// // Copyright 2013 Pixar // // Licensed under the Apache License, Version 2.0 (the "Apache License") // with the following modification; you may not use this file except in // compliance with the Apache License and the following modification to it: // Section 6. Trademarks. is deleted and replaced with: // // 6. Trademarks. This License does not grant permission to use the trade // names, trademarks, service marks, or product names of the Licensor // and its affiliates, except as required to comply with Section 4(c) of // the License and to reproduce the content of the NOTICE file. // // You may obtain a copy of the Apache License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the Apache License with the above modification is // distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the Apache License for the specific // language governing permissions and limitations under the Apache License. // #if defined(__APPLE__) #if defined(OSD_USES_GLEW) #include #else #include #endif #define GLFW_INCLUDE_GL3 #define GLFW_NO_GLU #else #include #include #if defined(WIN32) #include #endif #endif #include GLFWwindow* g_window=0; GLFWmonitor* g_primary=0; #include #include #include #include #include #include #include #include #include #include #include #include #include "../common/stopwatch.h" #include "../common/simple_math.h" #include "../common/glHud.h" #include "../common/glUtils.h" #include "init_shapes.h" #include "particles.h" #include #include #include #include #include #include using namespace OpenSubdiv; //------------------------------------------------------------------------------ std::vector g_orgPositions, g_positions, g_varyingColors; int g_currentShape = 0, g_level = 3, g_numElements = 3; std::vector g_coarseEdges; std::vector g_coarseEdgeSharpness; std::vector g_coarseVertexSharpness; enum DrawMode { kRANDOM=0, kUV, kVARYING, kNORMAL, kSHADE, kFACEVARYING }; int g_running = 1, g_width = 1024, g_height = 1024, g_fullscreen = 0, g_drawCageEdges = 1, g_drawCageVertices = 1, g_drawMode = kVARYING, g_prev_x = 0, g_prev_y = 0, g_mbutton[3] = {0, 0, 0}, g_frame=0, g_freeze=0, g_repeatCount; float g_rotate[2] = {0, 0}, g_dolly = 5, g_pan[2] = {0, 0}, g_center[3] = {0, 0, 0}, g_size = 0, g_moveScale = 0.0f; GLuint g_transformUB = 0, g_transformBinding = 0; struct Transform { float ModelViewMatrix[16]; float ProjectionMatrix[16]; float ModelViewProjectionMatrix[16]; } g_transformData; // performance float g_evalTime = 0; float g_computeTime = 0; Stopwatch g_fpsTimer; //------------------------------------------------------------------------------ int g_nparticles=0, g_nsamples=101, g_nsamplesFound=0; bool g_randomStart=false; GLuint g_cageEdgeVAO = 0, g_cageEdgeVBO = 0, g_cageVertexVAO = 0, g_cageVertexVBO = 0, g_samplesVAO=0; GLhud g_hud; //------------------------------------------------------------------------------ struct Program { GLuint program; GLuint uniformModelViewMatrix; GLuint uniformProjectionMatrix; GLuint uniformDrawMode; GLuint attrPosition; GLuint attrColor; GLuint attrTangentU; GLuint attrTangentV; } g_defaultProgram; //------------------------------------------------------------------------------ static void createRandomColors(int nverts, int stride, float * colors) { // large Pell prime number srand( static_cast(2147483647) ); for (int i=0; i g_patchCoords; Osd::VertexBufferDescriptor g_idesc(/*offset*/ 0, /*legnth*/ 3, /*stride*/ 3), g_odesc(/*offset*/ 0, /*legnth*/ 3, /*stride*/ 6), g_vdesc(/*offset*/ 3, /*legnth*/ 3, /*stride*/ 6), g_duDesc(/*offset*/ 0, /*legnth*/ 3, /*stride*/ 6), g_dvDesc(/*offset*/ 3, /*legnth*/ 3, /*stride*/ 6), g_fvidesc(/*offset*/ 0, /*legnth*/ 2, /*stride*/ 2), g_fvodesc(/*offset*/ 3, /*legnth*/ 2, /*stride*/ 6); // input vertex data (coarse + refined) Osd::CpuVertexBuffer * g_vertexData = 0; Osd::CpuVertexBuffer * g_varyingData = 0; // output vertex data (limit locations) Osd::CpuGLVertexBuffer * g_outVertexData = NULL; Osd::CpuGLVertexBuffer * g_outDerivatives = NULL; STParticles * g_particles=0; //------------------------------------------------------------------------------ static void updateGeom() { int nverts = (int)g_orgPositions.size() / 3; const float *p = &g_orgPositions[0]; float r = sin(g_frame*0.001f) * g_moveScale; for (int i = 0; i < nverts; ++i) { //float move = 0.05f*cosf(p[0]*20+g_frame*0.01f); float ct = cos(p[2] * r); float st = sin(p[2] * r); g_positions[i*3+0] = p[0]*ct + p[1]*st; g_positions[i*3+1] = -p[0]*st + p[1]*ct; g_positions[i*3+2] = p[2]; p+=3; } // Run Compute pass to pose the control vertices --------------------------- Stopwatch s; s.Start(); g_vertexData->UpdateData( &g_positions[0], 0, nverts); if (! g_topologyRefiner) return; // note that for patch eval we need coarse+refined combined buffer. int nCoarseVertices = g_topologyRefiner->GetNumVertices(0); Osd::CpuEvaluator::EvalStencils(g_vertexData, Osd::VertexBufferDescriptor(0, 3, 3), g_vertexData, Osd::VertexBufferDescriptor( nCoarseVertices*3, 3, 3), g_vertexStencils); if (g_varyingData) { Osd::CpuEvaluator::EvalStencils(g_varyingData, Osd::VertexBufferDescriptor(0, 3, 3), g_varyingData, Osd::VertexBufferDescriptor( nCoarseVertices*3, 3, 3), g_varyingStencils); } s.Stop(); g_computeTime = float(s.GetElapsed() * 1000.0f); // Run Eval pass to get the samples locations ------------------------------ s.Start(); // Apply 'dynamics' update assert(g_particles); g_particles->Update(g_evalTime); // XXXX g_evalTime is not really elapsed time... // resolve particle positions into patch handles // XXX: this process should be handled by OsdKernel in parallel g_patchCoords.clear(); for (int i = 0; i < g_particles->GetNumParticles(); ++i) { STParticles::Position const &position = g_particles->GetPositions()[i]; Far::PatchTables::PatchHandle const *handle = g_patchMap->FindPatch(position.ptexIndex, position.s, position.t); if (handle) { g_patchCoords.push_back(Osd::PatchCoord( *handle, position.s, position.t)); } } // Evaluate the positions of the samples on the limit surface if (g_drawMode == kNORMAL || g_drawMode == kSHADE) { // evaluate positions and derivatives g_nsamplesFound = Osd::CpuEvaluator::EvalPatches( g_vertexData, g_idesc, g_outVertexData, g_odesc, g_outDerivatives, g_duDesc, g_outDerivatives, g_dvDesc, (int)g_patchCoords.size(), &g_patchCoords[0], g_patchTables, NULL); } else { // evaluate positions g_nsamplesFound = Osd::CpuEvaluator::EvalPatches( g_vertexData, g_idesc, g_outVertexData, g_odesc, (int)g_patchCoords.size(), &g_patchCoords[0], g_patchTables, NULL); } // color if (g_drawMode == kUV) { // store patchCoords as colors float *p = g_outVertexData->BindCpuBuffer() + g_vdesc.offset; for (int i = 0; i < (int)g_patchCoords.size(); ++i) { p[0] = g_patchCoords[i].s; p[1] = g_patchCoords[i].t; p[2] = 0; p += g_vdesc.stride; } } else if (g_drawMode == kVARYING) { // XXX: is this really varying? Osd::CpuEvaluator::EvalPatches(g_varyingData, g_idesc, g_outVertexData, g_vdesc, (int)g_patchCoords.size(), &g_patchCoords[0], g_patchTables, NULL); } s.Stop(); g_evalTime = float(s.GetElapsed()); } //------------------------------------------------------------------------------ static void createOsdMesh(ShapeDesc const & shapeDesc, int level) { Shape * shape = Shape::parseObj(shapeDesc.data.c_str(), shapeDesc.scheme); // create Vtr mesh (topology) OpenSubdiv::Sdc::SchemeType sdctype = GetSdcType(*shape); OpenSubdiv::Sdc::Options sdcoptions = GetSdcOptions(*shape); delete g_topologyRefiner; g_topologyRefiner = OpenSubdiv::Far::TopologyRefinerFactory::Create(*shape, OpenSubdiv::Far::TopologyRefinerFactory::Options(sdctype, sdcoptions)); g_orgPositions=shape->verts; g_positions.resize(g_orgPositions.size(), 0.0f); delete shape; float speed = g_particles ? g_particles->GetSpeed() : 0.2f; // Create the 'uv particles' manager - this class manages the limit // location samples (ptex face index, (s,t) and updates them between frames. // Note: the number of limit locations can be entirely arbitrary delete g_particles; g_particles = new