// // Copyright (C) Pixar. All rights reserved. // // This license governs use of the accompanying software. If you // use the software, you accept this license. If you do not accept // the license, do not use the software. // // 1. Definitions // The terms "reproduce," "reproduction," "derivative works," and // "distribution" have the same meaning here as under U.S. // copyright law. A "contribution" is the original software, or // any additions or changes to the software. // A "contributor" is any person or entity that distributes its // contribution under this license. // "Licensed patents" are a contributor's patent claims that read // directly on its contribution. // // 2. Grant of Rights // (A) Copyright Grant- Subject to the terms of this license, // including the license conditions and limitations in section 3, // each contributor grants you a non-exclusive, worldwide, // royalty-free copyright license to reproduce its contribution, // prepare derivative works of its contribution, and distribute // its contribution or any derivative works that you create. // (B) Patent Grant- Subject to the terms of this license, // including the license conditions and limitations in section 3, // each contributor grants you a non-exclusive, worldwide, // royalty-free license under its licensed patents to make, have // made, use, sell, offer for sale, import, and/or otherwise // dispose of its contribution in the software or derivative works // of the contribution in the software. // // 3. Conditions and Limitations // (A) No Trademark License- This license does not grant you // rights to use any contributor's name, logo, or trademarks. // (B) If you bring a patent claim against any contributor over // patents that you claim are infringed by the software, your // patent license from such contributor to the software ends // automatically. // (C) If you distribute any portion of the software, you must // retain all copyright, patent, trademark, and attribution // notices that are present in the software. // (D) If you distribute any portion of the software in source // code form, you may do so only under this license by including a // complete copy of this license with your distribution. If you // distribute any portion of the software in compiled or object // code form, you may only do so under a license that complies // with this license. // (E) The software is licensed "as-is." You bear the risk of // using it. The contributors give no express warranties, // guarantees or conditions. You may have additional consumer // rights under your local laws which this license cannot change. // To the extent permitted under your local laws, the contributors // exclude the implied warranties of merchantability, fitness for // a particular purpose and non-infringement. // #ifndef HBRCATMARK_H #define HBRCATMARK_H /*#define HBR_DEBUG */ #include "../hbr/subdivision.h" template class HbrCatmarkSubdivision : public HbrSubdivision { public: HbrCatmarkSubdivision() : HbrSubdivision(), triangleSubdivision(k_Normal) {} HbrCatmarkSubdivision(const HbrCatmarkSubdivision &old) : HbrSubdivision(), triangleSubdivision(old.triangleSubdivision) {} virtual HbrSubdivision* Clone() const { return new HbrCatmarkSubdivision(*this); } virtual void Refine(HbrMesh* mesh, HbrFace* face); virtual HbrFace* RefineFaceAtVertex(HbrMesh* mesh, HbrFace* face, HbrVertex* vertex); virtual void GuaranteeNeighbor(HbrMesh* mesh, HbrHalfedge* edge); virtual void GuaranteeNeighbors(HbrMesh* mesh, HbrVertex* vertex); virtual bool HasLimit(HbrMesh* mesh, HbrFace* face); virtual bool HasLimit(HbrMesh* mesh, HbrHalfedge* edge); virtual bool HasLimit(HbrMesh* mesh, HbrVertex* vertex); virtual HbrVertex* Subdivide(HbrMesh* mesh, HbrFace* face); virtual HbrVertex* Subdivide(HbrMesh* mesh, HbrHalfedge* edge); virtual HbrVertex* Subdivide(HbrMesh* mesh, HbrVertex* vertex); virtual bool VertexIsExtraordinary(HbrMesh* /* mesh */, HbrVertex* vertex) { return vertex->GetValence() != 4; } // Triangle subdivision rules, which modifies the rules for // triangular faces in order to make them smoother. The "normal" // rule is the standard Catmull-Clark rule. The "old" rule // modifies only the subdivision rules for a face to vertex // refinement. The "new" rule modifies only the subdivision rules // for an edge to vertex refinement. These rules are only applied // to the top level face, since only top level faces can be // triangular; after one level of refinement everything becomes // quads. enum TriangleSubdivision { k_Normal, k_Old, k_New }; TriangleSubdivision GetTriangleSubdivisionMethod() const { return triangleSubdivision; } void SetTriangleSubdivisionMethod(TriangleSubdivision method) { triangleSubdivision = method; } virtual int GetFaceChildrenCount(int