// // Copyright 2013 Pixar // // Licensed under the Apache License, Version 2.0 (the "Apache License") // with the following modification; you may not use this file except in // compliance with the Apache License and the following modification to it: // Section 6. Trademarks. is deleted and replaced with: // // 6. Trademarks. This License does not grant permission to use the trade // names, trademarks, service marks, or product names of the Licensor // and its affiliates, except as required to comply with Section 4(c) of // the License and to reproduce the content of the NOTICE file. // // You may obtain a copy of the Apache License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the Apache License with the above modification is // distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the Apache License for the specific // language governing permissions and limitations under the Apache License. // #line 57 //-------------------------------------------------------------- // Vertex Shader //-------------------------------------------------------------- #ifdef VERTEX_SHADER layout (location=0) in vec4 position; out block { OutputVertex v; } outpt; void main() { outpt.v.position = ModelViewMatrix * position; } #endif // VERTEX_SHADER //-------------------------------------------------------------- // Geometry Shader //-------------------------------------------------------------- #ifdef GEOMETRY_SHADER uniform samplerBuffer g_uvFVarBuffer; #ifdef PRIM_QUAD layout(lines_adjacency) in; #ifdef GEOMETRY_OUT_FILL layout(triangle_strip, max_vertices = 4) out; #endif #ifdef GEOMETRY_OUT_LINE layout(line_strip, max_vertices = 5) out; #endif in block { OutputVertex v; } inpt[4]; #endif // PRIM_QUAD #ifdef PRIM_TRI layout(triangles) in; #ifdef GEOMETRY_OUT_FILL layout(triangle_strip, max_vertices = 3) out; #endif #ifdef GEOMETRY_OUT_LINE layout(line_strip, max_vertices = 4) out; #endif in block { OutputVertex v; } inpt[3]; #endif // PRIM_TRI #ifdef PRIM_POINT layout(points) in; layout(points, max_vertices = 1) out; in block { OutputVertex v; } inpt[1]; #endif // PRIM_POINT out block { OutputVertex v; } outpt; void emitUniform(int index, vec3 normal) { outpt.v.position = inpt[index].v.position; #ifdef SMOOTH_NORMALS outpt.v.normal = inpt[index].v.normal; #else outpt.v.normal = normal; #endif // We fetch each uv component separately since the texture buffer // has a single component internal format, i.e. R32F instead of RG32F. // Start with an offset representing 4 verts per primitive and // multiply by 2 on each fetch to account for two floats per UV. // uvFVarBuffer is a flat array of floats, but is accessed as if it // has the structure of float[p][4][2] where p=primitiveID: // [ [ uv uv uv uv ] [ uv uv uv uv ] [ ... ] ] // prim 0 prim 1 int uvOffset = gl_PrimitiveID * 4; outpt.v.patchCoord.st = vec2( texelFetch( g_uvFVarBuffer, (uvOffset+index)*2 ).s, texelFetch( g_uvFVarBuffer, (uvOffset+index)*2+1 ).s ); gl_Position = ProjectionMatrix * inpt[index].v.position; EmitVertex(); } void emitAdaptive(int index, vec3 normal, vec2 uvs[4]) { outpt.v.position = inpt[index].v.position; #ifdef SMOOTH_NORMALS outpt.v.normal = inpt[index].v.normal; #else outpt.v.normal = normal; #endif // Bi-linear interpolation within the patch outpt.v.patchCoord = inpt[index].v.patchCoord; vec2 st = inpt[index].v.tessCoord; outpt.v.patchCoord.st = vec2( mix( mix(uvs[0].x, uvs[1].x, st.s ), mix(uvs[3].x, uvs[2].x, st.s ), st.t), mix( mix(uvs[0].y, uvs[1].y, st.s ), mix(uvs[3].y, uvs[2].y, st.s ), st.t) ); gl_Position = ProjectionMatrix * inpt[index].v.position; EmitVertex(); } void main() { gl_PrimitiveID = gl_PrimitiveIDIn; #ifdef FVAR_ADAPTIVE // We fetch each uv component separately since the texture buffer // has a single component internal