STParticles(*g_topologyRefiner, g_nsamples, !g_randomStart); g_nparticles = g_particles->GetNumParticles(); g_particles->SetSpeed(speed); createCoarseMesh(*g_topologyRefiner); int nverts=0; { // Apply feature adaptive refinement to the mesh so that we can use the // limit evaluation API features. Far::TopologyRefiner::AdaptiveOptions options(level); g_topologyRefiner->RefineAdaptive(options); // Generate stencil tables to update the bi-cubic patches control // vertices after they have been re-posed (both for vertex & varying // interpolation) Far::StencilTablesFactory::Options soptions; soptions.generateOffsets=true; soptions.generateIntermediateLevels=true; Far::StencilTables const * vertexStencils = Far::StencilTablesFactory::Create(*g_topologyRefiner, soptions); soptions.interpolationMode = Far::StencilTablesFactory::INTERPOLATE_VARYING; Far::StencilTables const * varyingStencils = Far::StencilTablesFactory::Create(*g_topologyRefiner, soptions); // Generate bi-cubic patch tables for the limit surface Far::PatchTablesFactory::Options poptions; poptions.SetEndCapType( Far::PatchTablesFactory::Options::ENDCAP_GREGORY_BASIS); Far::PatchTables const * patchTables = Far::PatchTablesFactory::Create(*g_topologyRefiner, poptions); // append endcap stencils if (Far::StencilTables const *endCapVertexStencilTables = patchTables->GetEndCapVertexStencilTables()) { Far::StencilTables const *tables = Far::StencilTablesFactory::AppendEndCapStencilTables( *g_topologyRefiner, vertexStencils, endCapVertexStencilTables); delete vertexStencils; vertexStencils = tables; } if (Far::StencilTables const *endCapVaryingStencilTables = patchTables->GetEndCapVaryingStencilTables()) { Far::StencilTables const *tables = Far::StencilTablesFactory::AppendEndCapStencilTables( *g_topologyRefiner, varyingStencils, endCapVaryingStencilTables); delete varyingStencils; varyingStencils = tables; } // total number of vertices = coarse verts + refined verts + gregory basis verts nverts = vertexStencils->GetNumControlVertices() + vertexStencils->GetNumStencils(); if (g_vertexStencils) delete g_vertexStencils; g_vertexStencils = vertexStencils; if (g_varyingStencils) delete g_varyingStencils; g_varyingStencils = varyingStencils; if (g_patchTables) delete g_patchTables; g_patchTables = patchTables; // Create a far patch map if (g_patchMap) delete g_patchMap; g_patchMap = new Far::PatchMap(*g_patchTables); } { // Create vertex primvar buffer for the CVs delete g_vertexData; g_vertexData = Osd::CpuVertexBuffer::Create(3, nverts); // Create varying primvar buffer for the CVs with random colors. // These are immediately interpolated (once) and saved for display. delete g_varyingData; g_varyingData = 0; if (g_drawMode==kVARYING) { g_varyingData = Osd::CpuVertexBuffer::Create(3, nverts); g_varyingData->UpdateData( &g_varyingColors[0], 0, (int)g_varyingColors.size()/3 ); } // Create output buffers for the limit samples (position & tangents) delete g_outVertexData; g_outVertexData = Osd::CpuGLVertexBuffer::Create(6, g_nparticles); memset(g_outVertexData->BindCpuBuffer(), 0, g_nparticles*6*sizeof(float)); if (g_drawMode==kRANDOM) { createRandomColors(g_nparticles, 6, g_outVertexData->BindCpuBuffer()+3); } delete g_outDerivatives; g_outDerivatives = Osd::CpuGLVertexBuffer::Create(6, g_nparticles); memset(g_outDerivatives->BindCpuBuffer(), 0, g_nparticles*6*sizeof(float)); } updateGeom(); } //------------------------------------------------------------------------------ static void checkGLErrors(std::string const & where = "") { GLuint err; while ((err = glGetError()) != GL_NO_ERROR) { std::cerr << "GL error: " << (where.empty() ? "" : where + " ") << err << "\n"; } } //------------------------------------------------------------------------------ static bool linkDefaultProgram() { #if defined(GL_ARB_tessellation_shader) || defined(GL_VERSION_4_0) #define GLSL_VERSION_DEFINE "#version 400\n" #else #define GLSL_VERSION_DEFINE "#version 150\n" #endif static const char *vsSrc = GLSL_VERSION_DEFINE "in vec3 position;\n" "in