0 = B1 + (B1 - I1) weights[8] += w0; weights[8] += w0; weights[5] -= w0; } else { // P0 = B1 + (B0 - I0) weights[8] += w0; weights[11] += w0; weights[9] -= w0; } // P1 = B1 + (B2 - I1) OSD_REAL w1 = weights[7]; weights[8] += w1; weights[4] += w1; weights[5] -= w1; OSD_REAL w2 = weights[3]; if (edge0IsBoundary) { // P2 = B2 + (B2 - I1) weights[4] += w2; weights[4] += w2; weights[5] -= w2; } else { // P2 = B2 + (B3 - I2) weights[4] += w2; weights[0] += w2; weights[1] -= w2; } // Clear weights for the phantom points: weights[10] = weights[7] = weights[3] = 0.0f; } // // Adjust weights for the 3 boundary points and the 2 interior // points to account for the 2 phantom points adjacent to // each boundary vertex: // if ((vBits & 1) != 0) { // P0 = B1 + (B0 - I0) OSD_REAL w0 = weights[3]; weights[4] += w0; weights[7] += w0; weights[8] -= w0; // P1 = B1 + (B2 - I1) OSD_REAL w1 = weights[0]; weights[4] += w1; weights[1] += w1; weights[5] -= w1; // Clear weights for the phantom points: weights[3] = weights[0] = 0.0f; } if ((vBits & 2) != 0) { // P0 = B1 + (B0 - I0) OSD_REAL w0 = weights[2]; weights[5] += w0; weights[1] += w0; weights[4] -= w0; // P1 = B1 + (B2 - I1) OSD_REAL w1 = weights[6]; weights[5] += w1; weights[9] += w1; weights[8] -= w1; // Clear weights for the phantom points: weights[2] = weights[6] = 0.0f; } if ((vBits & 4) != 0) { // P0 = B1 + (B0 - I0) OSD_REAL w0 = weights[11]; weights[8] += w0; weights[9] += w0; weights[5] -= w0; // P1 = B1 + (B2 - I1) OSD_REAL w1 = weights[10]; weights[8] += w1; weights[7] += w1; weights[4] -= w1; // Clear weights for the phantom points: weights[11] = weights[10] = 0.0f; } } OSD_FUNCTION_STORAGE_CLASS // template void Osd_boundBasisBoxSplineTri( int boundary, OSD_INOUT_ARRAY(OSD_REAL, wP, 12), OSD_INOUT_ARRAY(OSD_REAL, wDs, 12), OSD_INOUT_ARRAY(OSD_REAL, wDt, 12), OSD_INOUT_ARRAY(OSD_REAL, wDss, 12), OSD_INOUT_ARRAY(OSD_REAL, wDst, 12), OSD_INOUT_ARRAY(OSD_REAL, wDtt, 12)) { if (OSD_OPTIONAL(wP)) { Osd_adjustBoxSplineTriBoundaryWeights(boundary, wP); } if (OSD_OPTIONAL(wDs && wDt)) { Osd_adjustBoxSplineTriBoundaryWeights(boundary, wDs); Osd_adjustBoxSplineTriBoundaryWeights(boundary, wDt); if (OSD_OPTIONAL(wDss && wDst && wDtt)) { Osd_adjustBoxSplineTriBoundaryWeights(boundary, wDss); Osd_adjustBoxSplineTriBoundaryWeights(boundary, wDst); Osd_adjustBoxSplineTriBoundaryWeights(boundary, wDtt); } } } // } // namespace OSD_FUNCTION_STORAGE_CLASS // template int Osd_EvalBasisBoxSplineTri(OSD_REAL s, OSD_REAL t, OSD_OUT_ARRAY(OSD_REAL, wP, 12), OSD_OUT_ARRAY(OSD_REAL, wDs, 12), OSD_OUT_ARRAY(OSD_REAL, wDt, 12), OSD_OUT_ARRAY(OSD_REAL, wDss, 12), OSD_OUT_ARRAY(OSD_REAL, wDst, 