nvertices) const { return nvertices; } private: // Transfers facevarying data from a parent face to a child face void transferFVarToChild(HbrMesh* mesh, HbrFace* face, HbrFace* child, int index); // Transfers vertex and edge edits from a parent face to a child face void transferEditsToChild(HbrFace* face, HbrFace* child, int index); TriangleSubdivision triangleSubdivision; }; template void HbrCatmarkSubdivision::transferFVarToChild(HbrMesh* mesh, HbrFace* face, HbrFace* child, int index) { typename HbrMesh::InterpolateBoundaryMethod fvarinterp = mesh->GetFVarInterpolateBoundaryMethod(); const int fvarcount = mesh->GetFVarCount(); int fvarindex = 0; const int nv = face->GetNumVertices(); bool extraordinary = (nv != 4); HbrVertex *v = face->GetVertex(index), *childVertex; HbrHalfedge* edge; // We do the face subdivision rule first, because we may reuse the // result (stored in fv2) for the other subdivisions. float weight = 1.0f / nv; // For the face center vertex, the facevarying data can be cleared // and averaged en masse, since the subdivision rules don't change // for any of the data - we use the smooth rule for all of it. // And since we know that the fvardata for this particular vertex // is smooth and therefore shareable amongst all incident faces, // we don't have to allocate extra storage for it. We also don't // have to compute it if some other face got to it first (as // indicated by the IsInitialized() flag). HbrFVarData& fv2 = child->GetFVarData(extraordinary ? 2 : (index+2)%4); if (!fv2.IsInitialized()) { const int totalfvarwidth = mesh->GetTotalFVarWidth(); fv2.ClearAll(totalfvarwidth); for (int j = 0; j < nv; ++j) { fv2.AddWithWeightAll(face->GetFVarData(j), totalfvarwidth, weight); } } assert(fv2.IsInitialized()); v->GuaranteeNeighbors(); // Make sure that that each of the vertices of the child face have // the appropriate facevarying storage as needed. If there are // discontinuities in any facevarying datum, the vertex must // allocate a new block of facevarying storage specific to the // child face. bool fv0IsSmooth, fv1IsSmooth, fv3IsSmooth; childVertex = child->GetVertex(extraordinary ? 0 : (index+0)%4); fv0IsSmooth = v->IsFVarAllSmooth(); if (!fv0IsSmooth) { childVertex->NewFVarData(child); } HbrFVarData& fv0 = childVertex->GetFVarData(child); edge = face->GetEdge(index); GuaranteeNeighbor(mesh, edge); assert(edge->GetOrgVertex() == v); childVertex = child->GetVertex(extraordinary ? 1 : (index+1)%4); fv1IsSmooth = !edge->IsFVarInfiniteSharpAnywhere(); if (!fv1IsSmooth) { childVertex->NewFVarData(child); } HbrFVarData& fv1 = childVertex->GetFVarData(child); edge = edge->GetPrev(); GuaranteeNeighbor(mesh, edge); assert(edge == face->GetEdge((index + nv - 1) % nv)); assert(edge->GetDestVertex() == v); childVertex = child->GetVertex(extraordinary ? 3 : (index+3)%4); fv3IsSmooth = !edge->IsFVarInfiniteSharpAnywhere(); if (!fv3IsSmooth) { childVertex->NewFVarData(child); } HbrFVarData& fv3 = childVertex->GetFVarData(child); fvarindex = 0; for (int fvaritem = 0; fvaritem < fvarcount; ++fvaritem) { // Vertex subdivision rule. Analyze whether the vertex is on the // boundary and whether it's an infinitely sharp corner. We // determine the last by checking the propagate corners flag on // the mesh; if it's off, we check the two edges of this face // incident to that vertex and determining whether they are // facevarying boundary edges - this is analogous to what goes on // for the interpolateboundary tag (which when set to // EDGEANDCORNER marks vertices with a valence of two as being // sharp corners). If propagate corners is on, we check *all* // faces to see if two edges side by side are facevarying boundary // edges. The facevarying boundary check ignores geometric // sharpness, otherwise we may swim at geometric creases which // aren't actually discontinuous. bool infcorner = false; const int fvarwidth = mesh->GetFVarWidths()[fvaritem]; const unsigned char fvarmask = v->GetFVarMask(fvaritem); if (fvarinterp == HbrMesh::k_InterpolateBoundaryEdgeAndCorner) { if (fvarmask >= HbrVertex::k_Corner) { infcorner = true; } else if (mesh->GetFVarPropagateCorners()) { if (v->IsFVarCorner(fvaritem)) { infcorner = true; } } else { if (face->GetEdge(index)->GetFVarSharpness(fvaritem, true) && face->GetEdge(index)->GetPrev()->GetFVarSharpness(fvaritem, true)) { infcorner = true; } } } // Infinitely sharp vertex rule. Applied if the vertex is: // - undergoing no facevarying boundary interpolation; // - at a geometric crease, in either boundary interpolation case; or // - is an infinitely sharp facevarying vertex, in the EDGEANDCORNER case; or // - has a mask equal or greater than one, in the "always // sharp" interpolate boundary case if (fvarinterp == HbrMesh::k_InterpolateBoundaryNone || (fvarinterp == HbrMesh::k_InterpolateBoundaryAlwaysSharp && fvarmask >= 1) || v->GetSharpness() > HbrVertex::k_Smooth || infcorner) { fv0.SetWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, 1.0f); } // Dart rule: unlike geometric creases, because there's two // discontinuous values for the one incident edge, we use the // boundary rule and not the smooth rule else if (fvarmask == 1) { assert(!v->OnBoundary()); // Use 0.75 of the current vert fv0.SetWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, 0.75f); // 0.125 of "two adjacent edge vertices", which in actuality // are the facevarying values of the same vertex but on each // side of the single incident facevarying sharp edge HbrHalfedge* start = v->GetIncidentEdge(), *nextedge; edge = start; while (edge) { if (edge->GetFVarSharpness(fvaritem)) { break; } nextedge = v->GetNextEdge(edge); if (nextedge == start) { assert(0); // we should have found it by now break; } else if (!nextedge) { // should never get into this case - if the vertex is // on a boundary, it can never be a facevarying dart // vertex assert(0); edge = edge->GetPrev(); break; } else { edge = nextedge; } } HbrVertex* w = edge->GetDestVertex(); HbrFace* bestface = edge->GetLeftFace(); int j; for (j = 0; j < bestface->GetNumVertices(); ++j) { if (bestface->GetVertex(j) == w) break; } assert(j != bestface->GetNumVertices()); fv0.AddWithWeight(bestface->GetFVarData(j), fvarindex, fvarwidth, 0.125f); bestface = edge->GetRightFace(); for (j = 0; j < bestface->GetNumVertices(); ++j) { if (bestface->GetVertex(j) == w) break; } assert(j != bestface->GetNumVertices()); fv0.AddWithWeight(bestface->GetFVarData(j), fvarindex, fvarwidth, 0.125f); } // Boundary vertex rule else if (fvarmask != 0) { // Use 0.75 of the current vert fv0.SetWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, 0.75f); // Compute 0.125 of two adjacent edge vertices. However the // two adjacent edge vertices we use must be part of the // facevarying "boundary". To find the first edge we cycle // counterclockwise around the current vertex v and look for // the first boundary edge HbrFace* bestface = face; HbrHalfedge* bestedge = face->GetEdge(index)->GetPrev(); HbrHalfedge* starte = bestedge->GetOpposite(); HbrVertex* w = 0; if (!starte) { w = face->GetEdge(index)->GetPrev()->GetOrgVertex(); } else { HbrHalfedge* e = starte, *next; assert(starte->GetOrgVertex() == v); do { if (e->GetFVarSharpness(fvaritem) || !e->GetLeftFace()) { bestface = e->GetRightFace(); bestedge = e; break; } next = v->GetNextEdge(e); if (!next) { bestface = e->GetLeftFace(); w = e->GetPrev()->GetOrgVertex(); break; } e = next; } while (e && e != starte); } if (!w) w = bestedge->GetDestVertex(); int j; for (j = 0; j < bestface->GetNumVertices(); ++j) { if (bestface->GetVertex(j) == w) break; } assert(j != bestface->GetNumVertices()); fv0.AddWithWeight(bestface->GetFVarData(j), fvarindex, fvarwidth, 0.125f); // Look for the other edge by cycling clockwise around v bestface = face; bestedge = face->GetEdge(index); starte = bestedge; w = 0; if (HbrHalfedge* e = starte) { assert(starte->GetOrgVertex() == v); do { if (e->GetFVarSharpness(fvaritem) || !e->GetRightFace()) { bestface = e->GetLeftFace(); bestedge = e; break; } assert(e->GetOpposite()); e = v->GetPreviousEdge(e); } while (e && e != starte); } if (!w) w = bestedge->GetDestVertex(); for (j = 0; j < bestface->GetNumVertices(); ++j) { if (bestface->GetVertex(j) == w) break; } assert(j != bestface->GetNumVertices()); fv0.AddWithWeight(bestface->GetFVarData(j), fvarindex, fvarwidth, 0.125f); } // Smooth rule. Here, we can take a shortcut if we know that // the vertex is smooth and some other vertex has completely // computed the facevarying values else if (!fv0IsSmooth || !fv0.IsInitialized()) { int valence = v->GetValence(); float invvalencesquared = 1.0f / (valence * valence); // Use n-2/n of the current vertex value fv0.SetWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, invvalencesquared * valence * (valence - 2)); // Add 1/n^2 of surrounding edge vertices and surrounding face // averages. We loop over all surrounding faces.. HbrHalfedge* start = v->GetIncidentEdge(), *edge; edge = start; while (edge) { HbrFace* g = edge->GetLeftFace(); weight = invvalencesquared / g->GetNumVertices(); // .. and compute the average of each face. At the same // time, we look for the edge on that face whose origin is // the same as v, and add a contribution from its // destination vertex value; this takes care of the // surrounding edge vertex addition. for (int j = 0; j < g->GetNumVertices(); ++j) { fv0.AddWithWeight(g->GetFVarData(j), fvarindex, fvarwidth, weight); if (g->GetEdge(j)->GetOrgVertex() == v) { fv0.AddWithWeight(g->GetFVarData((j + 