// // Copyright 2015 Pixar // // Licensed under the Apache License, Version 2.0 (the "Apache License") // with the following modification; you may not use this file except in // compliance with the Apache License and the following modification to it: // Section 6. Trademarks. is deleted and replaced with: // // 6. Trademarks. This License does not grant permission to use the trade // names, trademarks, service marks, or product names of the Licensor // and its affiliates, except as required to comply with Section 4(c) of // the License and to reproduce the content of the NOTICE file. // // You may obtain a copy of the Apache License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the Apache License with the above modification is // distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the Apache License for the specific // language governing permissions and limitations under the Apache License. // //---------------------------------------------------------- // Patches.VertexGregoryBasis //---------------------------------------------------------- #ifdef OSD_PATCH_VERTEX_GREGORY_BASIS_SHADER layout(location = 0) in vec4 position; OSD_USER_VARYING_ATTRIBUTE_DECLARE out block { ControlVertex v; OSD_USER_VARYING_DECLARE } outpt; void main() { outpt.v.position = OsdModelViewMatrix() * position; outpt.v.patchCoord = vec4(0); outpt.v.ptexInfo = ivec4(0); OSD_PATCH_CULL_COMPUTE_CLIPFLAGS(position); OSD_USER_VARYING_PER_VERTEX(); } #endif //---------------------------------------------------------- // Patches.TessControlGregoryBasis //---------------------------------------------------------- #ifdef OSD_PATCH_TESS_CONTROL_GREGORY_BASIS_SHADER layout(vertices = 20) out; in block { ControlVertex v; OSD_USER_VARYING_DECLARE } inpt[]; out block { ControlVertex v; OSD_USER_VARYING_DECLARE } outpt[]; #define ID gl_InvocationID void main() { outpt[ID].v = inpt[ID].v; OSD_USER_VARYING_PER_CONTROL_POINT(ID, ID); int patchLevel = GetPatchLevel(); // +0.5 to avoid interpolation error of integer value outpt[ID].v.patchCoord = vec4(0, 0, patchLevel+0.5, GetPrimitiveID()+0.5); OSD_COMPUTE_PTEX_COORD_TESSCONTROL_SHADER; if (ID == 0) { OSD_PATCH_CULL(OSD_PATCH_INPUT_SIZE); // XXX: this metric is not consistent. // we will 1) compute the cage length as before // or 2) compute limit length for all patches. #ifdef OSD_ENABLE_SCREENSPACE_TESSELLATION gl_TessLevelOuter[0] = TessAdaptive(inpt[0].v.position.xyz, inpt[5].v.position.xyz); gl_TessLevelOuter[1] = TessAdaptive(inpt[0].v.position.xyz, inpt[15].v.position.xyz); gl_TessLevelOuter[2] = TessAdaptive(inpt[10].v.position.xyz, inpt[15].v.position.xyz); gl_TessLevelOuter[3] = TessAdaptive(inpt[5].v.position.xyz, inpt[10].v.position.xyz); gl_TessLevelInner[0] = max(gl_TessLevelOuter[1], gl_TessLevelOuter[3]); gl_TessLevelInner[1] = max(gl_TessLevelOuter[0], gl_TessLevelOuter[2]); #else gl_TessLevelInner[0] = GetTessLevel(patchLevel); gl_TessLevelInner[1] = GetTessLevel(patchLevel); gl_TessLevelOuter[0] = GetTessLevel(patchLevel); gl_TessLevelOuter[1] = GetTessLevel(patchLevel); gl_TessLevelOuter[2] = GetTessLevel(patchLevel); gl_TessLevelOuter[3] = GetTessLevel(patchLevel); #endif } } #endif //---------------------------------------------------------- // Patches.TessEvalGregory //---------------------------------------------------------- #ifdef OSD_PATCH_TESS_EVAL_GREGORY_BASIS_SHADER layout(quads) in; layout(cw) in; #if defined OSD_FRACTIONAL_ODD_SPACING layout(fractional_odd_spacing) in; #elif defined OSD_FRACTIONAL_EVEN_SPACING