vec3 color;\n" "in vec3 tangentU;\n" "in vec3 tangentV;\n" "out vec4 fragColor;\n" "out vec3 normal;\n" "uniform mat4 ModelViewMatrix;\n" "uniform mat4 ProjectionMatrix;\n" "void main() {\n" " fragColor = vec4(color, 1);\n" // XXX: fix the normal transform " normal = (ModelViewMatrix * vec4(normalize(cross(tangentU, tangentV)), 0)).xyz;\n" " gl_Position = ProjectionMatrix * ModelViewMatrix * " " vec4(position, 1);\n" "}\n"; static const char *fsSrc = GLSL_VERSION_DEFINE "in vec4 fragColor;\n" "in vec3 normal;\n" "uniform int DrawMode;\n" "out vec4 color;\n" "void main() {\n" " if (DrawMode == 3) {\n" " color = vec4(normal*0.5+vec3(0.5), 1);\n" " } else if (DrawMode == 4) {\n" " color = vec4(vec3(1)*dot(normal, vec3(0,0,1)), 1);\n" " } else {\n" " color = fragColor;\n" " }\n" "}\n"; GLuint program = glCreateProgram(); GLuint vertexShader = GLUtils::CompileShader(GL_VERTEX_SHADER, vsSrc); GLuint fragmentShader = GLUtils::CompileShader(GL_FRAGMENT_SHADER, fsSrc); glAttachShader(program, vertexShader); glAttachShader(program, fragmentShader); glBindAttribLocation(program, 0, "position"); glBindAttribLocation(program, 1, "color"); glBindAttribLocation(program, 2, "tangentU"); glBindAttribLocation(program, 3, "tangentV"); glBindFragDataLocation(program, 0, "color"); glLinkProgram(program); GLint status; glGetProgramiv(program, GL_LINK_STATUS, &status); if (status == GL_FALSE) { GLint infoLogLength; glGetProgramiv(program, GL_INFO_LOG_LENGTH, &infoLogLength); char *infoLog = new char[infoLogLength]; glGetProgramInfoLog(program, infoLogLength, NULL, infoLog); printf("%s\n", infoLog); delete[] infoLog; exit(1); } g_defaultProgram.program = program; g_defaultProgram.uniformModelViewMatrix = glGetUniformLocation(program, "ModelViewMatrix"); g_defaultProgram.uniformProjectionMatrix = glGetUniformLocation(program, "ProjectionMatrix"); g_defaultProgram.uniformDrawMode = glGetUniformLocation(program, "DrawMode"); g_defaultProgram.attrPosition = glGetAttribLocation(program, "position"); g_defaultProgram.attrColor = glGetAttribLocation(program, "color"); g_defaultProgram.attrTangentU = glGetAttribLocation(program, "tangentU"); g_defaultProgram.attrTangentV = glGetAttribLocation(program, "tangentV"); return true; } //------------------------------------------------------------------------------ static inline void setSharpnessColor(float s, float *r, float *g, float *b) { // 0.0 2.0 4.0 // green --- yellow --- red *r = std::min(1.0f, s * 0.5f); *g = std::min(1.0f, 2.0f - s*0.5f); *b = 0; } //------------------------------------------------------------------------------ static void drawCageEdges() { glUseProgram(g_defaultProgram.program); glUniformMatrix4fv(g_defaultProgram.uniformModelViewMatrix, 1, GL_FALSE, g_transformData.ModelViewMatrix); glUniformMatrix4fv(g_defaultProgram.uniformProjectionMatrix, 1, GL_FALSE, g_transformData.ProjectionMatrix); glUniform1i(g_defaultProgram.uniformDrawMode, 0); std::vector vbo; vbo.reserve(g_coarseEdges.size() * 6); float r, g, b; for (int i = 0; i < (int)g_coarseEdges.size(); i+=2) { setSharpnessColor(g_coarseEdgeSharpness[i/2], &r, &g, &b); for (int j = 0; j < 2; ++j) { vbo.push_back(g_positions[g_coarseEdges[i+j]*3]); vbo.push_back(g_positions[g_coarseEdges[i+j]*3+1]); vbo.push_back(g_positions[g_coarseEdges[i+j]*3+2]); vbo.push_back(r); vbo.push_back(g); vbo.push_back(b); } } glBindVertexArray(g_cageEdgeVAO); glBindBuffer(GL_ARRAY_BUFFER, g_cageEdgeVBO); glBufferData(GL_ARRAY_BUFFER, (int)vbo.size() * sizeof(float), &vbo[0], GL_STATIC_DRAW); glEnableVertexAttribArray(g_defaultProgram.attrPosition); glEnableVertexAttribArray(g_defaultProgram.attrColor); glDisableVertexAttribArray(g_defaultProgram.attrTangentU); glDisableVertexAttribArray(g_defaultProgram.attrTangentV); glVertexAttribPointer(g_defaultProgram.attrPosition, 3, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 6, 0); glVertexAttribPointer(g_defaultProgram.attrColor, 3, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 6, (void*)12); glDrawArrays(GL_LINES, 