// // Copyright 2013 Pixar // // Licensed under the Apache License, Version 2.0 (the "Apache License") // with the following modification; you may not use this file except in // compliance with the Apache License and the following modification to it: // Section 6. Trademarks. is deleted and replaced with: // // 6. Trademarks. This License does not grant permission to use the trade // names, trademarks, service marks, or product names of the Licensor // and its affiliates, except as required to comply with Section 4(c) of // the License and to reproduce the content of the NOTICE file. // // You may obtain a copy of the Apache License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the Apache License with the above modification is // distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the Apache License for the specific // language governing permissions and limitations under the Apache License. // // // typical shader composition ordering (see glDrawRegistry:_CompileShader) // // // - glsl version string (#version 430) // // - common defines (#define OSD_ENABLE_PATCH_CULL, ...) // - source defines (#define VERTEX_SHADER, ...) // // - osd headers (glslPatchCommon: varying structs, // glslPtexCommon: ptex functions) // - client header (Osd*Matrix(), displacement callback, ...) // // - osd shader source (glslPatchBSpline, glslPatchGregory, ...) // or // client shader source (vertex/geometry/fragment shader) // //---------------------------------------------------------- // Patches.Common //---------------------------------------------------------- // XXXdyu all handling of varying data can be managed by client code #ifndef OSD_USER_VARYING_DECLARE #define OSD_USER_VARYING_DECLARE // type var; #endif #ifndef OSD_USER_VARYING_ATTRIBUTE_DECLARE #define OSD_USER_VARYING_ATTRIBUTE_DECLARE // layout(location = loc) in type var; #endif #ifndef OSD_USER_VARYING_PER_VERTEX #define OSD_USER_VARYING_PER_VERTEX() // output.var = var; #endif #ifndef OSD_USER_VARYING_PER_CONTROL_POINT #define OSD_USER_VARYING_PER_CONTROL_POINT(ID_OUT, ID_IN) // output[ID_OUT].var = input[ID_IN].var #endif #ifndef OSD_USER_VARYING_PER_EVAL_POINT #define OSD_USER_VARYING_PER_EVAL_POINT(UV, a, b, c, d) // output.var = // mix(mix(input[a].var, input[b].var, UV.x), // mix(input[c].var, input[d].var, UV.x), UV.y) #endif // For now, fractional spacing is supported only with screen space tessellation #ifndef OSD_ENABLE_SCREENSPACE_TESSELLATION #undef OSD_FRACTIONAL_EVEN_SPACING #undef OSD_FRACTIONAL_ODD_SPACING #endif #if defined OSD_FRACTIONAL_EVEN_SPACING #define OSD_SPACING fractional_even_spacing #elif defined OSD_FRACTIONAL_ODD_SPACING #define OSD_SPACING fractional_odd_spacing #else #define OSD_SPACING equal_spacing #endif #define M_PI 3.14159265359f #if __VERSION__ < 420 #define centroid #endif struct ControlVertex { vec4 position; #ifdef OSD_ENABLE_PATCH_CULL ivec3 clipFlag; #endif }; // XXXdyu all downstream data can be handled by client code struct OutputVertex { vec4 position; vec3 normal; vec3 tangent; vec3 bitangent; centroid vec4 patchCoord; // u, v, faceLevel, faceId centroid vec2 tessCoord; // tesscoord.st #if defined OSD_COMPUTE_NORMAL_DERIVATIVES vec3 Nu; vec3 Nv; #endif }; // osd shaders need following functions defined mat4 OsdModelViewMatrix(); mat4 OsdProjectionMatrix(); mat4 OsdModelViewProjectionMatrix(); float OsdTessLevel(); int OsdGregoryQuadOffsetBase(); int OsdPrimitiveIdBase(); int OsdBaseVertex(); #ifndef OSD_DISPLACEMENT_CALLBACK #define OSD_DISPLACEMENT_CALLBACK #endif // ---------------------------------------------------------------------------- // Patch Parameters // ---------------------------------------------------------------------------- // // Each