// // Copyright (C) Pixar. All rights reserved. // // This license governs use of the accompanying software. If you // use the software, you accept this license. If you do not accept // the license, do not use the software. // // 1. Definitions // The terms "reproduce," "reproduction," "derivative works," and // "distribution" have the same meaning here as under U.S. // copyright law. A "contribution" is the original software, or // any additions or changes to the software. // A "contributor" is any person or entity that distributes its // contribution under this license. // "Licensed patents" are a contributor's patent claims that read // directly on its contribution. // // 2. Grant of Rights // (A) Copyright Grant- Subject to the terms of this license, // including the license conditions and limitations in section 3, // each contributor grants you a non-exclusive, worldwide, // royalty-free copyright license to reproduce its contribution, // prepare derivative works of its contribution, and distribute // its contribution or any derivative works that you create. // (B) Patent Grant- Subject to the terms of this license, // including the license conditions and limitations in section 3, // each contributor grants you a non-exclusive, worldwide, // royalty-free license under its licensed patents to make, have // made, use, sell, offer for sale, import, and/or otherwise // dispose of its contribution in the software or derivative works // of the contribution in the software. // // 3. Conditions and Limitations // (A) No Trademark License- This license does not grant you // rights to use any contributor's name, logo, or trademarks. // (B) If you bring a patent claim against any contributor over // patents that you claim are infringed by the software, your // patent license from such contributor to the software ends // automatically. // (C) If you distribute any portion of the software, you must // retain all copyright, patent, trademark, and attribution // notices that are present in the software. // (D) If you distribute any portion of the software in source // code form, you may do so only under this license by including a // complete copy of this license with your distribution. If you // distribute any portion of the software in compiled or object // code form, you may only do so under a license that complies // with this license. // (E) The software is licensed "as-is." You bear the risk of // using it. The contributors give no express warranties, // guarantees or conditions. You may have additional consumer // rights under your local laws which this license cannot change. // To the extent permitted under your local laws, the contributors // exclude the implied warranties of merchantability, fitness for // a particular purpose and non-infringement. // #ifndef FAR_CATMARK_SUBDIVISION_TABLES_H #define FAR_CATMARK_SUBDIVISION_TABLES_H #include #include #include #include "../hbr/mesh.h" #include "../hbr/catmark.h" #include "../version.h" #include "../far/subdivisionTables.h" namespace OpenSubdiv { namespace OPENSUBDIV_VERSION { // Catmull-Clark tables store the indexing tables required in order to compute // the refined positions of a mesh without the help of a hierarchical data // structure. The advantage of this representation is its ability to be executed // in a massively parallel environment without data dependencies. // template class FarCatmarkSubdivisionTables : public FarSubdivisionTables { public: // Memory required to store the indexing tables virtual int GetMemoryUsed() const; // Compute the positions of refined vertices using the specified kernels virtual void Refine( int level, void * data=0 ) const; // Table accessors typename FarSubdivisionTables::template Table const & Get_F_IT( ) const { return _F_IT; } typename FarSubdivisionTables::template Table const & Get_F_ITa( ) const { return _F_ITa; } // Returns the number of indexing tables needed to represent this particular // subdivision scheme. virtual int GetNumTables() const { return 7; } private: friend class FarMeshFactory; friend class FarDispatcher; // Constructor : build level table at depth 'level' FarCatmarkSubdivisionTables( FarMeshFactory const & factory, FarMesh * mesh, int level ); // Compute-kernel applied to vertices resulting from the refinement of a face. void computeFacePoints(int offset, int level, int start, int end, void * clientdata) const; // Compute-kernel applied to vertices resulting from the refinement of an edge. void computeEdgePoints(int offset, int level, int start, int end, void * clientdata) const; // Compute-kernel applied to vertices resulting from the refinement of a vertex // Kernel "A" Handles the k_Smooth and k_Dart rules void computeVertexPointsA(int offset, bool pass, int level, int start, int end, void * clientdata) const; // Compute-kernel applied to vertices resulting from the refinement of a vertex // Kernel "B" Handles the k_Crease and k_Corner rules void computeVertexPointsB(int offset, int level, int start, int end, void * clientdata) const; private: typename FarSubdivisionTables::template Table _F_ITa; typename FarSubdivisionTables::template Table _F_IT; }; template int FarCatmarkSubdivisionTables::GetMemoryUsed() const { return FarSubdivisionTables::GetMemoryUsed()+ _F_ITa.GetMemoryUsed()+ _F_IT.GetMemoryUsed(); } // Constructor - generates indexing tables matching the Catmull-Clark subdivision scheme. // // tables codices detail : // // _F_ITa[0] : offset into _F_IT array of vertices making up the face // _F_ITa[1] : valence of the face // // _E_ITa[0] : index of the org / dest vertices of the parent edge // _E_ITa[1] : // _E_ITa[2] : index of vertices refined from the faces left / right // _E_ITa[3] : of the parent edge // // _V_ITa[0] : offset to the corresponding adjacent vertices into _V0_IT // _V_ITa[1] : number of adjacent indices // _V_ITa[2] : index of the parent vertex // _V_ITa[3] : index of adjacent edge 0 (k_Crease rule) // _V_ITa[4] : index of adjacent edge 1 (k_Crease rule) // template FarCatmarkSubdivisionTables::FarCatmarkSubdivisionTables( FarMeshFactory const & factory, FarMesh * mesh, int maxlevel ) : FarSubdivisionTables(mesh, maxlevel), _F_ITa(maxlevel+1), _F_IT(maxlevel+1) { std::vector const & remap = factory._remapTable; // Allocate memory for the indexing tables _F_ITa.Resize(factory.GetNumFaceVerticesTotal(maxlevel)*2); _F_IT.Resize(factory.GetNumFacesTotal(maxlevel) - factory.GetNumFacesTotal(0)); this->_E_IT.Resize(factory.GetNumEdgeVerticesTotal(maxlevel)*4); this->_E_W.Resize(factory.GetNumEdgeVerticesTotal(maxlevel)*2); this->_V_ITa.Resize(factory.GetNumVertexVerticesTotal(maxlevel)*5); this->_V_IT.Resize(factory.GetNumAdjacentVertVerticesTotal(maxlevel)*2); this->_V_W.Resize(factory.GetNumVertexVerticesTotal(maxlevel)); for (int level=1; level<=maxlevel; ++level) { // pointer to the first vertex corresponding to this level this->_vertsOffsets[level] = factory._vertVertIdx[level-1] + factory._vertVertsList[level-1].size(); typename FarSubdivisionTables::VertexKernelBatch * batch = & (this->_batches[level-1]); // Face vertices // "For each vertex, gather all the vertices from the parent face." int offset = 0; int * F_ITa = this->_F_ITa[level-1]; unsigned int * F_IT = this->_F_IT[level-1]; batch->kernelF = (int)factory._faceVertsList[level].size(); for (int i=0; i < batch->kernelF; ++i) { HbrVertex * v = factory._faceVertsList[level][i]; assert(v); HbrFace * f=v->GetParentFace(); assert(f); int valence = f->GetNumVertices(); F_ITa[2*i+0] = offset; F_ITa[2*i+1] = valence; for (int j=0; jGetVertex(j)->GetID()]; } _F_ITa.SetMarker(level, &F_ITa[2*batch->kernelF]); _F_IT.SetMarker(level, &F_IT[offset]); // Edge vertices // Triangular interpolation mode : // see "smoothtriangle" tag introduced in prman 3.9 and HbrCatmarkSubdivision typename HbrCatmarkSubdivision::TriangleSubdivision triangleMethod = dynamic_cast *>(factory._hbrMesh->GetSubdivision())->GetTriangleSubdivisionMethod(); // "For each vertex, gather the 2 vertices from the parent edege and the // 2 child vertices from the faces to the left and right of that edge. // Adjust if edge has a crease or is on a boundary." unsigned int * E_IT = this->_E_IT[level-1]; float * E_W = this->_E_W[level-1]; batch->kernelE = (int)factory._edgeVertsList[level].size(); for (int i=0; i < batch->kernelE; ++i) { HbrVertex * v = factory._edgeVertsList[level][i]; assert(v); HbrHalfedge * e = v->GetParentEdge(); assert(e); float esharp = e->GetSharpness(); // get the indices 2 vertices from the parent edge E_IT[4*i+0] = remap[e->GetOrgVertex()->GetID()]; E_IT[4*i+1] = remap[e->GetDestVertex()->GetID()]; float faceWeight=0.5f, vertWeight=0.5f; // in the case of a fractional sharpness, set the adjacent faces vertices if (!e->IsBoundary() && esharp <= 1.0f) { float leftWeight, rightWeight; HbrFace* rf = e->GetRightFace(); HbrFace* lf = e->GetLeftFace(); leftWeight = ( triangleMethod == HbrCatmarkSubdivision::k_New && lf->GetNumVertices() == 3) ? HBR_SMOOTH_TRI_EDGE_WEIGHT : 0.25f; rightWeight = ( triangleMethod == HbrCatmarkSubdivision::k_New && rf->GetNumVertices() == 3) ? HBR_SMOOTH_TRI_EDGE_WEIGHT : 0.25f; faceWeight = 0.5f * (leftWeight + rightWeight); vertWeight = 0.5f * (1.0f - 2.0f * faceWeight); faceWeight *= (1.0f - esharp); vertWeight = 0.5f * esharp + (1.0f - esharp) * vertWeight; E_IT[4*i+2] = remap[lf->Subdivide()->GetID()]; E_IT[4*i+3] = remap[rf->Subdivide()->GetID()]; } else { E_IT[4*i+2] = -1; E_IT[4*i+3] = -1; } E_W[2*i+0] = vertWeight; E_W[2*i+1] = faceWeight; } this->_E_IT.SetMarker(level, &E_IT[4*batch->kernelE]); this->_E_W.SetMarker(level, &E_W[2*batch->kernelE]); // Vertex vertices batch->InitVertexKernels( factory._vertVertsList[level].size(), 0 ); offset = 0; int * V_ITa = this->_V_ITa[level-1]; unsigned int * V_IT = this->_V_IT[level-1]; float * V_W = this->_V_W[level-1]; int nverts = (int)factory._vertVertsList[level].size(); for (int i=0; i < nverts; ++i) { HbrVertex * v = factory._vertVertsList[level][i], * pv = v->GetParentVertex(); assert(v and pv); // Look at HbrCatmarkSubdivision::Subdivide for more details about // the multi-pass interpolation int masks[2], npasses; float weights[2]; masks[0] = pv->GetMask(false); masks[1] = pv->GetMask(true); // If the masks are identical, only a single pass is necessary. If the // vertex is transitionning to another rule, two passes are necessary, // except when transitionning from k_Dart to k_Smooth : the same // compute kernel is applied twice. Combining this special case allows // to batch the compute kernels into fewer calls. if (masks[0] != masks[1] and ( not (masks[0]==HbrVertex::k_Smooth and masks[1]==HbrVertex::k_Dart))) { weights[1] = pv->GetFractionalMask(); weights[0] = 1.0f - weights[1]; npasses = 2; } else { weights[0] = 1.0f; weights[1] = 0.0f; npasses = 1; } int rank = this->getMaskRanking(masks[0], masks[1]); V_ITa[5*i+0] = offset; V_ITa[5*i+1] = 0; V_ITa[5*i+2] = remap[ pv->GetID() ]; V_ITa[5*i+3] = -1; V_ITa[5*i+4] = -1; for (int p=0; p::k_Smooth : case HbrVertex::k_Dart : { HbrHalfedge *e = pv->GetIncidentEdge(), *start = e; while (e) { V_ITa[5*i+1]++; V_IT[offset++] = remap[ e->GetDestVertex()->GetID() ]; V_IT[offset++] = remap[ e->GetLeftFace()->Subdivide()->GetID() ]; e = e->GetPrev()->GetOpposite(); if (e==start) break; } break; } case HbrVertex::k_Crease : { class GatherCreaseEdgesOperator : public HbrHalfedgeOperator { public: HbrVertex * vertex; int eidx[2]; int count; bool next; GatherCreaseEdgesOperator(HbrVertex * v, bool n) : vertex(v), count(0), next(n) { eidx[0]=-1; eidx[1]=-1; } virtual void operator() (HbrHalfedge &e) { if (e.IsSharp(next) and count < 2) { HbrVertex * a = e.GetDestVertex(); if (a==vertex) a = e.GetOrgVertex(); eidx[count++]=a->GetID(); } } }; GatherCreaseEdgesOperator op( pv, p==1 ); pv->ApplyOperatorSurroundingEdges( op ); assert(V_ITa[5*i+3]==-1 and V_ITa[5*i+4]==-1); assert(op.eidx[0]!=-1 and op.eidx[1]!=-1); V_ITa[5*i+3] = remap[op.eidx[0]]; V_ITa[5*i+4] = remap[op.eidx[1]]; break; } case HbrVertex::k_Corner : // in the case of a k_Crease / k_Corner pass combination, we // need to set the valence to -1 to tell the "B" Kernel to // switch to k_Corner rule (as edge indices won't be -1) if (V_ITa[5*i+1]==0) V_ITa[5*i+1] = -1; default : break; } if (rank>7) // the k_Corner and k_Crease single-pass cases apply a weight of 1.0 // but this value is inverted in the kernel V_W[i] = 0.0; else V_W[i] = weights[0]; batch->AddVertex( i, rank ); } this->_V_ITa.SetMarker(level, &V_ITa[5*nverts]); this->_V_IT.SetMarker(level, &V_IT[offset]); this->_V_W.SetMarker(level, &V_W[nverts]); batch->kernelB.second++; batch->kernelA1.second++; batch->kernelA2.second++; } } template void FarCatmarkSubdivisionTables::Refine( int level, void * clientdata ) const { assert(this->_mesh and level>0); typename FarSubdivisionTables::VertexKernelBatch const * batch = & (this->_batches[level-1]); FarDispatcher const * dispatch = this->_mesh->GetDispatcher(); assert(dispatch); int offset = this->GetFirstVertexOffset(level); if (batch->kernelF>0) dispatch->ApplyCatmarkFaceVerticesKernel(this->_mesh, offset, level, 0, batch->kernelF, clientdata); offset += this->GetNumFaceVertices(level); if (batch->kernelE>0) dispatch->ApplyCatmarkEdgeVerticesKernel(this->_mesh, offset, level, 0, batch->kernelE, clientdata); offset += this->GetNumEdgeVertices(level); if (batch->kernelB.first < batch->kernelB.second) dispatch->ApplyCatmarkVertexVerticesKernelB(this->_mesh, offset, level, batch->kernelB.first, batch->kernelB.second, clientdata); if (batch->kernelA1.first < batch->kernelA1.second) dispatch->ApplyCatmarkVertexVerticesKernelA(this->_mesh, offset, false, level, batch->kernelA1.first, batch->kernelA1.second, clientdata); if (batch->kernelA2.first < batch->kernelA2.second) dispatch->ApplyCatmarkVertexVerticesKernelA(this->_mesh, offset, true, level, batch->kernelA2.first, batch->kernelA2.second, clientdata); } // // Face-vertices compute Kernel - completely re-entrant // template void FarCatmarkSubdivisionTables::computeFacePoints( int offset, int level, int start, int end, void * clientdata ) const { assert(this->_mesh); U * vsrc = &this->_mesh->GetVertices().at(0), * vdst = vsrc + offset + start; const int * F_ITa = _F_ITa[level-1]; const unsigned int * F_IT = _F_IT[level-1]; for (int i=start; iClear(clientdata); int h = F_ITa[2*i ], n = F_ITa[2*i+1]; float weight = 1.0f/n; for (int j=0; jAddWithWeight( vsrc[ F_IT[h+j] ], weight, clientdata ); vdst->AddVaryingWithWeight( vsrc[ F_IT[h+j] ], weight, clientdata ); } } } // // Edge-vertices compute Kernel - completely re-entrant // template