0, (int)g_coarseEdges.size()); glBindVertexArray(0); glUseProgram(0); } //------------------------------------------------------------------------------ static void drawCageVertices() { glUseProgram(g_defaultProgram.program); glUniformMatrix4fv(g_defaultProgram.uniformModelViewMatrix, 1, GL_FALSE, g_transformData.ModelViewMatrix); glUniformMatrix4fv(g_defaultProgram.uniformProjectionMatrix, 1, GL_FALSE, g_transformData.ProjectionMatrix); glUniform1i(g_defaultProgram.uniformDrawMode, 0); int numPoints = (int)g_positions.size()/3; std::vector vbo; vbo.reserve(numPoints*6); float r, g, b; for (int i = 0; i < numPoints; ++i) { switch (g_drawMode) { case kVARYING : { r=g_varyingColors[i*3+0]; g=g_varyingColors[i*3+1]; b=g_varyingColors[i*3+2]; } break; case kUV : { setSharpnessColor(g_coarseVertexSharpness[i], &r, &g, &b); } break; default : break; } vbo.push_back(g_positions[i*3+0]); vbo.push_back(g_positions[i*3+1]); vbo.push_back(g_positions[i*3+2]); vbo.push_back(r); vbo.push_back(g); vbo.push_back(b); } glBindVertexArray(g_cageVertexVAO); glBindBuffer(GL_ARRAY_BUFFER, g_cageVertexVBO); glBufferData(GL_ARRAY_BUFFER, (int)vbo.size() * sizeof(float), &vbo[0], GL_STATIC_DRAW); glEnableVertexAttribArray(g_defaultProgram.attrPosition); glEnableVertexAttribArray(g_defaultProgram.attrColor); glDisableVertexAttribArray(g_defaultProgram.attrTangentU); glDisableVertexAttribArray(g_defaultProgram.attrTangentV); glVertexAttribPointer(g_defaultProgram.attrPosition, 3, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 6, 0); glVertexAttribPointer(g_defaultProgram.attrColor, 3, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 6, (void*)12); glPointSize(10.0f); glDrawArrays(GL_POINTS, 0, numPoints); glPointSize(1.0f); glBindVertexArray(0); glUseProgram(0); } //------------------------------------------------------------------------------ static void drawSamples() { glUseProgram(g_defaultProgram.program); glUniformMatrix4fv(g_defaultProgram.uniformModelViewMatrix, 1, GL_FALSE, g_transformData.ModelViewMatrix); glUniformMatrix4fv(g_defaultProgram.uniformProjectionMatrix, 1, GL_FALSE, g_transformData.ProjectionMatrix); glUniform1i(g_defaultProgram.uniformDrawMode, g_drawMode); glBindVertexArray(g_samplesVAO); glEnableVertexAttribArray(g_defaultProgram.attrPosition); glEnableVertexAttribArray(g_defaultProgram.attrColor); glEnableVertexAttribArray(g_defaultProgram.attrTangentU); glEnableVertexAttribArray(g_defaultProgram.attrTangentV); glBindBuffer(GL_ARRAY_BUFFER, g_outVertexData->BindVBO()); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 6, 0); glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 6, (float*)12); glBindBuffer(GL_ARRAY_BUFFER, g_outDerivatives->BindVBO()); glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 6, 0); glVertexAttribPointer(3, 3, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 6, (float*)12); glEnableVertexAttribArray(g_defaultProgram.attrPosition); glEnableVertexAttribArray(g_defaultProgram.attrColor); glEnableVertexAttribArray(g_defaultProgram.attrTangentU); glEnableVertexAttribArray(g_defaultProgram.attrTangentV); glPointSize(2.0f); glDrawArrays(GL_POINTS, 0, g_nparticles); glPointSize(1.0f); glDisableVertexAttribArray(g_defaultProgram.attrPosition); glDisableVertexAttribArray(g_defaultProgram.attrColor); glDisableVertexAttribArray(g_defaultProgram.attrTangentU); glDisableVertexAttribArray(g_defaultProgram.attrTangentV); glBindVertexArray(0); glUseProgram(0); } //------------------------------------------------------------------------------ static void display() { g_hud.GetFrameBuffer()->Bind(); Stopwatch s; s.Start(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glViewport(0, 0, g_width, g_height); double aspect = g_width/(double)g_height; identity(g_transformData.ModelViewMatrix); translate(g_transformData.ModelViewMatrix, -g_pan[0], -g_pan[1], -g_dolly); rotate(g_transformData.ModelViewMatrix, g_rotate[1], 1, 0, 0); rotate(g_transformData.ModelViewMatrix, g_rotate[0], 0, 1, 