12), OSD_OUT_ARRAY(OSD_REAL, wDtt, 12)) { OSD_REAL stMonomials[15]; Osd_evalBivariateMonomialsQuartic(s, t, stMonomials); if (OSD_OPTIONAL(wP)) { Osd_evalBoxSplineTriDerivWeights(stMonomials, 0, 0, wP); } if (OSD_OPTIONAL(wDs && wDt)) { Osd_evalBoxSplineTriDerivWeights(stMonomials, 1, 0, wDs); Osd_evalBoxSplineTriDerivWeights(stMonomials, 0, 1, wDt); if (OSD_OPTIONAL(wDss && wDst && wDtt)) { Osd_evalBoxSplineTriDerivWeights(stMonomials, 2, 0, wDss); Osd_evalBoxSplineTriDerivWeights(stMonomials, 1, 1, wDst); Osd_evalBoxSplineTriDerivWeights(stMonomials, 0, 2, wDtt); } } return 12; } // namespace { OSD_FUNCTION_STORAGE_CLASS // template void Osd_evalBezierTriDerivWeights( OSD_REAL s, OSD_REAL t, int ds, int dt, OSD_OUT_ARRAY(OSD_REAL, wB, 15)) { OSD_REAL u = s; OSD_REAL v = t; OSD_REAL w = 1 - u - v; OSD_REAL uu = u * u; OSD_REAL vv = v * v; OSD_REAL ww = w * w; OSD_REAL uv = u * v; OSD_REAL vw = v * w; OSD_REAL uw = u * w; int totalOrder = ds + dt; if (totalOrder == 0) { wB[0] = ww * ww; wB[1] = 4 * uw * ww; wB[2] = 6 * uw * uw; wB[3] = 4 * uw * uu; wB[4] = uu * uu; wB[5] = 4 * vw * ww; wB[6] = 12 * ww * uv; wB[7] = 12 * uu * vw; wB[8] = 4 * uv * uu; wB[9] = 6 * vw * vw; wB[10] = 12 * vv * uw; wB[11] = 6 * uv * uv; wB[12] = 4 * vw * vv; wB[13] = 4 * uv * vv; wB[14] = vv * vv; } else if (totalOrder == 1) { if (ds == 1) { wB[0] = -4 * ww * w; wB[1] = 4 * ww * (w - 3 * u); wB[2] = 12 * uw * (w - u); wB[3] = 4 * uu * (3 * w - u); wB[4] = 4 * uu * u; wB[5] = -12 * vw * w; wB[6] = 12 * vw * (w - 2 * u); wB[7] = 12 * uv * (2 * w - u); wB[8] = 12 * uv * u; wB[9] = -12 * vv * w; wB[10] = 12 * vv * (w - u); wB[11] = 12 * vv * u; wB[12] = -4 * vv * v; wB[13] = 4 * vv * v; wB[14] = 0; } else { wB[0] = -4 * ww * w; wB[1] = -12 * ww * u; wB[2] = -12 * uu * w; wB[3] = -4 * uu * u; wB[4] = 0; wB[5] = 4 * ww * (w - 3 * v); wB[6] = 12 * uw * (w - 2 * v); wB[7] = 12 * uu * (w - v); wB[8] = 4 * uu * u; wB[9] = 12 * vw * (w - v); wB[10] = 12 * uv * (2 * w - v); wB[11] = 12 * uv * u;; wB[12] = 4 * vv * (3 * w - v); wB[13] = 12 * vv * u; wB[14] = 4 * vv * v; } } else if (totalOrder == 2) { if (ds == 2) { wB[0] = 12 * ww; wB[1] = 24 * (uw - ww); wB[2] = 12 * (uu - 4 * uw + ww); wB[3] = 24 * (uw - uu); wB[4] = 12 * uu; wB[5] = 24 * vw; wB[6] = 24 * (uv - 2 * vw); wB[7] = 24 * (vw - 2 * uv); wB[8] = 24 * uv; wB[9] = 12 * vv; wB[10] = -24 * vv; wB[11] = 12 * vv; wB[12] = 0; wB[13] = 0; wB[14] = 0; } else if (dt == 2) { wB[0] = 12 * ww; wB[1] = 24 * uw; wB[2] = 12 * uu; wB[3] = 0; wB[4] = 0; wB[5] = 24 * (vw - ww); wB[6] = 24 * (uv - 2 * uw); wB[7] = -24 * uu; wB[8] = 0; wB[9] = 12 * (vv - 4 * vw + ww); wB[10] = 24 * (uw - 2 * uv); wB[11] = 12 * uu; wB[12] = 24 * (vw - vv); wB[13] = 24 * uv; wB[14] = 12 * vv; } else { wB[0] = 12 * ww; wB[3] = -12 * uu; wB[13] = 12 * vv; wB[11] = 24 * uv; wB[1] = 24 * uw - wB[0]; wB[2] = -24 * uw - wB[3]; wB[5] = 24 * vw - wB[0]; wB[6] = -24 * vw + wB[11] - wB[1]; wB[8] = - wB[3]; wB[7] = -(wB[11] + wB[2]); wB[9] = wB[13] - wB[5] - wB[0]; wB[10] = -(wB[9] + wB[11]); wB[12] = - wB[13]; wB[4] = 0; wB[14] = 0; } } else { // assert(totalOrder <= 2); } } // } // end namespace OSD_FUNCTION_STORAGE_CLASS // template int Osd_EvalBasisBezierTri(OSD_REAL s, OSD_REAL t, OSD_OUT_ARRAY(OSD_REAL, wP, 15), OSD_OUT_ARRAY(OSD_REAL, wDs, 15), OSD_OUT_ARRAY(OSD_REAL, wDt, 15), OSD_OUT_ARRAY(OSD_REAL, wDss, 15), OSD_OUT_ARRAY(OSD_REAL, wDst, 15), OSD_OUT_ARRAY(OSD_REAL, wDtt, 15)) { if (OSD_OPTIONAL(wP)) { Osd_evalBezierTriDerivWeights(s, t, 0, 0, wP); } if (OSD_OPTIONAL(wDs && wDt)) { Osd_evalBezierTriDerivWeights(s, t, 1, 0, wDs); Osd_evalBezierTriDerivWeights(s, t, 0, 1, wDt); if (OSD_OPTIONAL(wDss && wDst && wDtt)) { Osd_evalBezierTriDerivWeights(s, t, 2, 0, wDss); Osd_evalBezierTriDerivWeights(s, t, 1, 1, wDst); Osd_evalBezierTriDerivWeights(s, t, 0, 2, wDtt); } } return 15; } // namespace { // // Expanding a set of 15 Bezier basis functions for the 6 (3 pairs) of // rational weights for the 18 Gregory basis functions: // OSD_FUNCTION_STORAGE_CLASS // template void Osd_convertBezierWeightsToGregory( OSD_INOUT_ARRAY(OSD_REAL, wB, 15), OSD_INOUT_ARRAY(OSD_REAL, rG, 6), OSD_OUT_ARRAY(OSD_REAL, wG, 18)) { wG[0] = wB[0]; wG[1] = wB[1]; wG[2] = wB[5]; wG[3] = wB[6] * rG[0]; wG[4] = wB[6] * rG[1]; wG[5] = wB[4]; wG[6] = wB[8]; wG[7] = wB[3]; wG[8] = wB[7] * rG[2]; wG[9] = wB[7] * rG[3]; wG[10] = wB[14]; wG[11] = wB[12]; wG[12] = wB[13]; wG[13] = wB[10] * rG[4]; wG[14] = wB[10] * rG[5]; wG[15] = wB[2]; wG[16] = wB[11]; wG[17] = wB[9]; } // } // end namespace OSD_FUNCTION_STORAGE_CLASS // template int Osd_EvalBasisGregoryTri(OSD_REAL s, OSD_REAL t, OSD_OUT_ARRAY(OSD_REAL, wP, 18), OSD_OUT_ARRAY(OSD_REAL, wDs, 18), OSD_OUT_ARRAY(OSD_REAL, wDt, 18), OSD_OUT_ARRAY(OSD_REAL, wDss, 18), OSD_OUT_ARRAY(OSD_REAL, wDst, 18), OSD_OUT_ARRAY(OSD_REAL, wDtt, 18)) { // // Bezier basis functions are denoted with B while the rational multipliers for the // interior points will be denoted G -- so we have B(s,t) and G(s,t) (though we // switch to barycentric (u,v,w) briefly to compute G) // OSD_REAL BP[15], BDs[15], BDt[15], BDss[15], BDst[15], BDtt[15]; OSD_REAL G[6] = OSD_ARRAY_6(OSD_REAL, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f ); OSD_REAL u = s; OSD_REAL v = t; OSD_REAL w = 1 - u - v; if ((u + v) > 0) { G[0] = u / (u + v); G[1] = v / (u + v); } if ((v + w) > 0) { G[2] = v / (v + w); G[3] = w / (v + w); } if ((w + u) > 0) { G[4] = w / (w + u); G[5] = u / (w + u); } // // Compute Bezier basis functions and convert, adjusting interior points: // if (OSD_OPTIONAL(wP)) { Osd_evalBezierTriDerivWeights(s, t, 0, 0, BP); Osd_convertBezierWeightsToGregory(BP, G, wP); } if (OSD_OPTIONAL(wDs && wDt)) { // TBD -- ifdef OPENSUBDIV_GREGORY_EVAL_TRUE_DERIVATIVES Osd_evalBezierTriDerivWeights(s, t, 1, 0, BDs); Osd_evalBezierTriDerivWeights(s, t, 0, 1, BDt); Osd_convertBezierWeightsToGregory(BDs, G, wDs); Osd_convertBezierWeightsToGregory(BDt, G, wDt); if (OSD_OPTIONAL(wDss && wDst && wDtt)) { Osd_evalBezierTriDerivWeights(s, t, 2, 0, BDss); Osd_evalBezierTriDerivWeights(s, t, 1, 1, BDst); Osd_evalBezierTriDerivWeights(s, t, 0, 2, BDtt); Osd_convertBezierWeightsToGregory(BDss, G, wDss); Osd_convertBezierWeightsToGregory(BDst, G, wDst); Osd_convertBezierWeightsToGregory(BDtt, G, wDtt); } } return 18; } // The following functions are low-level internal methods which // were exposed in earlier releases, but were never intended to // be part of the supported public API. // Deprecated -- prefer use of OsdEvaluatePatchBasis() and // OsdEvaluatePatchBasisNormalized() methods. OSD_FUNCTION_STORAGE_CLASS void OsdGetBezierWeights( OSD_REAL t, OSD_OUT_ARRAY(OSD_REAL, wP, 4), OSD_OUT_ARRAY(OSD_REAL, wDP, 4), OSD_OUT_ARRAY(OSD_REAL, wDP2, 4)) { Osd_evalBezierCurve(t, wP, wDP, wDP2); } // Deprecated -- prefer use of OsdEvaluatePatchBasis() and // OsdEvaluatePatchBasisNormalized() methods. OSD_FUNCTION_STORAGE_CLASS void OsdGetBSplineWeights( OSD_REAL t, OSD_OUT_ARRAY(OSD_REAL, wP, 4), OSD_OUT_ARRAY(OSD_REAL, wDP, 4), OSD_OUT_ARRAY(OSD_REAL, wDP2, 4)) { Osd_evalBSplineCurve(t, wP, wDP, wDP2); } // Deprecated -- prefer use of OsdEvaluatePatchBasis() and // OsdEvaluatePatchBasisNormalized() methods. OSD_FUNCTION_STORAGE_CLASS void OsdGetBoxSplineWeights( float s, float t, OSD_OUT_ARRAY(OSD_REAL, wP, 12)) { OSD_REAL stMonomials[15]; Osd_evalBivariateMonomialsQuartic(s, t, stMonomials); if (OSD_OPTIONAL(wP)) { Osd_evalBoxSplineTriDerivWeights(stMonomials, 0, 0, wP); } } // Deprecated -- prefer use of OsdEvaluatePatchBasis() and // OsdEvaluatePatchBasisNormalized() methods. OSD_FUNCTION_STORAGE_CLASS void OsdAdjustBoundaryWeights( int boundary, OSD_INOUT_ARRAY(OSD_REAL, sWeights, 4), OSD_INOUT_ARRAY(OSD_REAL, tWeights, 4)) { if ((boundary & 1) != 0) { tWeights[2] -= tWeights[0]; tWeights[1] += tWeights[0] * 2.0f; tWeights[0] = 0.0f; } if ((boundary & 2) != 0) { sWeights[1] -= sWeights[3]; sWeights[2] += sWeights[3] * 2.0f; sWeights[3] = 