layout(fractional_even_spacing) in; #endif in block { ControlVertex v; OSD_USER_VARYING_DECLARE } inpt[]; out block { OutputVertex v; OSD_USER_VARYING_DECLARE } outpt; void main() { float u = gl_TessCoord.x, v = gl_TessCoord.y; vec3 p[20]; for (int i = 0; i < 20; ++i) { p[i] = inpt[i].v.position.xyz; } vec3 q[16]; float U = 1-u, V=1-v; float d11 = u+v; if(u+v==0.0f) d11 = 1.0f; float d12 = U+v; if(U+v==0.0f) d12 = 1.0f; float d21 = u+V; if(u+V==0.0f) d21 = 1.0f; float d22 = U+V; if(U+V==0.0f) d22 = 1.0f; #if 1 q[ 5] = (u*p[3] + v*p[4])/d11; q[ 6] = (U*p[9] + v*p[8])/d12; q[ 9] = (u*p[19] + V*p[18])/d21; q[10] = (U*p[13] + V*p[14])/d22; #else q[ 5] = (p[3] + p[4])/2.0; q[ 6] = (p[9] + p[8])/2.0; q[ 9] = (p[19] + p[18])/2.0; q[10] = (p[13] + p[14])/2.0; #endif q[ 0] = p[0]; q[ 1] = p[1]; q[ 2] = p[7]; q[ 3] = p[5]; q[ 4] = p[2]; q[ 7] = p[6]; q[ 8] = p[16]; q[11] = p[12]; q[12] = p[15]; q[13] = p[17]; q[14] = p[11]; q[15] = p[10]; vec3 WorldPos = vec3(0, 0, 0); vec3 Tangent = vec3(0, 0, 0); vec3 BiTangent = vec3(0, 0, 0); #ifdef OSD_COMPUTE_NORMAL_DERIVATIVES float B[4], D[4], C[4]; vec3 BUCP[4] = vec3[4](vec3(0,0,0), vec3(0,0,0), vec3(0,0,0), vec3(0,0,0)), DUCP[4] = vec3[4](vec3(0,0,0), vec3(0,0,0), vec3(0,0,0), vec3(0,0,0)), CUCP[4] = vec3[4](vec3(0,0,0), vec3(0,0,0), vec3(0,0,0), vec3(0,0,0)); vec3 dUU = vec3(0); vec3 dVV = vec3(0); vec3 dUV = vec3(0); Univar4x4(u, B, D, C); for (int i=0; i<4; ++i) { for (uint j=0; j<4; ++j) { // reverse face front vec3 A = q[i + 4*j]; BUCP[i] += A * B[j]; DUCP[i] += A * D[j]; CUCP[i] += A * C[j]; } } Univar4x4(v, B, D, C); for (int i=0; i<4; ++i) { WorldPos += B[i] * BUCP[i]; Tangent += B[i] * DUCP[i]; BiTangent += D[i] * BUCP[i]; dUU += B[i] * CUCP[i]; dVV += C[i] * BUCP[i]; dUV += D[i] * DUCP[i]; } int level = int(inpt[0].v.ptexInfo.z); BiTangent *= 3 * level; Tangent *= 3 * level; dUU *= 6 * level; dVV *= 6 * level; dUV *= 9 * level; vec3 n = cross(BiTangent, Tangent); vec3 normal = normalize(n); float E = dot(Tangent, Tangent); float F = dot(Tangent, BiTangent); float G = dot(BiTangent, BiTangent); float e = dot(normal, dUU); float f = dot(normal, dUV); float g = dot(normal, dVV); vec3 Nu = (f*F-e*G)/(E*G-F*F) * Tangent + (e*F-f*E)/(E*G-F*F) * BiTangent; vec3 Nv = (g*F-f*G)/(E*G-F*F) * Tangent + (f*F-g*E)/(E*G-F*F) * BiTangent; Nu = Nu/length(n) - n * (dot(Nu,n)/pow(dot(n,n), 1.5)); Nv = Nv/length(n) - n * (dot(Nv,n)/pow(dot(n,n), 1.5)); outpt.v.Nu = Nu; outpt.v.Nv = Nv; #else float B[4], D[4]; vec3 BUCP[4] = vec3[4](vec3(0,0,0), vec3(0,0,0), vec3(0,0,0), vec3(0,0,0)), DUCP[4] = vec3[4](vec3(0,0,0), vec3(0,0,0), vec3(0,0,0), vec3(0,0,0)); Univar4x4(u, B, D); for (int i=0; i<4; ++i) { for (uint j=0; j<4; ++j) { // reverse face front vec3 A = q[i + 4*j]; BUCP[i] += A * B[j]; DUCP[i] += A * D[j]; } } Univar4x4(v, B, D); for (int i=0; i<4; ++i) { WorldPos += B[i] * BUCP[i]; Tangent += B[i] * DUCP[i]; BiTangent += D[i] * BUCP[i]; } int level = int(inpt[0].v.ptexInfo.z); BiTangent *= 3 * level; Tangent *= 3 * level; vec3 normal = normalize(cross(BiTangent, Tangent)); #endif outpt.v.position = vec4(WorldPos, 1.0f); outpt.v.normal = normal; outpt.v.tangent = BiTangent; outpt.v.bitangent = Tangent; //OSD_USER_VARYING_PER_EVAL_POINT(vec2(u,v), 0, 3, 1, 2); OSD_USER_VARYING_PER_EVAL_POINT(vec2(u,v), 0, 15, 5, 10); outpt.v.patchCoord = inpt[0].v.patchCoord; outpt.v.patchCoord.xy = vec2(v, u); OSD_COMPUTE_PTEX_COORD_TESSEVAL_SHADER; OSD_DISPLACEMENT_CALLBACK; gl_Position = OsdProjectionMatrix() * outpt.v.position; } #endif