0); rotate(g_transformData.ModelViewMatrix, -90, 1, 0, 0); translate(g_transformData.ModelViewMatrix, -g_center[0], -g_center[1], -g_center[2]); perspective(g_transformData.ProjectionMatrix, 45.0f, (float)aspect, 0.01f, 500.0f); multMatrix(g_transformData.ModelViewProjectionMatrix, g_transformData.ModelViewMatrix, g_transformData.ProjectionMatrix); glEnable(GL_DEPTH_TEST); s.Stop(); float drawCpuTime = float(s.GetElapsed() * 1000.0f); s.Start(); glFinish(); s.Stop(); float drawGpuTime = float(s.GetElapsed() * 1000.0f); drawSamples(); if (g_drawCageEdges) drawCageEdges(); if (g_drawCageVertices) drawCageVertices(); g_hud.GetFrameBuffer()->ApplyImageShader(); if (g_hud.IsVisible()) { g_fpsTimer.Stop(); double fps = 1.0/g_fpsTimer.GetElapsed(); g_fpsTimer.Start(); g_hud.DrawString(10, -150, "Particle Speed ([) (]): %.1f", g_particles->GetSpeed()); g_hud.DrawString(10, -120, "# Samples : (%d/%d)", g_nsamplesFound, g_outVertexData->GetNumVertices()); g_hud.DrawString(10, -100, "Compute : %.3f ms", g_computeTime); g_hud.DrawString(10, -80, "Eval : %.3f ms", g_evalTime * 1000.f); g_hud.DrawString(10, -60, "GPU Draw : %.3f ms", drawGpuTime); g_hud.DrawString(10, -40, "CPU Draw : %.3f ms", drawCpuTime); g_hud.DrawString(10, -20, "FPS : %3.1f", fps); if (g_drawMode==kFACEVARYING) { static char msg[] = "Face-varying interpolation not implemented yet"; g_hud.DrawString(g_width/2-20/2*8, g_height/2, msg); } g_hud.Flush(); } glFinish(); checkGLErrors("display leave"); } //------------------------------------------------------------------------------ static void idle() { if (not g_freeze) g_frame++; updateGeom(); if (g_repeatCount != 0 and g_frame >= g_repeatCount) g_running = 0; } //------------------------------------------------------------------------------ static void motion(GLFWwindow *, double dx, double dy) { int x=(int)dx, y=(int)dy; if (g_mbutton[0] && !g_mbutton[1] && !g_mbutton[2]) { // orbit g_rotate[0] += x - g_prev_x; g_rotate[1] += y - g_prev_y; } else if (!g_mbutton[0] && !g_mbutton[1] && g_mbutton[2]) { // pan g_pan[0] -= g_dolly*(x - g_prev_x)/g_width; g_pan[1] += g_dolly*(y - g_prev_y)/g_height; } else if ((g_mbutton[0] && !g_mbutton[1] && g_mbutton[2]) or (!g_mbutton[0] && g_mbutton[1] && !g_mbutton[2])) { // dolly g_dolly -= g_dolly*0.01f*(x - g_prev_x); if(g_dolly <= 0.01) g_dolly = 0.01f; } g_prev_x = x; g_prev_y = y; } //------------------------------------------------------------------------------ static void mouse(GLFWwindow *, int button, int state, int /* mods */) { if (button == 0 && state == GLFW_PRESS && g_hud.MouseClick(g_prev_x, g_prev_y)) return; if (button < 3) { g_mbutton[button] = (state == GLFW_PRESS); } } //------------------------------------------------------------------------------ static void reshape(GLFWwindow *, int width, int height) { g_width = width; g_height = height; int windowWidth = g_width, windowHeight = g_height; // window size might not match framebuffer size on a high DPI display glfwGetWindowSize(g_window, &windowWidth, &windowHeight); g_hud.Rebuild(windowWidth, windowHeight, width, height); } //------------------------------------------------------------------------------ void windowClose(GLFWwindow*) { g_running = false; } //------------------------------------------------------------------------------ static void setSamples(bool add) { g_nsamples += add ? 50 : -50; g_nsamples = std::max(0, g_nsamples); createOsdMesh(g_defaultShapes[g_currentShape], g_level); } //------------------------------------------------------------------------------ static void keyboard(GLFWwindow *, int key, int /* scancode */, int event, int /* mods */) { if (event == GLFW_RELEASE) return; if (g_hud.KeyDown(tolower(key))) return; switch (key) { case 'Q': g_running = 0; break; case '=': setSamples(true); break; case '-': setSamples(false); break; case '[': if (g_particles) { g_particles->SetSpeed(g_particles->GetSpeed()-0.1f); } break; case ']': if (g_particles) { g_particles->SetSpeed(g_particles->GetSpeed()+0.1f); } break; case GLFW_KEY_ESCAPE: g_hud.SetVisible(!g_hud.IsVisible()); break; } } //------------------------------------------------------------------------------ static void callbackError(OpenSubdiv::Far::ErrorType err, const char *message) { printf("Error: %d\n", err); printf("%s", message); } //------------------------------------------------------------------------------ static void callbackModel(int m) { if (m < 0) m = 0; if (m >= (int)g_defaultShapes.size()) m = (int)g_defaultShapes.size() - 1; g_currentShape = m; createOsdMesh(g_defaultShapes[g_currentShape], g_level); } //------------------------------------------------------------------------------ static void callbackLevel(int l) { g_level = l; createOsdMesh(g_defaultShapes[g_currentShape], g_level); } //------------------------------------------------------------------------------ static void callbackAnimate(bool checked, int /* m */) { g_moveScale = checked * 3.0f; } //------------------------------------------------------------------------------ static void callbackFreeze(bool checked, int /* f */) { g_freeze = checked; } //------------------------------------------------------------------------------ static void callbackCentered(bool checked, int /* f */) { g_randomStart = checked; createOsdMesh(g_defaultShapes[g_currentShape], g_level); } //------------------------------------------------------------------------------ static void callbackDisplayCageVertices(bool checked, int /* d */) { g_drawCageVertices = checked; } //------------------------------------------------------------------------------ static void callbackDisplayCageEdges(bool checked, int /* d */) { g_drawCageEdges = checked; } //------------------------------------------------------------------------------ static void callbackDisplayVaryingColors(int mode) { g_drawMode = mode; createOsdMesh(g_defaultShapes[g_currentShape], g_level); } //------------------------------------------------------------------------------ static void initHUD() { int windowWidth = g_width, windowHeight = g_height, frameBufferWidth = g_width, frameBufferHeight = g_height; // window size might not match framebuffer size on a high DPI display glfwGetWindowSize(g_window, &windowWidth, &windowHeight); glfwGetFramebufferSize(g_window, &frameBufferWidth, &frameBufferHeight); g_hud.Init(windowWidth, windowHeight, frameBufferWidth, frameBufferHeight); g_hud.SetFrameBuffer(new GLFrameBuffer); g_hud.AddCheckBox("Cage Edges (H)", true, 10, 10, callbackDisplayCageEdges, 0, 'h'); g_hud.AddCheckBox("Cage Verts (J)", true, 10, 30, callbackDisplayCageVertices, 0, 'j'); g_hud.AddCheckBox("Animate vertices (M)", g_moveScale != 0, 10, 50, callbackAnimate, 0, 'm'); g_hud.AddCheckBox("Freeze (spc)", false, 10, 70, callbackFreeze, 0, ' '); g_hud.AddCheckBox("Random Start", false, 10, 120, callbackCentered, g_randomStart); int shading_pulldown = g_hud.AddPullDown("Shading (W)", 250, 10, 250, callbackDisplayVaryingColors, 'w'); g_hud.AddPullDownButton(shading_pulldown, "Random", kRANDOM, g_drawMode==kRANDOM); g_hud.AddPullDownButton(shading_pulldown, "(u,v)", kUV, g_drawMode==kUV); g_hud.AddPullDownButton(shading_pulldown, "Varying", kVARYING, g_drawMode==kVARYING); g_hud.AddPullDownButton(shading_pulldown, "Normal", kNORMAL, g_drawMode==kNORMAL); g_hud.AddPullDownButton(shading_pulldown, "Shade", kSHADE, g_drawMode==kSHADE); g_hud.AddPullDownButton(shading_pulldown, "FaceVarying", kFACEVARYING, g_drawMode==kFACEVARYING); for (int i = 1; i < 11; ++i) { char level[16]; sprintf(level, "Lv. %d", i); g_hud.AddRadioButton(3, level, i==g_level, 10, 170+i*20, callbackLevel, i, '0'+(i%10)); } int pulldown_handle = g_hud.AddPullDown("Shape (N)", -300, 10, 300, callbackModel, 'n'); for (int i = 0; i < (int)g_defaultShapes.size(); ++i) { g_hud.AddPullDownButton(pulldown_handle, g_defaultShapes[i].name.c_str(),i); } g_hud.Rebuild(windowWidth, windowHeight, frameBufferWidth, frameBufferHeight); } //------------------------------------------------------------------------------ static void initGL() { glClearColor(0.1f, 