1) % g->GetNumVertices()), fvarindex, fvarwidth, invvalencesquared); } } edge = v->GetNextEdge(edge); if (edge == start) break; } } // Edge subdivision rule edge = face->GetEdge(index); if (fvarinterp == HbrMesh::k_InterpolateBoundaryNone || edge->GetFVarSharpness(fvaritem) || edge->IsBoundary()) { // Sharp edge rule fv1.SetWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, 0.5f); fv1.AddWithWeight(face->GetFVarData((index + 1) % nv), fvarindex, fvarwidth, 0.5f); } else if (!fv1IsSmooth || !fv1.IsInitialized()) { // Smooth edge subdivision. Add 0.25 of adjacent vertices fv1.SetWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, 0.25f); fv1.AddWithWeight(face->GetFVarData((index + 1) % nv), fvarindex, fvarwidth, 0.25f); // Local subdivided face vertex fv1.AddWithWeight(fv2, fvarindex, fvarwidth, 0.25f); // Add 0.25 * average of neighboring face vertices HbrFace* oppFace = edge->GetRightFace(); weight = 0.25f / oppFace->GetNumVertices(); for (int j = 0; j < oppFace->GetNumVertices(); ++j) { fv1.AddWithWeight(oppFace->GetFVarData(j), fvarindex, fvarwidth, weight); } } // Edge subdivision rule edge = edge->GetPrev(); if (fvarinterp == HbrMesh::k_InterpolateBoundaryNone || edge->GetFVarSharpness(fvaritem) || edge->IsBoundary()) { // Sharp edge rule fv3.SetWithWeight(face->GetFVarData((index + nv - 1) % nv), fvarindex, fvarwidth, 0.5f); fv3.AddWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, 0.5f); } else if (!fv3IsSmooth || !fv3.IsInitialized()) { // Smooth edge subdivision. Add 0.25 of adjacent vertices fv3.SetWithWeight(face->GetFVarData((index + nv - 1) % nv), fvarindex, fvarwidth, 0.25f); fv3.AddWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, 0.25f); // Local subdivided face vertex fv3.AddWithWeight(fv2, fvarindex, fvarwidth, 0.25f); // Add 0.25 * average of neighboring face vertices HbrFace* oppFace = edge->GetRightFace(); weight = 0.25f / oppFace->GetNumVertices(); for (int j = 0; j < oppFace->GetNumVertices(); ++j) { fv3.AddWithWeight(oppFace->GetFVarData(j), fvarindex, fvarwidth, weight); } } fvarindex += fvarwidth; } fv0.SetInitialized(); fv1.SetInitialized(); fv3.SetInitialized(); // Special handling of ptex index for extraordinary faces: make // sure the children get their indices reassigned to be // consecutive within the block reserved for the parent. if (face->GetNumVertices() != 4 && face->GetPtexIndex() != -1) { child->SetPtexIndex(face->GetPtexIndex() + index); } } template void HbrCatmarkSubdivision::transferEditsToChild(HbrFace* face, HbrFace* child, int index) { // Hand down pointers to hierarchical edits if (HbrHierarchicalEdit** edits = face->GetHierarchicalEdits()) { while (HbrHierarchicalEdit* edit = *edits) { if (!edit->IsRelevantToFace(face)) break; if (edit->GetNSubfaces() > face->GetDepth() && (edit->GetSubface(face->GetDepth()) == index)) { child->SetHierarchicalEdits(edits); break; } edits++; } } } template void HbrCatmarkSubdivision::Refine(HbrMesh* mesh, HbrFace* face) { // Create new quadrilateral children faces from this face HbrFace* child; HbrVertex* vertices[4]; HbrHalfedge* edge = face->GetFirstEdge(); HbrHalfedge* prevedge = edge->GetPrev(); HbrHalfedge* childedge; int nv = face->GetNumVertices(); float sharpness; bool extraordinary = (nv != 4); // The funny indexing on vertices is done only for // non-extraordinary faces in order to correctly preserve // parametric space through the refinement. If we split an // extraordinary face then it doesn't matter. for (int i = 0; i < nv; ++i) { if (!face->GetChild(i)) { #ifdef HBR_DEBUG std::cerr << "Kid " << i << "\n"; #endif HbrVertex* vertex = edge->GetOrgVertex(); if (extraordinary) { vertices[0] = vertex->Subdivide(); vertices[1] = edge->Subdivide(); vertices[2] = face->Subdivide(); vertices[3] = prevedge->Subdivide(); } else { vertices[i] = vertex->Subdivide(); vertices[(i+1)%4] = edge->Subdivide(); vertices[(i+2)%4] = face->Subdivide(); vertices[(i+3)%4] = prevedge->Subdivide(); } child = mesh->NewFace(4, vertices, face, i); #ifdef HBR_DEBUG std::cerr << "Creating face " << *child << " during refine\n"; #endif // Hand down edge sharpnesses childedge = vertex->Subdivide()->GetEdge(edge->Subdivide()); assert(childedge); if ((sharpness = edge->GetSharpness()) > HbrHalfedge::k_Smooth) { HbrSubdivision::SubdivideCreaseWeight( edge, edge->GetDestVertex(), childedge); } childedge->CopyFVarInfiniteSharpness(edge); childedge = prevedge->Subdivide()->GetEdge(vertex->Subdivide()); assert(childedge); if ((sharpness = prevedge->GetSharpness()) > HbrHalfedge::k_Smooth) { HbrSubdivision::SubdivideCreaseWeight( prevedge, prevedge->GetOrgVertex(), childedge); } childedge->CopyFVarInfiniteSharpness(prevedge); if (mesh->GetTotalFVarWidth()) { transferFVarToChild(mesh, face, child, i); } transferEditsToChild(face, child, i); } prevedge = edge; edge = edge->GetNext(); } } template HbrFace* HbrCatmarkSubdivision::RefineFaceAtVertex(HbrMesh* mesh, HbrFace* face, HbrVertex* vertex) { #ifdef HBR_DEBUG std::cerr << " forcing refine on " << *face << " at " << *vertex << '\n'; #endif // Create new quadrilateral children faces from this face HbrHalfedge* edge = face->GetFirstEdge(); HbrHalfedge* prevedge = edge->GetPrev(); HbrHalfedge* childedge; int nv = face->GetNumVertices(); float sharpness; bool extraordinary = (nv != 4); // The funny indexing on vertices is done only for // non-extraordinary faces in order to correctly preserve // parametric space through the refinement. If we split an // extraordinary face then it doesn't matter. for (int i = 0; i < nv; ++i) { if (edge->GetOrgVertex() == vertex) { if (!face->GetChild(i)) { HbrFace* child; HbrVertex* vertices[4]; if (extraordinary) { vertices[0] = vertex->Subdivide(); vertices[1] = edge->Subdivide(); vertices[2] = face->Subdivide(); vertices[3] = prevedge->Subdivide(); } else { vertices[i] = vertex->Subdivide(); vertices[(i+1)%4] = edge->Subdivide(); vertices[(i+2)%4] = face->Subdivide(); vertices[(i+3)%4] = prevedge->Subdivide(); } #ifdef HBR_DEBUG std::cerr << "Kid " << i << "\n"; std::cerr << " subdivision created " << *vertices[0] << '\n'; std::cerr << " subdivision created " << *vertices[1] << '\n'; std::cerr << " subdivision created " << *vertices[2] << '\n'; std::cerr << " subdivision created " << *vertices[3] << '\n'; #endif child = mesh->NewFace(4, vertices, face, i); #ifdef HBR_DEBUG std::cerr << "Creating face " << *child << " during refine\n"; #endif // Hand down edge sharpness childedge = vertex->Subdivide()->GetEdge(edge->Subdivide()); assert(childedge); if ((sharpness = edge->GetSharpness()) > HbrHalfedge::k_Smooth) { HbrSubdivision::SubdivideCreaseWeight( edge, edge->GetDestVertex(), childedge); } childedge->CopyFVarInfiniteSharpness(edge); childedge = prevedge->Subdivide()->GetEdge(vertex->Subdivide()); assert(childedge); if ((sharpness = prevedge->GetSharpness()) > HbrHalfedge::k_Smooth) { HbrSubdivision::SubdivideCreaseWeight( prevedge, prevedge->GetOrgVertex(), childedge); } childedge->CopyFVarInfiniteSharpness(prevedge); if (mesh->GetTotalFVarWidth()) { transferFVarToChild(mesh, face, child, i); } transferEditsToChild(face, child, i); return child; } else { return face->GetChild(i); } } prevedge = edge; edge = edge->GetNext(); } return 0; } template void HbrCatmarkSubdivision::GuaranteeNeighbor(HbrMesh* mesh, HbrHalfedge* edge) { if (edge->GetOpposite()) { return; } // For the given edge: if the parent of either of its incident // vertices is itself a _face_, then ensuring that this parent // face has refined at a particular vertex is sufficient to // ensure that both of the faces on each side of the edge have // been created. bool destParentWasEdge = true; HbrFace* parentFace = edge->GetOrgVertex()->GetParentFace(); HbrHalfedge* parentEdge = edge->GetDestVertex()->GetParentEdge(); if (!parentFace) { destParentWasEdge = false; parentFace = edge->GetDestVertex()->GetParentFace(); parentEdge = edge->GetOrgVertex()->GetParentEdge(); } if (parentFace) { // Make sure we deal with a parent halfedge which is // associated with the parent face if (parentEdge->GetFace() != parentFace) { parentEdge = parentEdge->GetOpposite(); } // If one of the vertices had a parent face, the other one MUST // have been a child of an edge assert(parentEdge && parentEdge->GetFace() == parentFace); #ifdef HBR_DEBUG std::cerr << "\nparent edge is " << *parentEdge << "\n"; #endif // The vertex to refine at depends on whether the // destination or origin vertex of this edge had a parent // edge if (destParentWasEdge) { RefineFaceAtVertex(mesh, parentFace, parentEdge->GetOrgVertex()); } else { RefineFaceAtVertex(mesh, parentFace, parentEdge->GetDestVertex()); } // It should always be the case that the opposite now exists - // we can't have a boundary case here assert(edge->GetOpposite()); } else { HbrVertex* parentVertex = edge->GetOrgVertex()->GetParentVertex(); parentEdge = edge->GetDestVertex()->GetParentEdge(); if (!parentVertex) { parentVertex = edge->GetDestVertex()->GetParentVertex(); parentEdge = edge->GetOrgVertex()->GetParentEdge(); } if (parentVertex) { assert(parentEdge); #ifdef HBR_DEBUG std::cerr << "\nparent edge is " << *parentEdge << "\n"; #endif // 1. Go up to the parent of my face parentFace = edge->GetFace()->GetParent(); #ifdef HBR_DEBUG std::cerr << "\nparent face is " << *parentFace << "\n"; #endif // 2. Ask the opposite face (if it exists) to refine if (parentFace) { // A vertex can be associated with either of two // parent halfedges. If the parent edge that we're // interested in doesn't match then we should look