// // Copyright 2014 DreamWorks Animation LLC. // // Licensed under the Apache License, Version 2.0 (the "Apache License") // with the following modification; you may not use this file except in // compliance with the Apache License and the following modification to it: // Section 6. Trademarks. is deleted and replaced with: // // 6. Trademarks. This License does not grant permission to use the trade // names, trademarks, service marks, or product names of the Licensor // and its affiliates, except as required to comply with Section 4(c) of // the License and to reproduce the content of the NOTICE file. // // You may obtain a copy of the Apache License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the Apache License with the above modification is // distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the Apache License for the specific // language governing permissions and limitations under the Apache License. // #include "../sdc/crease.h" #include "../vtr/types.h" #include "../vtr/level.h" #include "../vtr/quadRefinement.h" #include #include #include namespace OpenSubdiv { namespace OPENSUBDIV_VERSION { namespace Vtr { // // Simple constructor, destructor and basic initializers: // QuadRefinement::QuadRefinement(Level const & parent, Level & child, Sdc::Options const & options) : Refinement(parent, child, options) { _splitType = Sdc::SPLIT_TO_QUADS; _regFaceSize = 4; } QuadRefinement::~QuadRefinement() { } // // Methods for construct the parent-to-child mapping // void QuadRefinement::allocateParentChildIndices() { // // Initialize the vectors of indices mapping parent components to those child components // that will originate from each. // int faceChildFaceCount = (int) _parent->_faceVertIndices.size(); int faceChildEdgeCount = (int) _parent->_faceEdgeIndices.size(); int edgeChildEdgeCount = (int) _parent->_edgeVertIndices.size(); int faceChildVertCount = _parent->getNumFaces(); int edgeChildVertCount = _parent->getNumEdges(); int vertChildVertCount = _parent->getNumVertices(); // // First reference the parent Level's face-vertex counts/offsets -- they can be used // here for both the face-child-faces and face-child-edges as they both have one per // face-vertex. // // Given we will be ignoring initial values with uniform refinement and assigning all // directly, initializing here is a waste... // Index initValue = 0; _faceChildFaceCountsAndOffsets = _parent->shareFaceVertCountsAndOffsets(); _faceChildEdgeCountsAndOffsets = _parent->shareFaceVertCountsAndOffsets(); _faceChildFaceIndices.resize(faceChildFaceCount, initValue); _faceChildEdgeIndices.resize(faceChildEdgeCount, initValue); _edgeChildEdgeIndices.resize(edgeChildEdgeCount, initValue); _faceChildVertIndex.resize(faceChildVertCount, initValue); _edgeChildVertIndex.resize(edgeChildVertCount, initValue); _vertChildVertIndex.resize(vertChildVertCount, initValue); } // // Methods to populate the face-vertex relation of the child Level: // - child faces only originate from parent faces // void QuadRefinement::populateFaceVertexRelation() { // Both face-vertex and face-edge share the face-vertex counts/offsets within a // Level, so be sure not to re-initialize it if already done: // if (_child->_faceVertCountsAndOffsets.size() == 0) { populateFaceVertexCountsAndOffsets(); } _child->_faceVertIndices.resize(_child->getNumFaces() * 4); populateFaceVerticesFromParentFaces(); } void QuadRefinement::populateFaceVertexCountsAndOffsets() { _child->_faceVertCountsAndOffsets.resize(_child->getNumFaces() * 2); for (int i = 0; i < _child->getNumFaces(); ++i) { _child->_faceVertCountsAndOffsets[i*2 + 0] = 4; _child->_faceVertCountsAndOffsets[i*2 + 1] = i << 2; } } void QuadRefinement::populateFaceVerticesFromParentFaces() { // // Algorithm: // - iterate through parent face-child-face vector (could use back-vector) // - use parent components incident the parent face: // - use the interior face-vert, corner vert-vert and two edge-verts // for (Index pFace = 0; pFace < _parent->getNumFaces(); ++pFace) { IndexArray const pFaceVerts = _parent->getFaceVertices(pFace); IndexArray const pFaceEdges = _parent->getFaceEdges(pFace); IndexArray const pFaceChildren = getFaceChildFaces(pFace); int pFaceVertCount = pFaceVerts.size(); for (int j = 