format, i.e. R32F instead of RG32F. // Start with an offset representing 4 verts per primitive and // multiply by 2 on each fetch to account for two floats per UV. // uvFVarBuffer is a flat array of floats, but is accessed as if it // has the structure of float[p][4][2] where p=primitiveID: // [ [ uv uv uv uv ] [ uv uv uv uv ] [ ... ] ] // prim 0 prim 1 // Offset based on prim id and offset into patch-type fvar data table int uvOffset = (gl_PrimitiveID+PrimitiveIdBase) * 4; vec2 uvs[4]; uvs[0] = vec2( texelFetch( g_uvFVarBuffer, (uvOffset+0)*2 ).s, texelFetch( g_uvFVarBuffer, (uvOffset+0)*2+1 ).s ); uvs[1] = vec2( texelFetch( g_uvFVarBuffer, (uvOffset+1)*2 ).s, texelFetch( g_uvFVarBuffer, (uvOffset+1)*2+1 ).s ); uvs[2] = vec2( texelFetch( g_uvFVarBuffer, (uvOffset+2)*2 ).s, texelFetch( g_uvFVarBuffer, (uvOffset+2)*2+1 ).s ); uvs[3] = vec2( texelFetch( g_uvFVarBuffer, (uvOffset+3)*2 ).s, texelFetch( g_uvFVarBuffer, (uvOffset+3)*2+1 ).s ); #endif vec3 n0 = vec3(0); #if defined( PRIM_POINT ) emitUniform(0, n0); #elif defined ( PRIM_TRI) vec3 A = (inpt[1].v.position - inpt[0].v.position).xyz; vec3 B = (inpt[2].v.position - inpt[0].v.position).xyz; n0 = normalize(cross(B, A)); #ifdef FVAR_ADAPTIVE emitAdaptive(0, n0, uvs); emitAdaptive(1, n0, uvs); emitAdaptive(2, n0, uvs); #ifdef GEOMETRY_OUT_LINE emitAdaptive(0, n0, uvs); #endif //GEOMETRY_OUT_LINE #else emitUniform(0, n0); emitUniform(1, n0); emitUniform(2, n0); #ifdef GEOMETRY_OUT_LINE emitUniform(0, n0); #endif //GEOMETRY_OUT_LINE #endif //FVAR_ADAPTIVE #elif defined ( PRIM_QUAD ) vec3 A = (inpt[0].v.position - inpt[1].v.position).xyz; vec3 B = (inpt[3].v.position - inpt[1].v.position).xyz; //vec3 C = (inpt[2].v.position - inpt[1].v.position).xyz; n0 = normalize(cross(B, A)); #ifdef GEOMETRY_OUT_FILL emitUniform(0, n0); emitUniform(1, n0); emitUniform(3, n0); emitUniform(2, n0); #else // GEOMETRY_OUT_LINE emitUniform(0, n0); emitUniform(1, n0); emitUniform(2, n0); emitUniform(3, n0); emitUniform(0, n0); #endif //GEOMETRY_OUT_LINE #endif //PRIM_* EndPrimitive(); } #endif // GEOMETRY_SHADER //-------------------------------------------------------------- // Fragment Shader //-------------------------------------------------------------- #ifdef FRAGMENT_SHADER uniform sampler2D diffuseMap; in block { OutputVertex v; } inpt; #define NUM_LIGHTS 2 struct LightSource { vec4 position; vec4 diffuse; vec4 ambient; vec4 specular; }; layout(std140) uniform Lighting { LightSource lightSource[NUM_LIGHTS]; }; uniform vec4 diffuseColor = vec4(0.8); uniform vec4 ambientColor = vec4(0.2); uniform vec4 specularColor = vec4(0.8); uniform float shininess = 64; vec4 lighting(vec3 Peye, vec3 Neye, vec4 texColor) { vec4 color = vec4(0); for (int i = 0; i < NUM_LIGHTS; ++i) { vec4 Plight = lightSource[i].position; vec3 l = (Plight.w == 0.0) ? normalize(Plight.xyz) : normalize(Plight.xyz - Peye); vec3 n = normalize(Neye); vec3 h = normalize(l + vec3(0,0,1)); // directional viewer float d = max(0.0, dot(n, l)); float s = pow(max(0.0, dot(n, h)), shininess); color += lightSource[i].ambient * ambientColor + d * lightSource[i].diffuse * diffuseColor * texColor + s * lightSource[i].specular * specularColor; } color.a = 1; return color; } #ifdef PRIM_POINT uniform vec4 fragColor; void main() { gl_FragColor = fragColor; } #endif #ifdef GEOMETRY_OUT_LINE uniform vec4 fragColor; void main() { gl_FragColor = fragColor; } #endif #ifdef GEOMETRY_OUT_FILL void main() { vec3 N = (gl_FrontFacing ? inpt.v.normal : -inpt.v.normal); #ifdef USE_DIFFUSE_MAP vec4 texColor = texture(diffuseMap, inpt.v.patchCoord.st); gl_FragColor = lighting(inpt.v.position.xyz, N, texColor); #else gl_FragColor = lighting(inpt.v.position.xyz, N, vec4(1.0)); #endif } #endif // GEOMETRY_OUT_LINE #endif // FRAGMENT_SHADER