at // its opposite if (parentEdge->GetFace() != parentFace) parentEdge = parentEdge->GetOpposite(); assert(parentEdge->GetFace() == parentFace); // Make sure the parent edge has its neighbor as well GuaranteeNeighbor(mesh, parentEdge); // Now access that neighbor and refine it if (parentEdge->GetRightFace()) { RefineFaceAtVertex(mesh, parentEdge->GetRightFace(), parentVertex); // FIXME: assertion? assert(edge->GetOpposite()); } } } } } template void HbrCatmarkSubdivision::GuaranteeNeighbors(HbrMesh* mesh, HbrVertex* vertex) { #ifdef HBR_DEBUG std::cerr << "\n\nneighbor guarantee at " << *vertex << " invoked\n"; #endif // If the vertex is a child of a face, guaranteeing the neighbors // of the vertex is simply a matter of ensuring the parent face // has refined. HbrFace* parentFace = vertex->GetParentFace(); if (parentFace) { #ifdef HBR_DEBUG std::cerr << " forcing full refine on parent face\n"; #endif Refine(mesh, parentFace); return; } // Otherwise if the vertex is a child of an edge, we need to // ensure that the parent faces on either side of the parent edge // 1) exist, and 2) have refined at both vertices of the parent // edge HbrHalfedge* parentEdge = vertex->GetParentEdge(); if (parentEdge) { #ifdef HBR_DEBUG std::cerr << " forcing full refine on adjacent faces of parent edge\n"; #endif HbrVertex* dest = parentEdge->GetDestVertex(); HbrVertex* org = parentEdge->GetOrgVertex(); GuaranteeNeighbor(mesh, parentEdge); parentFace = parentEdge->GetLeftFace(); RefineFaceAtVertex(mesh, parentFace, dest); RefineFaceAtVertex(mesh, parentFace, org); #ifdef HBR_DEBUG std::cerr << " on the right face?\n"; #endif parentFace = parentEdge->GetRightFace(); // The right face may not necessarily exist even after // GuaranteeNeighbor if (parentFace) { RefineFaceAtVertex(mesh, parentFace, dest); RefineFaceAtVertex(mesh, parentFace, org); } #ifdef HBR_DEBUG std::cerr << " end force\n"; #endif return; } // The last case: the vertex is a child of a vertex. In this case // we have to first recursively guarantee that the parent's // adjacent faces also exist. HbrVertex* parentVertex = vertex->GetParentVertex(); if (parentVertex) { #ifdef HBR_DEBUG std::cerr << " recursive parent vertex guarantee call\n"; #endif parentVertex->GuaranteeNeighbors(); // And then we refine all the face neighbors of the // parentVertex HbrHalfedge* start = parentVertex->GetIncidentEdge(), *edge; edge = start; while (edge) { HbrFace* f = edge->GetLeftFace(); RefineFaceAtVertex(mesh, f, parentVertex); edge = parentVertex->GetNextEdge(edge); if (edge == start) break; } } } template bool HbrCatmarkSubdivision::HasLimit(HbrMesh* mesh, HbrFace* face) { if (face->IsHole()) return false; // A limit face exists if all the bounding edges have limit curves for (int i = 0; i < face->GetNumVertices(); ++i) { if (!HasLimit(mesh, face->GetEdge(i))) { return false; } } return true; } template bool HbrCatmarkSubdivision::HasLimit(HbrMesh* mesh, HbrHalfedge* edge) { // A sharp edge has a limit curve if both endpoints have limits. // A smooth edge has a limit if both endpoints have limits and // the edge isn't on the boundary. if (edge->GetSharpness() >= HbrHalfedge::k_InfinitelySharp) return true; if (!HasLimit(mesh, edge->GetOrgVertex()) || !HasLimit(mesh, edge->GetDestVertex())) return false; return !edge->IsBoundary(); } template bool HbrCatmarkSubdivision::HasLimit(HbrMesh* /* mesh */, HbrVertex* vertex) { vertex->GuaranteeNeighbors(); switch (vertex->GetMask(false)) { case HbrVertex::k_Smooth: case HbrVertex::k_Dart: return !vertex->OnBoundary(); break; case HbrVertex::k_Crease: case HbrVertex::k_Corner: default: if (vertex->IsVolatile()) { // Search for any incident semisharp boundary edge HbrHalfedge* start = vertex->GetIncidentEdge(), *edge, *next; edge = start; while (edge) { if (edge->IsBoundary() && edge->GetSharpness() < HbrHalfedge::k_InfinitelySharp) { return false; } next = vertex->GetNextEdge(edge); if (next == start) { break; } else if (!next) { edge = edge->GetPrev(); if (edge->IsBoundary() && edge->GetSharpness() < HbrHalfedge::k_InfinitelySharp) { return false; } break; } else { edge = next; } } } return true; } } template HbrVertex* HbrCatmarkSubdivision::Subdivide(HbrMesh* mesh, HbrFace* face) { // Face rule: simply average all vertices on the face HbrVertex* v = mesh->NewVertex(); T& data = v->GetData(); int nv = face->GetNumVertices(); float weight = 1.0f / nv; HbrHalfedge* edge = face->GetFirstEdge(); for (int i = 0; i < face->GetNumVertices(); ++i) { HbrVertex* w = edge->GetOrgVertex(); // If there are vertex edits we have to make sure the edit // has been applied if (mesh->HasVertexEdits()) { w->GuaranteeNeighbors(); } data.AddWithWeight(w->GetData(), weight); data.AddVaryingWithWeight(w->GetData(), weight); edge = edge->GetNext(); } #ifdef HBR_DEBUG std::cerr << "Subdividing at " << *face << "\n"; #endif // Set the extraordinary flag if the face had anything other than // 4 vertices if (nv != 4) v->SetExtraordinary(); #ifdef HBR_DEBUG std::cerr << " created " << *v << "\n"; #endif return v; } #if 0 // The "old" triangle subdivision method modifies the face subdivision // rule. Unfortunately we can't put simply put this code into the // standard face Subdivide method, because that would disrupt the // averages computed for adjacent edges and vertices (which rely on // face averages computed using the standard Catmull-Clark method). // Instead we must call this after a face has been Subdivided using // the normal rule; this code will modify that face's subdivided // vertex value only. template HbrVertex* HbrCatmarkSubdivision::OldTriangleSubdivide(HbrMesh* mesh, HbrFace* face) { assert(face->GetNumVertices() == 3 && triangleSubdivision == k_Old); HbrVertex* w = face->Subdivide(); NgpVVectorItem& data = w->GetData(); data.Clear(); float weight = 1.0f / 6.0f; for (int i = 0; i < 3; ++i) { HbrVertex* w = face->GetVertex(i); HbrHalfedge* e = face->GetEdge(i); data.AddWithWeight(w->Subdivide()->GetData(), weight); data.AddWithWeight(e->Subdivide()->GetData(), weight); } } #endif /* This comment describe the "new" triangle subdivision method, which modifies only the edge subdivision rule: The "smoothtriangles" tag makes triangular faces smoother. This is done by modifying the first level of subdivision in order to generate a limit surface that is closer to what Loop subdivision would yield. Note that there is no extra expense in forcing one level of subdivision, since extraordinary faces need to be subdivided at least once anyway. We have two degrees of freedom to play with, namely the weight assigned to each neighbouring vertex when subdividing a vertex, and the weight assigned to each neighbouring face vertex when subdividing an edge. Our initial strategy for choosing these parameters was to derive the limit masks (position and tangent) for the Catmull-Clark and Loop schemes at three representative points: each original vertex, the center of each original edge, and the center of each original face. The parameter values were then optimized to get the best least-squares match to the limit positions and tangents of the Loop surface at these chosen points. (In the case of tangents an extra scale factor was used so that only the tangent direction is optimized rather than its magnitude.) All this was done using Mathematica. Although the resulting surfaces were much smoother, there was still some degree of "ringing" (probably due to the fact that the surface was optimized at a discrete set of points, rather than by integrating over the surface). We then tried a second strategy, namely choosing the vertex weights to minimize surface curvature. This was done by setting up test cases for extraordinary vertices of each degree, rendering an animation using a range of parameter values, and integrating the curvature over each surface (with a shader and some scripts). We chose to minimize the squared mean curvature, which seemed to have the best correspondence to surfaces that look "smooth". Surprisingly, the vertex weights obtained in this way were not significantly different than the standard Catmull-Clark weights. Thus the final "smooth triangles" technique only modifies the edge subdivision rule: the adjacent face vertices are weighted by HBR_SMOOTH_TRI_EDGE_WEIGHT rather than the standard CC value of 0.25. If there is a mixture of triangular and non-triangular faces, the weights are interpolated. */ #define HBR_SMOOTH_TRI_EDGE_WEIGHT 0.470f /* from Mathematica */ template HbrVertex* HbrCatmarkSubdivision::Subdivide(HbrMesh* mesh, HbrHalfedge* edge) { // Ensure the opposite face exists. GuaranteeNeighbor(mesh, edge); float esharp = edge->GetSharpness(); #ifdef HBR_DEBUG std::cerr << "Subdividing at " << *edge << " (sharpness = " << esharp << ")"; #endif HbrVertex* v = mesh->NewVertex(); T& data = v->GetData(); // If there's the possibility of vertex edits on either vertex, we // have to make sure the edit has been applied if (mesh->HasVertexEdits()) { edge->GetOrgVertex()->GuaranteeNeighbors(); edge->GetDestVertex()->GuaranteeNeighbors(); } if (!edge->IsBoundary() && esharp <= 1.0f) { // Of the two half-edges, pick one of them consistently such // that the left and right faces are also consistent through // multi-threading. It doesn't matter as far as the // theoretical calculation is concerned, but it is desirable // to be consistent about it in the face of the limitations of // floating point commutativity. So we always pick the // half-edge such that its incident face is the smallest of // the two