0; j < pFaceVertCount; ++j) { Index cFace = pFaceChildren[j]; if (IndexIsValid(cFace)) { int jPrev = j ? (j - 1) : (pFaceVertCount - 1); Index cVertOfFace = _faceChildVertIndex[pFace]; Index cVertOfEPrev = _edgeChildVertIndex[pFaceEdges[jPrev]]; Index cVertOfVert = _vertChildVertIndex[pFaceVerts[j]]; Index cVertOfENext = _edgeChildVertIndex[pFaceEdges[j]]; IndexArray cFaceVerts = _child->getFaceVertices(cFace); // Note orientation wrt parent face -- quad vs non-quad... if (pFaceVertCount == 4) { int jOpp = jPrev ? (jPrev - 1) : 3; int jNext = jOpp ? (jOpp - 1) : 3; cFaceVerts[j] = cVertOfVert; cFaceVerts[jNext] = cVertOfENext; cFaceVerts[jOpp] = cVertOfFace; cFaceVerts[jPrev] = cVertOfEPrev; } else { cFaceVerts[0] = cVertOfVert; cFaceVerts[1] = cVertOfENext; cFaceVerts[2] = cVertOfFace; cFaceVerts[3] = cVertOfEPrev; } } } } } // // Methods to populate the face-vertex relation of the child Level: // - child faces only originate from parent faces // void QuadRefinement::populateFaceEdgeRelation() { // Both face-vertex and face-edge share the face-vertex counts/offsets, so be sure // not to re-initialize it if already done: // if (_child->_faceVertCountsAndOffsets.size() == 0) { populateFaceVertexCountsAndOffsets(); } _child->_faceEdgeIndices.resize(_child->getNumFaces() * 4); populateFaceEdgesFromParentFaces(); } void QuadRefinement::populateFaceEdgesFromParentFaces() { // // Algorithm: // - iterate through parent face-child-face vector (could use back-vector) // - use parent components incident the parent face: // - use the two interior face-edges and the two boundary edge-edges // for (Index pFace = 0; pFace < _parent->getNumFaces(); ++pFace) { IndexArray const pFaceVerts = _parent->getFaceVertices(pFace); IndexArray const pFaceEdges = _parent->getFaceEdges(pFace); IndexArray const pFaceChildFaces = getFaceChildFaces(pFace); IndexArray const pFaceChildEdges = getFaceChildEdges(pFace); int pFaceVertCount = pFaceVerts.size(); for (int j = 0; j < pFaceVertCount; ++j) { Index cFace = pFaceChildFaces[j]; if (IndexIsValid(cFace)) { IndexArray cFaceEdges = _child->getFaceEdges(cFace); int jPrev = j ? (j - 1) : (pFaceVertCount - 1); // // We have two edges that are children of parent edges, and two child // edges perpendicular to these from the interior of the parent face: // // Identifying the former should be simpler -- after identifying the two // parent edges, we have to identify which child-edge corresponds to this // vertex. This may be ambiguous with a degenerate edge (DEGEN) if tested // this way, and may warrant higher level inspection of the parent face... // // EDGE_IN_FACE -- having the edge-in-face local index would help to // remove the ambiguity and simplify this. // Index pCornerVert = pFaceVerts[j]; Index pPrevEdge = pFaceEdges[jPrev]; IndexArray const pPrevEdgeVerts = _parent->getEdgeVertices(pPrevEdge); Index pNextEdge = pFaceEdges[j]; IndexArray const pNextEdgeVerts = _parent->getEdgeVertices(pNextEdge); int cornerInPrevEdge = (pPrevEdgeVerts[0] != pCornerVert); int cornerInNextEdge = (pNextEdgeVerts[0] != pCornerVert); Index cEdgeOfEdgePrev = getEdgeChildEdges(pPrevEdge)[cornerInPrevEdge]; Index cEdgeOfEdgeNext = getEdgeChildEdges(pNextEdge)[cornerInNextEdge]; Index cEdgePerpEdgePrev = pFaceChildEdges[jPrev]; Index cEdgePerpEdgeNext = pFaceChildEdges[j]; // Note orientation wrt parent face -- quad vs non-quad... if (pFaceVertCount == 4) { int jOpp = jPrev ? (jPrev - 1) : 3; int jNext = jOpp ? (jOpp - 1) : 3; cFaceEdges[j] = cEdgeOfEdgeNext; cFaceEdges[jNext] = cEdgePerpEdgeNext; cFaceEdges[jOpp] = cEdgePerpEdgePrev; cFaceEdges[jPrev] = cEdgeOfEdgePrev; } else { cFaceEdges[0] = cEdgeOfEdgeNext; cFaceEdges[1] = cEdgePerpEdgeNext; cFaceEdges[2] = cEdgePerpEdgePrev; cFaceEdges[3] = cEdgeOfEdgePrev; } } } } } // // Methods to populate the edge-vertex relation of the child Level: // - child edges originate from parent faces and edges // void QuadRefinement::populateEdgeVertexRelation() { _child->_edgeVertIndices.resize(_child->getNumEdges() * 2); populateEdgeVerticesFromParentFaces(); populateEdgeVerticesFromParentEdges(); } void QuadRefinement::populateEdgeVerticesFromParentFaces() { // // For each parent face's edge-children: // - identify parent face's vert-child (note it is