void FarCatmarkSubdivisionTables::computeEdgePoints( int offset, int level, int start, int end, void * clientdata ) const { assert(this->_mesh); U * vsrc = &this->_mesh->GetVertices().at(0), * vdst = vsrc + offset + start; const unsigned int * E_IT = this->_E_IT[level-1]; const float * E_W = this->_E_W[level-1]; for (int i=start; iClear(clientdata); int eidx0 = E_IT[4*i+0], eidx1 = E_IT[4*i+1], eidx2 = E_IT[4*i+2], eidx3 = E_IT[4*i+3]; float vertWeight = E_W[i*2+0]; // Fully sharp edge : vertWeight = 0.5f vdst->AddWithWeight( vsrc[eidx0], vertWeight, clientdata ); vdst->AddWithWeight( vsrc[eidx1], vertWeight, clientdata ); if (eidx2!=-1) { // Apply fractional sharpness float faceWeight = E_W[i*2+1]; vdst->AddWithWeight( vsrc[eidx2], faceWeight, clientdata ); vdst->AddWithWeight( vsrc[eidx3], faceWeight, clientdata ); } vdst->AddVaryingWithWeight( vsrc[eidx0], 0.5f, clientdata ); vdst->AddVaryingWithWeight( vsrc[eidx1], 0.5f, clientdata ); } } // // Vertex-vertices compute Kernels "A" and "B" - completely re-entrant // // multi-pass kernel handling k_Crease and k_Corner rules template void FarCatmarkSubdivisionTables::computeVertexPointsA( int offset, bool pass, int level, int start, int end, void * clientdata ) const { assert(this->_mesh); U * vsrc = &this->_mesh->GetVertices().at(0), * vdst = vsrc + offset + start; const int * V_ITa = this->_V_ITa[level-1]; const float * V_W = this->_V_W[level-1]; for (int i=start; iClear(clientdata); int n=V_ITa[5*i+1], // number of vertices in the _VO_IT array (valence) p=V_ITa[5*i+2], // index of the parent vertex eidx0=V_ITa[5*i+3], // index of the first crease rule edge eidx1=V_ITa[5*i+4]; // index of the second crease rule edge float weight = pass ? V_W[i] : 1.0f - V_W[i]; // In the case of fractional weight, the weight must be inverted since // the value is shared with the k_Smooth kernel (statistically the // k_Smooth kernel runs much more often than this one) if (weight>0.0f and weight<1.0f and n>0) weight=1.0f-weight; // In the case of a k_Corner / k_Crease combination, the edge indices // won't be null, so we use a -1 valence to detect that particular case if (eidx0==-1 or (pass==false and (n==-1)) ) { // k_Corner case vdst->AddWithWeight( vsrc[p], weight, clientdata ); } else { // k_Crease case vdst->AddWithWeight( vsrc[p], weight * 0.75f, clientdata ); vdst->AddWithWeight( vsrc[eidx0], weight * 0.125f, clientdata ); vdst->AddWithWeight( vsrc[eidx1], weight * 0.125f, clientdata ); } vdst->AddVaryingWithWeight( vsrc[p], 1.0f, clientdata ); } } // multi-pass kernel handling k_Dart and k_Smooth rules template void FarCatmarkSubdivisionTables::computeVertexPointsB( int offset, int level, int start, int end, void * clientdata ) const { assert(this->_mesh); U * vsrc = &this->_mesh->GetVertices().at(0), * vdst = vsrc + offset + start; const int * V_ITa = this->_V_ITa[level-1]; const unsigned int * V_IT = this->_V_IT[level-1]; const float * V_W = this->_V_W[level-1]; for (int i=start; iClear(clientdata); int h = V_ITa[5*i ], // offset of the vertices in the _V0_IT array n = V_ITa[5*i+1], // number of vertices in the _VO_IT array (valence) p = V_ITa[5*i+2]; // index of the parent vertex float weight = V_W[i], wp = 1.0f/(n*n), wv = (n-2.0f)*n*wp; vdst->AddWithWeight( vsrc[p], weight * wv, clientdata ); for (int j=0; jAddWithWeight( vsrc[V_IT[h+j*2 ]], weight * wp, clientdata ); vdst->AddWithWeight( vsrc[V_IT[h+j*2+1]], weight * wp, clientdata ); } vdst->AddVaryingWithWeight( vsrc[p], 1.0f, clientdata ); } } } // end namespace OPENSUBDIV_VERSION using namespace OPENSUBDIV_VERSION; } // end namespace OpenSubdiv #endif /* FAR_CATMARK_SUBDIVISION_TABLES_H */