faces, as far as the face paths are concerned. if (edge->GetOpposite() && edge->GetOpposite()->GetFace()->GetPath() < edge->GetFace()->GetPath()) { edge = edge->GetOpposite(); } // Handle both the smooth and fractional sharpness cases. We // lerp between the sharp case (average of the two end points) // and the unsharp case (average of two end points plus two // face averages). float leftWeight, rightWeight, faceWeight, vertWeight; HbrFace* rf = edge->GetRightFace(); HbrFace* lf = edge->GetLeftFace(); // The standard catmull-clark rule for face weights is 0.25. // The modified, new triangle subdivision rule uses a value of // SMOOTH_TRI_EDGE_WEIGHT as defined above. We lerp between // the right and left weights as needed. leftWeight = (triangleSubdivision == k_New && lf->GetNumVertices() == 3) ? HBR_SMOOTH_TRI_EDGE_WEIGHT : 0.25f; rightWeight = (triangleSubdivision == k_New && rf->GetNumVertices() == 3) ? HBR_SMOOTH_TRI_EDGE_WEIGHT : 0.25f; faceWeight = 0.5f * (leftWeight + rightWeight); vertWeight = 0.5f * (1.0f - 2.0f * faceWeight); // Lerp the face weight between non sharp contribution and // sharp contribution (which is zero) faceWeight *= (1.0f - esharp); // Lerp the vert weight between non sharp contribution and // sharp contribution of 0.5f vertWeight = 0.5f * esharp + (1.0f - esharp) * vertWeight; data.AddWithWeight(edge->GetOrgVertex()->GetData(), vertWeight); data.AddWithWeight(edge->GetDestVertex()->GetData(), vertWeight); data.AddWithWeight(lf->Subdivide()->GetData(), faceWeight); data.AddWithWeight(rf->Subdivide()->GetData(), faceWeight); } else { // Fully sharp edge, just average the two end points data.AddWithWeight(edge->GetOrgVertex()->GetData(), 0.5f); data.AddWithWeight(edge->GetDestVertex()->GetData(), 0.5f); } // Varying data is always the average of two end points data.AddVaryingWithWeight(edge->GetOrgVertex()->GetData(), 0.5f); data.AddVaryingWithWeight(edge->GetDestVertex()->GetData(), 0.5f); #ifdef HBR_DEBUG std::cerr << " created " << *v << "\n"; #endif return v; } template HbrVertex* HbrCatmarkSubdivision::Subdivide(HbrMesh* mesh, HbrVertex* vertex) { // Ensure the ring of faces around this vertex exists before // we compute the valence vertex->GuaranteeNeighbors(); float valence = static_cast(vertex->GetValence()); float invvalencesquared = 1.0f / (valence * valence); HbrVertex* v = mesh->NewVertex(); T& data = v->GetData(); // Due to fractional weights we may need to do two subdivision // passes int masks[2]; float weights[2]; int passes; masks[0] = vertex->GetMask(false); masks[1] = vertex->GetMask(true); // If the masks are different, we subdivide twice: once using the // current mask, once using the mask at the next level of // subdivision, then use fractional mask weights to weigh // each weighing if (masks[0] != masks[1]) { weights[1] = vertex->GetFractionalMask(); weights[0] = 1.0f - weights[1]; passes = 2; } else { weights[0] = 1.0f; weights[1] = 0.0f; passes = 1; } for (int i = 0; i < passes; ++i) { switch (masks[i]) { case HbrVertex::k_Smooth: case HbrVertex::k_Dart: { // Compute n-2/n of the old vertex value data.AddWithWeight(vertex->GetData(), weights[i] * invvalencesquared * valence * (valence - 2)); // Add 1 / n^2 * surrounding edge vertices and surrounding face // subdivided vertices HbrSubdivision::AddSurroundingVerticesWithWeight( mesh, vertex, weights[i] * invvalencesquared, &data); HbrHalfedge* start = vertex->GetIncidentEdge(), *edge; edge = start; while (edge) { HbrFace* f = edge->GetLeftFace(); data.AddWithWeight(f->Subdivide()->GetData(), weights[i] * invvalencesquared); edge = vertex->GetNextEdge(edge); if (edge == start) break; } break; } case HbrVertex::k_Crease: { // Compute 3/4 of old vertex value data.AddWithWeight(vertex->GetData(), weights[i] * 0.75f); // Add 0.125f of the (hopefully only two!) neighbouring // sharp edges HbrSubdivision::AddCreaseEdgesWithWeight( mesh, vertex, i == 1, weights[i] * 0.125f, &data); break; } case HbrVertex::k_Corner: default: { // Just copy the old value data.AddWithWeight(vertex->GetData(), weights[i]); break; } } } // Varying data is always just propogated down data.AddVaryingWithWeight(vertex->GetData(), 1.0f); #ifdef HBR_DEBUG std::cerr << "Subdividing at " << *vertex << "\n"; std::cerr << " created " << *v << "\n"; #endif // Inherit extraordinary flag and sharpness if (vertex->IsExtraordinary()) v->SetExtraordinary(); float sharp = vertex->GetSharpness(); if (sharp >= HbrVertex::k_InfinitelySharp) { v->SetSharpness(HbrVertex::k_InfinitelySharp); } else if (sharp > HbrVertex::k_Smooth) { sharp -= 1.0f; if (sharp < (float) HbrVertex::k_Smooth) { sharp = (float) HbrVertex::k_Smooth; } v->SetSharpness(sharp); } else { v->SetSharpness(HbrVertex::k_Smooth); } return v; } #endif /* HBRCATMARK_H */