shared by all) // - identify parent edge perpendicular to face's child edge: // - identify parent edge's vert-child // for (Index pFace = 0; pFace < _parent->getNumFaces(); ++pFace) { IndexArray const pFaceEdges = _parent->getFaceEdges(pFace); IndexArray const pFaceChildEdges = getFaceChildEdges(pFace); for (int j = 0; j < pFaceEdges.size(); ++j) { Index cEdge = pFaceChildEdges[j]; if (IndexIsValid(cEdge)) { IndexArray cEdgeVerts = _child->getEdgeVertices(cEdge); cEdgeVerts[0] = _faceChildVertIndex[pFace]; cEdgeVerts[1] = _edgeChildVertIndex[pFaceEdges[j]]; } } } } void QuadRefinement::populateEdgeVerticesFromParentEdges() { // // For each parent edge's edge-children: // - identify parent edge's vert-child (potentially shared by both) // - identify parent vert at end of child edge: // - identify parent vert's vert-child // for (Index pEdge = 0; pEdge < _parent->getNumEdges(); ++pEdge) { IndexArray const pEdgeVerts = _parent->getEdgeVertices(pEdge); IndexArray const pEdgeChildren = getEdgeChildEdges(pEdge); // May want to unroll this trivial loop of 2... for (int j = 0; j < 2; ++j) { Index cEdge = pEdgeChildren[j]; if (IndexIsValid(cEdge)) { IndexArray cEdgeVerts = _child->getEdgeVertices(cEdge); cEdgeVerts[0] = _edgeChildVertIndex[pEdge]; cEdgeVerts[1] = _vertChildVertIndex[pEdgeVerts[j]]; } } } } // // Methods to populate the edge-face relation of the child Level: // - child edges originate from parent faces and edges // - sparse refinement poses challenges with allocation here // - we need to update the counts/offsets as we populate // void QuadRefinement::populateEdgeFaceRelation() { const Level& parent = *_parent; Level& child = *_child; // // Notes on allocating/initializing the edge-face counts/offsets vector: // // Be aware of scheme-specific decisions here, e.g.: // - inspection of sparse child faces for edges from faces // - no guaranteed "neighborhood" around Bilinear verts from verts // // If uniform subdivision, face count of a child edge will be: // - 2 for new interior edges from parent faces // == 2 * number of parent face verts for both quad- and tri-split // - same as parent edge for edges from parent edges // If sparse subdivision, face count of a child edge will be: // - 1 or 2 for new interior edge depending on child faces in parent face // - requires inspection if not all child faces present // ? same as parent edge for edges from parent edges // - given end vertex must have its full set of child faces // - not for Bilinear -- only if neighborhood is non-zero // - could at least make a quick traversal of components and use the above // two points to get much closer estimate than what is used for uniform // int childEdgeFaceIndexSizeEstimate = (int)parent._faceVertIndices.size() * 2 + (int)parent._edgeFaceIndices.size() * 2; child._edgeFaceCountsAndOffsets.resize(child.getNumEdges() * 2); child._edgeFaceIndices.resize(childEdgeFaceIndexSizeEstimate); populateEdgeFacesFromParentFaces(); populateEdgeFacesFromParentEdges(); // Revise the over-allocated estimate based on what is used (as indicated in the // count/offset for the last vertex) and trim the index vector accordingly: childEdgeFaceIndexSizeEstimate = child.getNumEdgeFaces(child.getNumEdges()-1) + child.getOffsetOfEdgeFaces(child.getNumEdges()-1); child._edgeFaceIndices.resize(childEdgeFaceIndexSizeEstimate); child._maxEdgeFaces = parent._maxEdgeFaces; } void QuadRefinement::populateEdgeFacesFromParentFaces() { // // Note -- the edge-face counts/offsets vector is not known // ahead of time and is populated incrementally, so we cannot // thread this yet... // for (Index pFace = 0; pFace < _parent->getNumFaces(); ++pFace) { IndexArray const pFaceChildFaces = getFaceChildFaces(pFace); IndexArray const pFaceChildEdges = getFaceChildEdges(pFace); int pFaceValence = _parent->getFaceVertices(pFace).size(); for (int j = 0; j < pFaceValence; ++j) { Index cEdge = pFaceChildEdges[j]; if (IndexIsValid(cEdge)) { // // Reserve enough edge-faces, populate and trim as needed: // _child->resizeEdgeFaces(cEdge, 2); IndexArray cEdgeFaces = _child->getEdgeFaces(cEdge); // One or two child faces may be assigned: int jNext = ((j + 1) < pFaceValence) ? (j + 1) : 0; int cEdgeFaceCount = 0; if (IndexIsValid(pFaceChildFaces[j])) { cEdgeFaces[cEdgeFaceCount++] = pFaceChildFaces[j]; } if (IndexIsValid(pFaceChildFaces[jNext])) { cEdgeFaces[cEdgeFaceCount++] = pFaceChildFaces[jNext]; } _child->trimEdgeFaces(cEdge, cEdgeFaceCount); } } } } void QuadRefinement::populateEdgeFacesFromParentEdges() { // // Note -- the edge-face counts/offsets vector is not known // ahead of time and is populated incrementally, so we cannot // thread this yet... // for (Index pEdge = 0; pEdge < _parent->getNumEdges(); ++pEdge) { IndexArray const pEdgeVerts = _parent->getEdgeVertices(pEdge); IndexArray const pEdgeFaces = _parent->getEdgeFaces(pEdge); IndexArray const pEdgeChildEdges = getEdgeChildEdges(pEdge); for (int j = 0; j < 2; ++j) { Index cEdge = pEdgeChildEdges[j]; if (!IndexIsValid(cEdge)) continue; // // Reserve enough edge-faces, populate and trim as needed: // _child->resizeEdgeFaces(cEdge, pEdgeFaces.size()); IndexArray cEdgeFaces = _child->getEdgeFaces(cEdge); // // Each parent face may contribute an incident child face: // // EDGE_IN_FACE: // This is awkward, and would be greatly simplified by storing the // "edge in face" for each edge-face (as we do for "vert in face" of // the vert-faces, etc.). For each incident face we then immediately // know the two child faces that are associated with the two child // edges -- we just need to identify how to pair them based on the // edge direction. // // Note also here, that we could identify the pairs of child faces // once for the parent before dealing with each child edge (we do the // "find edge in face search" twice here as a result). We will // generally have 2 or 1 incident face to the parent edge so we // can put the child-pairs on the stack. // // Here's a more promising alternative -- instead of iterating // through the child edges to "pull" data from the parent, iterate // through the parent edges' faces and apply valid child faces to // the appropriate child edge. We should be able to use end-verts // of the parent edge to get the corresponding child face for each, // but we can't avoid a vert-in-face search and a subsequent parity // test of the end-vert. // int cEdgeFaceCount = 0; for (int i = 0; i < pEdgeFaces.size(); ++i) { Index pFace = pEdgeFaces[i]; IndexArray const pFaceEdges = _parent->getFaceEdges(pFace); IndexArray const pFaceVerts = _parent->getFaceVertices(pFace); IndexArray const pFaceChildren = getFaceChildFaces(pFace); int pFaceValence = pFaceVerts.size(); // EDGE_IN_FACE -- want to remove this search... int edgeInFace = 0; for ( ; pFaceEdges[edgeInFace] != pEdge; ++edgeInFace) ; // Inspect either this child of the face or the next: int childInFace = edgeInFace + (pFaceVerts[edgeInFace] != pEdgeVerts[j]); if (childInFace == pFaceValence) childInFace = 0; if (IndexIsValid(pFaceChildren[childInFace])) { cEdgeFaces[cEdgeFaceCount++] = pFaceChildren[childInFace]; } } _child->trimEdgeFaces(cEdge, cEdgeFaceCount); } } } // // Methods to populate the vertex-face relation of the child Level: // - child vertices originate from parent faces, edges and vertices // - sparse refinement poses challenges with allocation here: // - we need to update the counts/offsets as we populate // - note this imposes ordering constraints and inhibits concurrency // void QuadRefinement::populateVertexFaceRelation() { const Level& parent = *_parent; Level& child = *_child; // // Notes on allocating/initializing the vertex-face counts/offsets vector: // // Be aware of scheme-specific decisions here, e.g.: // - no verts from parent faces for Loop (unless N-gons supported) // - more interior edges and faces for verts from parent edges for Loop // - no guaranteed "neighborhood" around Bilinear verts from verts // // If uniform subdivision, vert-face count will be (catmark or loop): // - 4 or 0 for verts from parent faces (for catmark) // - 2x or 3x number in parent edge for verts from parent edges // - same as parent vert for verts from parent verts // If sparse subdivision, vert-face count will be: // - the number of child faces in parent face // - 1 or 2x number in parent edge for verts from parent edges // - where the 1 or 2 is number of child edges of parent edge // - same as parent vert for verts from parent verts (catmark) // int childVertFaceIndexSizeEstimate = (int)parent._faceVertIndices.size() + (int)parent._edgeFaceIndices.size() * 2 + (int)parent._vertFaceIndices.size(); child._vertFaceCountsAndOffsets.resize(child.getNumVertices() * 2); child._vertFaceIndices.resize( childVertFaceIndexSizeEstimate); child._vertFaceLocalIndices.resize( childVertFaceIndexSizeEstimate); if (getFirstChildVertexFromVertices() == 0) { populateVertexFacesFromParentVertices(); populateVertexFacesFromParentFaces(); populateVertexFacesFromParentEdges(); } else { populateVertexFacesFromParentFaces(); populateVertexFacesFromParentEdges(); populateVertexFacesFromParentVertices(); } // Revise the over-allocated estimate based on what is used (as indicated in the // count/offset for the last vertex) and trim the index vectors accordingly: childVertFaceIndexSizeEstimate = child.getNumVertexFaces(child.getNumVertices()-1) + child.getOffsetOfVertexFaces(child.getNumVertices()-1); child._vertFaceIndices.resize( childVertFaceIndexSizeEstimate); child._vertFaceLocalIndices.resize(childVertFaceIndexSizeEstimate); } void QuadRefinement::populateVertexFacesFromParentFaces() { const Level& parent = *this->_parent; Level& child = *this->_child; for (int fIndex = 0; fIndex < parent.getNumFaces(); ++fIndex) { int cVertIndex = this->_faceChildVertIndex[fIndex]; if (!IndexIsValid(cVertIndex)) continue; // // Inspect the parent face first: // int pFaceVertCount = parent.getFaceVertices(fIndex).size(); IndexArray const pFaceChildren = this->getFaceChildFaces(fIndex); // // Reserve enough vert-faces, populate and trim to the actual size: // child.resizeVertexFaces(cVertIndex, pFaceVertCount); IndexArray cVertFaces = child.getVertexFaces(cVertIndex); LocalIndexArray cVertInFace = child.getVertexFaceLocalIndices(cVertIndex); int cVertFaceCount = 0; for (int j = 0; j < pFaceVertCount; ++j) { if (IndexIsValid(pFaceChildren[j])) { // Note orientation wrt parent face -- quad vs non-quad... LocalIndex vertInFace = (LocalIndex)((pFaceVertCount == 4) ? ((j+2) & 3) : 2); cVertFaces[cVertFaceCount] = pFaceChildren[j]; cVertInFace[cVertFaceCount] = vertInFace; cVertFaceCount++; } } child.trimVertexFaces(cVertIndex, cVertFaceCount); } } void QuadRefinement::populateVertexFacesFromParentEdges() { const Level& parent = *this->_parent; Level& child = *this->_child; for (int pEdgeIndex = 0; pEdgeIndex < parent.getNumEdges(); ++pEdgeIndex) { int cVertIndex = this->_edgeChildVertIndex[pEdgeIndex]; if (!IndexIsValid(cVertIndex)) continue; // // Inspect the parent edge first: // IndexArray const pEdgeFaces = parent.getEdgeFaces(pEdgeIndex); // // Reserve enough vert-faces, populate and trim to the actual size: // child.resizeVertexFaces(cVertIndex, 2 * pEdgeFaces.size()); IndexArray cVertFaces = child.getVertexFaces(cVertIndex); LocalIndexArray cVertInFace = child.getVertexFaceLocalIndices(cVertIndex); int cVertFaceCount = 0; for (int i = 0; i < pEdgeFaces.size(); ++i) { // // EDGE_IN_FACE: // Identify the parent edge within this parent face -- this is where // augmenting the edge-face relation with the "child index" is useful: // Index pFaceIndex = pEdgeFaces[i]; IndexArray const pFaceEdges = parent.getFaceEdges(pFaceIndex); IndexArray const pFaceChildren = this->getFaceChildFaces(pFaceIndex); // // Identify the corresponding two child faces for this parent face and // assign those of the two that are valid: // int pFaceEdgeCount = pFaceEdges.size(); int faceChild0 = 0; for ( ; pFaceEdges[faceChild0] != pEdgeIndex; ++faceChild0) ; int faceChild1 = faceChild0 + 1; if (faceChild1 == pFaceEdgeCount) faceChild1 = 0; // For counter-clockwise ordering of faces, consider the second face first: // // Note orientation wrt incident parent faces -- quad vs non-quad... if (IndexIsValid(pFaceChildren[faceChild1])) { cVertFaces[cVertFaceCount] = pFaceChildren[faceChild1]; cVertInFace[cVertFaceCount] = (LocalIndex)((pFaceEdgeCount == 4) ? faceChild0 : 3); cVertFaceCount++; } if (IndexIsValid(pFaceChildren[faceChild0])) { cVertFaces[cVertFaceCount] = pFaceChildren[faceChild0]; cVertInFace[cVertFaceCount] = (LocalIndex)((pFaceEdgeCount == 4) ? faceChild1 : 1); cVertFaceCount++; } } child.trimVertexFaces(cVertIndex, cVertFaceCount); } } void QuadRefinement::populateVertexFacesFromParentVertices() { const Level& parent = *this->_parent; Level& child = *this->_child; for (int vIndex = 0; vIndex < parent.getNumVertices(); ++vIndex) { int cVertIndex = this->_vertChildVertIndex[vIndex]; if (!IndexIsValid(cVertIndex)) continue; // // Inspect the parent vert's faces: // IndexArray const pVertFaces = parent.getVertexFaces(vIndex); LocalIndexArray const pVertInFace = parent.getVertexFaceLocalIndices(vIndex); // // Reserve enough vert-faces, populate and trim to the actual size: // child.resizeVertexFaces(cVertIndex, pVertFaces.size()); IndexArray cVertFaces = child.getVertexFaces(cVertIndex); LocalIndexArray cVertInFace = child.getVertexFaceLocalIndices(cVertIndex); int cVertFaceCount = 0; for (int i = 0; i < pVertFaces.size(); ++i) { Index pFace = pVertFaces[i]; LocalIndex pFaceChild = pVertInFace[i]; Index cFace = this->getFaceChildFaces(pFace)[pFaceChild]; if (IndexIsValid(cFace)) { // Note orientation wrt incident parent faces -- quad vs non-quad... int pFaceCount = parent.getFaceVertices(pFace).size(); cVertFaces[cVertFaceCount] = cFace; cVertInFace[cVertFaceCount] = (LocalIndex)((pFaceCount == 4) ? pFaceChild : 0); cVertFaceCount++; } } child.trimVertexFaces(cVertIndex, cVertFaceCount); } } // // Methods to populate the vertex-edge relation of the child Level: // - child vertices originate from parent faces, edges and vertices // - sparse refinement poses challenges with allocation here: // - we need to update the counts/offsets as we populate // - note this imposes ordering constraints and inhibits concurrency // void QuadRefinement::populateVertexEdgeRelation() { const Level& parent = *_parent; Level& child = *_child; // // Notes on allocating/initializing the vertex-edge counts/offsets vector: // // Be aware of scheme-specific decisions here, e.g.: // - no verts from parent faces for Loop // - more interior edges and faces for verts from parent edges for Loop // - no guaranteed "neighborhood" around Bilinear verts from verts // // If uniform subdivision, vert-edge count will be: // - 4 or 0 for verts from parent faces (for catmark) // - 2 + N or 2 + 2*N faces incident parent edge for verts from parent edges // - same as parent vert for verts from parent verts // If sparse subdivision, vert-edge count will be: // - non-trivial function of child faces in parent face // - 1 child face will always result in 2 child edges // * 2 child faces can mean 3 or 4 child edges // - 3 child faces will always result in 4 child edges // - 1 or 2 + N faces incident parent edge for verts from parent edges // - where the 1 or 2 is number of child edges of parent edge // - any end vertex will require all N child faces (catmark) // - same as parent vert for verts from parent verts (catmark) // int childVertEdgeIndexSizeEstimate = (int)parent._faceVertIndices.size() + (int)parent._edgeFaceIndices.size() + parent.getNumEdges() * 2 + (int)parent._vertEdgeIndices.size(); child._vertEdgeCountsAndOffsets.resize(child.getNumVertices() * 2); child._vertEdgeIndices.resize( childVertEdgeIndexSizeEstimate); child._vertEdgeLocalIndices.resize( childVertEdgeIndexSizeEstimate); if (getFirstChildVertexFromVertices() == 0) { populateVertexEdgesFromParentVertices(); populateVertexEdgesFromParentFaces(); populateVertexEdgesFromParentEdges(); } else { populateVertexEdgesFromParentFaces(); populateVertexEdgesFromParentEdges(); populateVertexEdgesFromParentVertices(); } // Revise the over-allocated estimate based on what is used (as indicated in the // count/offset for the last vertex) and trim the index vectors accordingly: childVertEdgeIndexSizeEstimate = child.getNumVertexEdges(child.getNumVertices()-1) + child.getOffsetOfVertexEdges(child.getNumVertices()-1); child._vertEdgeIndices.resize( childVertEdgeIndexSizeEstimate); child._vertEdgeLocalIndices.resize(childVertEdgeIndexSizeEstimate); } void QuadRefinement::populateVertexEdgesFromParentFaces() { const Level& parent = *this->_parent; Level& child = *this->_child; for (int fIndex = 0; fIndex < parent.getNumFaces(); ++fIndex) { int cVertIndex = this->_faceChildVertIndex[fIndex]; if (!IndexIsValid(cVertIndex)) continue; // // Inspect the parent face first: // IndexArray const pFaceVerts = parent.getFaceVertices(fIndex); IndexArray const pFaceChildEdges = this->getFaceChildEdges(fIndex); // // Reserve enough vert-edges, populate