0.0f; } if ((boundary & 4) != 0) { tWeights[1] -= tWeights[3]; tWeights[2] += tWeights[3] * 2.0f; tWeights[3] = 0.0f; } if ((boundary & 8) != 0) { sWeights[2] -= sWeights[0]; sWeights[1] += sWeights[0] * 2.0f; sWeights[0] = 0.0f; } } // Deprecated -- prefer use of OsdEvaluatePatchBasis() and // OsdEvaluatePatchBasisNormalized() methods. OSD_FUNCTION_STORAGE_CLASS void OsdComputeTensorProductPatchWeights( float dScale, int boundary, OSD_IN_ARRAY(float, sWeights, 4), OSD_IN_ARRAY(float, tWeights, 4), OSD_IN_ARRAY(float, dsWeights, 4), OSD_IN_ARRAY(float, dtWeights, 4), OSD_IN_ARRAY(float, dssWeights, 4), OSD_IN_ARRAY(float, dttWeights, 4), OSD_OUT_ARRAY(float, wP, 16), OSD_OUT_ARRAY(float, wDs, 16), OSD_OUT_ARRAY(float, wDt, 16), OSD_OUT_ARRAY(float, wDss, 16), OSD_OUT_ARRAY(float, wDst, 16), OSD_OUT_ARRAY(float, wDtt, 16)) { if (OSD_OPTIONAL(wP)) { // Compute the tensor product weight of the (s,t) basis function // corresponding to each control vertex: OsdAdjustBoundaryWeights(boundary, sWeights, tWeights); for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { wP[4*i+j] = sWeights[j] * tWeights[i]; } } } if (OSD_OPTIONAL(wDs && wDt)) { // Compute the tensor product weight of the differentiated (s,t) basis // function corresponding to each control vertex (scaled accordingly): OsdAdjustBoundaryWeights(boundary, dsWeights, dtWeights); for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { wDs[4*i+j] = dsWeights[j] * tWeights[i] * dScale; wDt[4*i+j] = sWeights[j] * dtWeights[i] * dScale; } } if (OSD_OPTIONAL(wDss && wDst && wDtt)) { // Compute the tensor product weight of appropriate differentiated // (s,t) basis functions for each control vertex (scaled accordingly): float d2Scale = dScale * dScale; OsdAdjustBoundaryWeights(boundary, dssWeights, dttWeights); for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { wDss[4*i+j] = dssWeights[j] * tWeights[i] * d2Scale; wDst[4*i+j] = dsWeights[j] * dtWeights[i] * d2Scale; wDtt[4*i+j] = sWeights[j] * dttWeights[i] * d2Scale; } } } } } // Deprecated -- prefer use of OsdEvaluatePatchBasis() and // OsdEvaluatePatchBasisNormalized() methods. OSD_FUNCTION_STORAGE_CLASS void OsdGetBilinearPatchWeights( OSD_REAL s, OSD_REAL t, OSD_REAL d1Scale, OSD_OUT_ARRAY(OSD_REAL, wP, 4), OSD_OUT_ARRAY(OSD_REAL, wDs, 4), OSD_OUT_ARRAY(OSD_REAL, wDt, 4), OSD_OUT_ARRAY(OSD_REAL, wDss, 4), OSD_OUT_ARRAY(OSD_REAL, wDst, 4), OSD_OUT_ARRAY(OSD_REAL, wDtt, 4)) { int nPoints = Osd_EvalBasisLinear(s, t, wP, wDs, wDt, wDss, wDst, wDtt); if (OSD_OPTIONAL(wDs && wDt)) { for (int i = 0; i < nPoints; ++i) { wDs[i] *= d1Scale; wDt[i] *= d1Scale; } if (OSD_OPTIONAL(wDss && wDst && wDtt)) { OSD_REAL d2Scale = d1Scale * d1Scale; for (int i = 0; i < nPoints; ++i) { wDss[i] *= d2Scale; wDst[i] *= d2Scale; wDtt[i] *= d2Scale; } } } } // Deprecated -- prefer use of OsdEvaluatePatchBasis() and // OsdEvaluatePatchBasisNormalized() methods. OSD_FUNCTION_STORAGE_CLASS void OsdGetBSplinePatchWeights( OSD_REAL s, OSD_REAL t, OSD_REAL d1Scale, int boundary, OSD_OUT_ARRAY(OSD_REAL, wP, 16), OSD_OUT_ARRAY(OSD_REAL, wDs, 16), OSD_OUT_ARRAY(OSD_REAL, wDt, 16), OSD_OUT_ARRAY(OSD_REAL, wDss, 16), OSD_OUT_ARRAY(OSD_REAL, wDst, 16), OSD_OUT_ARRAY(OSD_REAL, wDtt, 16)) { int nPoints = Osd_EvalBasisBSpline(s, t, wP, wDs, wDt, wDss, wDst, wDtt); Osd_boundBasisBSpline(boundary, wP, wDs, wDt, wDss, wDst, wDtt); if (OSD_OPTIONAL(wDs && wDt)) { for (int i = 0; i < nPoints; ++i) { wDs[i] *= d1Scale; wDt[i] *= d1Scale; } if (OSD_OPTIONAL(wDss && wDst && wDtt)) { OSD_REAL d2Scale = d1Scale * d1Scale; for (int i = 0; i < nPoints; ++i) { wDss[i] *= d2Scale; wDst[i] *= d2Scale; wDtt[i] *= d2Scale; } } } } // Deprecated -- prefer use of OsdEvaluatePatchBasis() and // OsdEvaluatePatchBasisNormalized() methods. OSD_FUNCTION_STORAGE_CLASS void OsdGetBezierPatchWeights( OSD_REAL s, OSD_REAL t, OSD_REAL d1Scale, OSD_OUT_ARRAY(OSD_REAL, wP, 16), OSD_OUT_ARRAY(OSD_REAL, wDs, 16), OSD_OUT_ARRAY(OSD_REAL, wDt, 16), OSD_OUT_ARRAY(OSD_REAL, wDss, 16), OSD_OUT_ARRAY(OSD_REAL, wDst, 16), OSD_OUT_ARRAY(OSD_REAL, wDtt, 16)) { int nPoints = Osd_EvalBasisBezier(s, t, wP, wDs, wDt, wDss, wDst, wDtt); if (OSD_OPTIONAL(wDs && wDt)) { for (int i = 0; i < nPoints; ++i) { wDs[i] *= d1Scale; wDt[i] *= d1Scale; } if (OSD_OPTIONAL(wDss && wDst && wDtt)) { OSD_REAL d2Scale = d1Scale * d1Scale; for (int i = 0; i < nPoints; ++i) { wDss[i] *= d2Scale; wDst[i] *= d2Scale; wDtt[i] *= d2Scale; } } } } // Deprecated -- prefer use of OsdEvaluatePatchBasis() and // OsdEvaluatePatchBasisNormalized() methods. OSD_FUNCTION_STORAGE_CLASS void OsdGetGregoryPatchWeights( OSD_REAL s, OSD_REAL t, OSD_REAL d1Scale, OSD_OUT_ARRAY(OSD_REAL, wP, 20), OSD_OUT_ARRAY(OSD_REAL, wDs, 20), OSD_OUT_ARRAY(OSD_REAL, wDt, 20), OSD_OUT_ARRAY(OSD_REAL, wDss, 20), OSD_OUT_ARRAY(OSD_REAL, wDst, 20), OSD_OUT_ARRAY(OSD_REAL, wDtt, 20)) { int nPoints = Osd_EvalBasisGregory(s, t, wP, wDs, wDt, wDss, wDst, wDtt); if (OSD_OPTIONAL(wDs && wDt)) { for (int i = 0; i < nPoints; ++i) { wDs[i] *= d1Scale; wDt[i] *= d1Scale; } if (OSD_OPTIONAL(wDss && wDst && wDtt)) { OSD_REAL d2Scale = d1Scale * d1Scale; for (int i = 0; i < nPoints; ++i) { wDss[i] *= d2Scale; wDst[i] *= d2Scale; wDtt[i] *= d2Scale; } } } } // // Higher level basis evaluation functions that deal with parameterization and // boundary issues (reflected in PatchParam) for all patch types: // OSD_FUNCTION_STORAGE_CLASS // template int OsdEvaluatePatchBasisNormalized( int patchType, OsdPatchParam param, OSD_REAL s, OSD_REAL t, OSD_OUT_ARRAY(OSD_REAL, wP, 20), OSD_OUT_ARRAY(OSD_REAL, wDs, 20), OSD_OUT_ARRAY(OSD_REAL, wDt, 20), OSD_OUT_ARRAY(OSD_REAL, wDss, 20), OSD_OUT_ARRAY(OSD_REAL, wDst, 20), OSD_OUT_ARRAY(OSD_REAL, wDtt, 20)) { int boundaryMask = OsdPatchParamGetBoundary(param); int nPoints = 0; if (patchType == OSD_PATCH_DESCRIPTOR_REGULAR) { #if OSD_ARRAY_ARG_BOUND_OPTIONAL nPoints = Osd_EvalBasisBSpline(s, t, wP, wDs, wDt, wDss, wDst, wDtt); if (boundaryMask != 0) { Osd_boundBasisBSpline( boundaryMask, wP, wDs, wDt, wDss, wDst, wDtt); } #else OSD_REAL wP16[16], wDs16[16], wDt16[16], wDss16[16], wDst16[16], wDtt16[16]; nPoints = Osd_EvalBasisBSpline( s, t, wP16, wDs16, wDt16, wDss16, wDst16, wDtt16); if (boundaryMask != 0) { Osd_boundBasisBSpline( boundaryMask, wP16, wDs16, wDt16, wDss16, wDst16, wDtt16); } for (int i=0; i int OsdEvaluatePatchBasis( int patchType, OsdPatchParam param, OSD_REAL s, OSD_REAL t, OSD_OUT_ARRAY(OSD_REAL, wP, 20), OSD_OUT_ARRAY(OSD_REAL, wDs, 20), OSD_OUT_ARRAY(OSD_REAL, wDt, 20), OSD_OUT_ARRAY(OSD_REAL, wDss, 20), OSD_OUT_ARRAY(OSD_REAL, wDst, 20), OSD_OUT_ARRAY(OSD_REAL, wDtt, 20)) { OSD_REAL derivSign = 1.0f; if ((patchType == OSD_PATCH_DESCRIPTOR_LOOP) || (patchType == OSD_PATCH_DESCRIPTOR_GREGORY_TRIANGLE) || (patchType == OSD_PATCH_DESCRIPTOR_TRIANGLES)) { OSD_REAL uv[2] = OSD_ARRAY_2(OSD_REAL, s, t); OsdPatchParamNormalizeTriangle(param, uv); s = uv[0]; t = uv[1]; if (OsdPatchParamIsTriangleRotated(param)) { derivSign = -1.0f; } } else { OSD_REAL uv[2] = OSD_ARRAY_2(OSD_REAL, s, t); OsdPatchParamNormalize(param, uv); s = uv[0]; t = uv[1]; } int nPoints = OsdEvaluatePatchBasisNormalized( patchType, param, s, t, wP, wDs, wDt, wDss, wDst, wDtt); if (OSD_OPTIONAL(wDs && wDt)) { OSD_REAL d1Scale = derivSign * OSD_REAL_CAST(1 << OsdPatchParamGetDepth(param)); for (int i = 0; i < nPoints; ++i) { wDs[i] *= d1Scale; wDt[i] *= d1Scale; } if (OSD_OPTIONAL(wDss && wDst && wDtt)) { OSD_REAL d2Scale = derivSign * d1Scale * d1Scale; for (int i = 0; i < nPoints; ++i) { wDss[i] *= d2Scale; wDst[i] *= d2Scale; wDtt[i] *= d2Scale; } } } return nPoints; } #if !defined(OSD_PATCH_BASIS_GLSL) && \ !defined(OSD_PATCH_BASIS_HLSL) && \ !defined(OSD_PATCH_BASIS_CUDA) && \ !defined(OSD_PATCH_BASIS_OPENCL) && \ !defined(OSD_PATCH_BASIS_METAL) } // end namespace Osd } // end namespace OPENSUBDIV_VERSION using namespace OPENSUBDIV_VERSION; } // end namespace OpenSubdiv #endif #endif /* OPENSUBDIV3_OSD_PATCH_BASIS_H */