0.1f, 0.1f, 0.0f); glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LEQUAL); glCullFace(GL_BACK); glEnable(GL_CULL_FACE); glGenVertexArrays(1, &g_cageVertexVAO); glGenVertexArrays(1, &g_cageEdgeVAO); glGenVertexArrays(1, &g_samplesVAO); glGenBuffers(1, &g_cageVertexVBO); glGenBuffers(1, &g_cageEdgeVBO); } //------------------------------------------------------------------------------ static void uninitGL() { glDeleteBuffers(1, &g_cageVertexVBO); glDeleteBuffers(1, &g_cageEdgeVBO); glDeleteVertexArrays(1, &g_cageVertexVAO); glDeleteVertexArrays(1, &g_cageEdgeVAO); glDeleteVertexArrays(1, &g_samplesVAO); } //------------------------------------------------------------------------------ static void callbackErrorGLFW(int error, const char* description) { fprintf(stderr, "GLFW Error (%d) : %s\n", error, description); } //------------------------------------------------------------------------------ static void setGLCoreProfile() { #define glfwOpenWindowHint glfwWindowHint #define GLFW_OPENGL_VERSION_MAJOR GLFW_CONTEXT_VERSION_MAJOR #define GLFW_OPENGL_VERSION_MINOR GLFW_CONTEXT_VERSION_MINOR glfwOpenWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); #if not defined(__APPLE__) glfwOpenWindowHint(GLFW_OPENGL_VERSION_MAJOR, 4); glfwOpenWindowHint(GLFW_OPENGL_VERSION_MINOR, 2); #else glfwOpenWindowHint(GLFW_OPENGL_VERSION_MAJOR, 3); glfwOpenWindowHint(GLFW_OPENGL_VERSION_MINOR, 2); #endif glfwOpenWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); } //------------------------------------------------------------------------------ int main(int argc, char **argv) { bool fullscreen = false; std::string str; for (int i = 1; i < argc; ++i) { if (!strcmp(argv[i], "-f")) fullscreen = true; else { std::ifstream ifs(argv[1]); if (ifs) { std::stringstream ss; ss << ifs.rdbuf(); ifs.close(); str = ss.str(); g_defaultShapes.push_back(ShapeDesc(argv[1], str.c_str(), kCatmark)); } } } Far::SetErrorCallback(callbackError); initShapes(); glfwSetErrorCallback(callbackErrorGLFW); if (not glfwInit()) { printf("Failed to initialize GLFW\n"); return 1; } static const char windowTitle[] = "OpenSubdiv glEvalLimit " OPENSUBDIV_VERSION_STRING; #define CORE_PROFILE #ifdef CORE_PROFILE setGLCoreProfile(); #endif if (fullscreen) { g_primary = glfwGetPrimaryMonitor(); // apparently glfwGetPrimaryMonitor fails under linux : if no primary, // settle for the first one in the list if (not g_primary) { int count=0; GLFWmonitor ** monitors = glfwGetMonitors(&count); if (count) g_primary = monitors[0]; } if (g_primary) { GLFWvidmode const * vidmode = glfwGetVideoMode(g_primary); g_width = vidmode->width; g_height = vidmode->height; } } if (not (g_window=glfwCreateWindow(g_width, g_height, windowTitle, fullscreen and g_primary ? g_primary : NULL, NULL))) { printf("Failed to open window.\n"); glfwTerminate(); return 1; } glfwMakeContextCurrent(g_window); // accommodate high DPI displays (e.g. mac retina displays) glfwGetFramebufferSize(g_window, &g_width, &g_height); glfwSetFramebufferSizeCallback(g_window, reshape); glfwSetKeyCallback(g_window, keyboard); glfwSetCursorPosCallback(g_window, motion); glfwSetMouseButtonCallback(g_window, mouse); glfwSetWindowCloseCallback(g_window, windowClose); #if defined(OSD_USES_GLEW) #ifdef CORE_PROFILE // this is the only way to initialize glew correctly under core profile context. glewExperimental = true; #endif if (GLenum r = glewInit() != GLEW_OK) { printf("Failed to initialize glew. Error = %s\n", glewGetErrorString(r)); exit(1); } #ifdef CORE_PROFILE // clear GL errors which was generated during glewInit() glGetError(); #endif #endif //std::string & data = g_defaultShapes[ g_currentShape ].data; //Scheme scheme = g_defaultShapes[ g_currentShape ].scheme; //createOsdMesh( data, g_level, scheme ); initGL(); linkDefaultProgram(); glfwSwapInterval(0); initHUD(); callbackModel(g_currentShape); while (g_running) { idle(); display(); glfwPollEvents(); glfwSwapBuffers(g_window); glFinish(); } uninitGL(); glfwTerminate(); }