and trim to the actual size: // child.resizeVertexEdges(cVertIndex, pFaceVerts.size()); IndexArray cVertEdges = child.getVertexEdges(cVertIndex); LocalIndexArray cVertInEdge = child.getVertexEdgeLocalIndices(cVertIndex); // // Need to ensure correct ordering here when complete -- we want the "leading" // edge of each child face first. The child vert is in the center of a new // face to boundaries only occur when incomplete... // int cVertEdgeCount = 0; for (int j = 0; j < pFaceVerts.size(); ++j) { int jLeadingEdge = j ? (j - 1) : (pFaceVerts.size() - 1); if (IndexIsValid(pFaceChildEdges[jLeadingEdge])) { cVertEdges[cVertEdgeCount] = pFaceChildEdges[jLeadingEdge]; cVertInEdge[cVertEdgeCount] = 0; cVertEdgeCount++; } } child.trimVertexEdges(cVertIndex, cVertEdgeCount); } } void QuadRefinement::populateVertexEdgesFromParentEdges() { const Level& parent = *this->_parent; Level& child = *this->_child; for (int eIndex = 0; eIndex < parent.getNumEdges(); ++eIndex) { int cVertIndex = this->_edgeChildVertIndex[eIndex]; if (!IndexIsValid(cVertIndex)) continue; // // First inspect the parent edge -- its parent faces then its child edges: // IndexArray const pEdgeFaces = parent.getEdgeFaces(eIndex); IndexArray const pEdgeChildEdges = this->getEdgeChildEdges(eIndex); // // Reserve enough vert-edges, populate and trim to the actual size: // child.resizeVertexEdges(cVertIndex, pEdgeFaces.size() + 2); IndexArray cVertEdges = child.getVertexEdges(cVertIndex); LocalIndexArray cVertInEdge = child.getVertexEdgeLocalIndices(cVertIndex); // // We need to order the incident edges around the vertex appropriately: // - one child edge of the parent edge ("leading" in face 0) // - child edge of face 0 // - the other child edge of the parent edge ("trailing" in face 0) // - child edges of all remaining faces // This is a bit awkward with the current implmentation -- given the way // the child edge of a face is indentified. Until we clean it up, deal // with the two child edges of the parent edge first followed by all faces // then swap the second child of the parent with the child of the first // face. // // Also be careful to place the child edges of the parent edge correctly. // As edges are not directed their orientation may vary. // int cVertEdgeCount = 0; if (IndexIsValid(pEdgeChildEdges[0])) { cVertEdges[cVertEdgeCount] = pEdgeChildEdges[0]; cVertInEdge[cVertEdgeCount] = 0; cVertEdgeCount++; } if (IndexIsValid(pEdgeChildEdges[1])) { cVertEdges[cVertEdgeCount] = pEdgeChildEdges[1]; cVertInEdge[cVertEdgeCount] = 0; cVertEdgeCount++; } bool swapChildEdgesOfParent = false; bool swapChildEdgeAndFace0Edge = false; for (int i = 0; i < pEdgeFaces.size(); ++i) { Index pFace = pEdgeFaces[i]; IndexArray const pFaceEdges = parent.getFaceEdges(pFace); IndexArray const pFaceChildEdges = this->getFaceChildEdges(pFace); // // EDGE_IN_FACE: // Identify the parent edge within this parent face -- this is where // augmenting the edge-face relation with the "local index" is useful: // int edgeInFace = 0; for ( ; pFaceEdges[edgeInFace] != eIndex; ++edgeInFace) ; if ((i == 0) && (cVertEdgeCount == 2)) { swapChildEdgeAndFace0Edge = IndexIsValid(pFaceChildEdges[edgeInFace]); if (swapChildEdgeAndFace0Edge) { swapChildEdgesOfParent = (parent.getFaceVertices(pFace)[edgeInFace] == parent.getEdgeVertices(eIndex)[0]); } } if (IndexIsValid(pFaceChildEdges[edgeInFace])) { cVertEdges[cVertEdgeCount] = pFaceChildEdges[edgeInFace]; cVertInEdge[cVertEdgeCount] = 1; cVertEdgeCount++; } } // Now swap the child edges of the parent as needed: if (swapChildEdgeAndFace0Edge) { if (swapChildEdgesOfParent) { std::swap(cVertEdges[0], cVertEdges[1]); // both local indices 0 -- no need to swap } std::swap(cVertEdges[1], cVertEdges[2]); std::swap(cVertInEdge[1], cVertInEdge[2]); } child.trimVertexEdges(cVertIndex, cVertEdgeCount); } } void QuadRefinement::populateVertexEdgesFromParentVertices() { const Level& parent = *this->_parent; Level& child = *this->_child; for (int vIndex = 0; vIndex < parent.getNumVertices(); ++vIndex) { int cVertIndex = this->_vertChildVertIndex[vIndex]; if (!IndexIsValid(cVertIndex)) continue; // // Inspect the parent vert's edges first: // IndexArray const pVertEdges = parent.getVertexEdges(vIndex); LocalIndexArray const pVertInEdge = parent.getVertexEdgeLocalIndices(vIndex); // // Reserve enough vert-edges, populate and trim to the actual size: // child.resizeVertexEdges(cVertIndex, pVertEdges.size()); IndexArray cVertEdges = child.getVertexEdges(cVertIndex); LocalIndexArray cVertInEdge = child.getVertexEdgeLocalIndices(cVertIndex); int cVertEdgeCount = 0; for (int i = 0; i < pVertEdges.size(); ++i) { Index pEdgeIndex = pVertEdges[i]; LocalIndex pEdgeVert = pVertInEdge[i]; Index pEdgeChildIndex = this->getEdgeChildEdges(pEdgeIndex)[pEdgeVert]; if (IndexIsValid(pEdgeChildIndex)) { cVertEdges[cVertEdgeCount] = pEdgeChildIndex; cVertInEdge[cVertEdgeCount] = 1; cVertEdgeCount++; } } child.trimVertexEdges(cVertIndex, cVertEdgeCount); } } // // Methods to populate child-component indices for sparse selection: // // Need to find a better place for these anon helper methods now that they are required // both in the base class and the two subclasses for quad- and tri-splitting... // namespace { Index const IndexSparseMaskNeighboring = (1 << 0); Index const IndexSparseMaskSelected = (1 << 1); inline void markSparseIndexNeighbor(Index& index) { index = IndexSparseMaskNeighboring; } inline void markSparseIndexSelected(Index& index) { index = IndexSparseMaskSelected; } } void QuadRefinement::markSparseFaceChildren() { assert(_parentFaceTag.size() > 0); // // For each parent face: // All boundary edges will be adequately marked as a result of the pass over the // edges above and boundary vertices marked by selection. So all that remains is to // identify the child faces and interior child edges for a face requiring neighboring // child faces. // For each corner vertex selected, we need to mark the corresponding child face, // the two interior child edges and shared child vertex in the middle. // assert(_splitType == Sdc::SPLIT_TO_QUADS); for (Index pFace = 0; pFace < parent().getNumFaces(); ++pFace) { // // Mark all descending child components of a selected face. Otherwise inspect // its incident vertices to see if anything neighboring has been selected -- // requiring partial refinement of this face. // // Remember that a selected face cannot be transitional, and that only a // transitional face will be partially refined. // IndexArray fChildFaces = getFaceChildFaces(pFace); IndexArray fChildEdges = getFaceChildEdges(pFace); IndexArray const fVerts = parent().getFaceVertices(pFace); SparseTag& pFaceTag = _parentFaceTag[pFace]; if (pFaceTag._selected) { for (int i = 0; i < fVerts.size(); ++i) { markSparseIndexSelected(fChildFaces[i]); markSparseIndexSelected(fChildEdges[i]); } markSparseIndexSelected(_faceChildVertIndex[pFace]); pFaceTag._transitional = 0; } else { int marked = false; for (int i = 0; i < fVerts.size(); ++i) { // NOTE - the mod 4 here will not work for N-gons (and want to avoid % anyway) int iPrev = (i+3) % 4; if (_parentVertexTag[fVerts[i]]._selected) { markSparseIndexNeighbor(fChildFaces[i]); markSparseIndexNeighbor(fChildEdges[i]); markSparseIndexNeighbor(fChildEdges[iPrev]); marked = true; } } if (marked) { markSparseIndexNeighbor(_faceChildVertIndex[pFace]); // // Assign selection and transitional tags to faces when required: // // Only non-selected faces may be "transitional", and we need to inspect // all tags on its boundary edges to be sure. Since we're inspecting each // now (and may need to later) retain the transitional state of each in a // 4-bit mask that reflects the full transitional topology for later. // IndexArray const fEdges = parent().getFaceEdges(pFace); if (fEdges.size() == 4) { pFaceTag._transitional = (unsigned char) ((_parentEdgeTag[fEdges[0]]._transitional << 0) | (_parentEdgeTag[fEdges[1]]._transitional << 1) | (_parentEdgeTag[fEdges[2]]._transitional << 2) | (_parentEdgeTag[fEdges[3]]._transitional << 3)); } else if (fEdges.size() == 3) { pFaceTag._transitional = (unsigned char) ((_parentEdgeTag[fEdges[0]]._transitional << 0) | (_parentEdgeTag[fEdges[1]]._transitional << 1) | (_parentEdgeTag[fEdges[2]]._transitional << 2)); } else { pFaceTag._transitional = 0; for (int i = 0; i < fEdges.size(); ++i) { pFaceTag._transitional |= _parentEdgeTag[fEdges[i]]._transitional; } } } } } } } // end namespace Vtr } // end namespace OPENSUBDIV_VERSION } // end namespace OpenSubdiv