patch has a corresponding patchParam. This is a set of three values // specifying additional information about the patch: // // faceId -- topological face identifier (e.g. Ptex FaceId) // bitfield -- refinement-level, non-quad, boundary, transition, uv-offset // sharpness -- crease sharpness for single-crease patches // // These are stored in OsdPatchParamBuffer indexed by the value returned // from OsdGetPatchIndex() which is a function of the current PrimitiveID // along with an optional client provided offset. // uniform isamplerBuffer OsdPatchParamBuffer; int OsdGetPatchIndex(int primitiveId) { return (primitiveId + OsdPrimitiveIdBase()); } ivec3 OsdGetPatchParam(int patchIndex) { return texelFetch(OsdPatchParamBuffer, patchIndex).xyz; } int OsdGetPatchFaceId(ivec3 patchParam) { return (patchParam.x & 0xfffffff); } int OsdGetPatchFaceLevel(ivec3 patchParam) { return (1 << ((patchParam.y & 0xf) - ((patchParam.y >> 4) & 1))); } int OsdGetPatchRefinementLevel(ivec3 patchParam) { return (patchParam.y & 0xf); } int OsdGetPatchBoundaryMask(ivec3 patchParam) { return ((patchParam.y >> 8) & 0xf); } int OsdGetPatchTransitionMask(ivec3 patchParam) { return ((patchParam.x >> 28) & 0xf); } ivec2 OsdGetPatchFaceUV(ivec3 patchParam) { int u = (patchParam.y >> 22) & 0x3ff; int v = (patchParam.y >> 12) & 0x3ff; return ivec2(u,v); } float OsdGetPatchSharpness(ivec3 patchParam) { return intBitsToFloat(patchParam.z); } float OsdGetPatchSingleCreaseSegmentParameter(ivec3 patchParam, vec2 uv) { int boundaryMask = OsdGetPatchBoundaryMask(patchParam); float s = 0; if ((boundaryMask & 1) != 0) { s = 1 - uv.y; } else if ((boundaryMask & 2) != 0) { s = uv.x; } else if ((boundaryMask & 4) != 0) { s = uv.y; } else if ((boundaryMask & 8) != 0) { s = 1 - uv.x; } return s; } ivec4 OsdGetPatchCoord(ivec3 patchParam) { int faceId = OsdGetPatchFaceId(patchParam); int faceLevel = OsdGetPatchFaceLevel(patchParam); ivec2 faceUV = OsdGetPatchFaceUV(patchParam); return ivec4(faceUV.x, faceUV.y, faceLevel, faceId); } vec4 OsdInterpolatePatchCoord(vec2 localUV, ivec3 patchParam) { ivec4 perPrimPatchCoord = OsdGetPatchCoord(patchParam); int faceId = perPrimPatchCoord.w; int faceLevel = perPrimPatchCoord.z; vec2 faceUV = vec2(perPrimPatchCoord.x, perPrimPatchCoord.y); vec2 uv = localUV/faceLevel + faceUV/faceLevel; // add 0.5 to integer values for more robust interpolation return vec4(uv.x, uv.y, faceLevel+0.5f, faceId+0.5f); } // ---------------------------------------------------------------------------- // face varyings // ---------------------------------------------------------------------------- uniform samplerBuffer OsdFVarDataBuffer; #ifndef OSD_FVAR_WIDTH #define OSD_FVAR_WIDTH 0 #endif // ------ extract from quads (catmark, bilinear) --------- // XXX: only linear interpolation is supported #define OSD_COMPUTE_FACE_VARYING_1(result, fvarOffset, tessCoord) \ { \ float v[4]; \ int primOffset = OsdGetPatchIndex(gl_PrimitiveID) * 4; \ for (int i = 0; i < 4; ++i) { \ int index = (primOffset+i)*OSD_FVAR_WIDTH + fvarOffset; \ v[i] = texelFetch(OsdFVarDataBuffer, index).s \ } \ result = mix(mix(v[0], v[1], tessCoord.s), \ mix(v[3], v[2], tessCoord.s), \ tessCoord.t); \ } #define OSD_COMPUTE_FACE_VARYING_2(result, fvarOffset, tessCoord) \ { \ vec2 v[4]; \ int primOffset = OsdGetPatchIndex(gl_PrimitiveID) * 4; \ for (int i = 0; i < 4; ++i) { \ int index = (primOffset+i)*OSD_FVAR_WIDTH + fvarOffset; \ v[i] = vec2(texelFetch(OsdFVarDataBuffer, index).s, \ texelFetch(OsdFVarDataBuffer, index + 1).s); \ } \ result = mix(mix(v[0], v[1], tessCoord.s), \ mix(v[3], v[2], tessCoord.s), \ tessCoord.t); \ } #define OSD_COMPUTE_FACE_VARYING_3(result, fvarOffset, tessCoord) \ { \ vec3 v[4]; \ int primOffset = OsdGetPatchIndex(gl_PrimitiveID) * 4; \ for (int i = 0; i < 4; ++i) { \ int index = (primOffset+i)*OSD_FVAR_WIDTH + fvarOffset; \ v[i] = vec3(texelFetch(OsdFVarDataBuffer, index).s, \ texelFetch(OsdFVarDataBuffer, index + 1).s, \ texelFetch(OsdFVarDataBuffer, index + 2).s); \ } \ result = mix(mix(v[0], v[1], tessCoord.s), \ mix(v[3], v[2], tessCoord.s), \ tessCoord.t); \ } #define OSD_COMPUTE_FACE_VARYING_4(result, fvarOffset, tessCoord) \ { \ vec4 v[4]; \ int primOffset = OsdGetPatchIndex(gl_PrimitiveID) * 4; \ for (int i = 0; i < 4; ++i) { \ int index = (primOffset+i)*OSD_FVAR_WIDTH + fvarOffset; \ v[i] = vec4(texelFetch(OsdFVarDataBuffer, index).s, \ texelFetch(OsdFVarDataBuffer, index + 1).s, \ texelFetch(OsdFVarDataBuffer, index + 2).s, \ texelFetch(OsdFVarDataBuffer, index + 3).s); \ } \ result = mix(mix(v[0], v[1], tessCoord.s), \ mix(v[3], v[2], tessCoord.s), \ tessCoord.t); \ } // ------ extract from triangles (loop) --------- // XXX: no interpolation supproted #define OSD_COMPUTE_FACE_VARYING_TRI_1(result, fvarOffset, triVert) \ { \ int primOffset = OsdGetPatchIndex(gl_PrimitiveID) * 3; \ int index = (primOffset+triVert)*OSD_FVAR_WIDTH + fvarOffset; \ result = texelFetch(OsdFVarDataBuffer, index).s; \ } #define OSD_COMPUTE_FACE_VARYING_TRI_2(result, fvarOffset, triVert) \ { \ int primOffset = OsdGetPatchIndex(gl_PrimitiveID) * 3; \ int index = (primOffset+triVert)*OSD_FVAR_WIDTH + fvarOffset; \ result = vec2(texelFetch(OsdFVarDataBuffer, index).s, \ texelFetch(OsdFVarDataBuffer, index + 1).s); \ } #define OSD_COMPUTE_FACE_VARYING_TRI_3(result, fvarOffset, triVert) \ { \ int primOffset = OsdGetPatchIndex(gl_PrimitiveID) * 3; \ int index = (primOffset+triVert)*OSD_FVAR_WIDTH + fvarOffset; \ result = vec3(texelFetch(OsdFVarDataBuffer, index).s, \ texelFetch(OsdFVarDataBuffer, index + 1).s, \ texelFetch(OsdFVarDataBuffer, index + 2).s); \ } #define OSD_COMPUTE_FACE_VARYING_TRI_4(result, fvarOffset, triVert) \ { \ int primOffset = OsdGetPatchIndex(gl_PrimitiveID) * 3; \ int index = (primOffset+triVert)*OSD_FVAR_WIDTH + fvarOffset; \ result = vec4(texelFetch(OsdFVarDataBuffer, index).s, \ texelFetch(OsdFVarDataBuffer, index + 1).s, \ texelFetch(OsdFVarDataBuffer, index + 2).s, \ texelFetch(OsdFVarDataBuffer, index + 3).s); \ } // ---------------------------------------------------------------------------- // patch culling // ---------------------------------------------------------------------------- #ifdef OSD_ENABLE_PATCH_CULL #define OSD_PATCH_CULL_COMPUTE_CLIPFLAGS(P) \ vec4 clipPos = OsdModelViewProjectionMatrix() * P; \ bvec3 clip0 = lessThan(clipPos.xyz, vec3(clipPos.w)); \ bvec3 clip1 = greaterThan(clipPos.xyz, -vec3(clipPos.w)); \ outpt.v.clipFlag = ivec3(clip0) + 2*ivec3(clip1); \ #define OSD_PATCH_CULL(N) \ ivec3 clipFlag = ivec3(0); \ for(int i = 0; i < N; ++i) { \ clipFlag |= inpt[i].v.clipFlag; \ } \ if (clipFlag != ivec3(3) ) { \ gl_TessLevelInner[0] = 0; \ gl_TessLevelInner[1] = 0; \ gl_TessLevelOuter[0] = 0; \ gl_TessLevelOuter[1] = 0; \ gl_TessLevelOuter[2] = 0; \ gl_TessLevelOuter[3] = 0; \ return; \ } #else #define OSD_PATCH_CULL_COMPUTE_CLIPFLAGS(P) #define OSD_PATCH_CULL(N) #endif // ---------------------------------------------------------------------------- void OsdUnivar4x4(in float u, out float B[4], out float D[4]) { float t = u; float s = 1.0f - u; float A0 = s * s; float A1 = 2 * s * t; float A2 = t * t; B[0] = s * A0; B[1] = t * A0 + s * A1; B[2] = t * A1 + s * A2; B[3] = t * A2; D[0] = - A0; D[1] = A0 - A1; D[2] = A1 - A2; D[3] = A2; } void OsdUnivar4x4(in float u, out float B[4], out float D[4], out float C[4]) { float t = u; float s = 1.0f - u; float A0 = s * s; float A1 = 2 * s * t; float A2 = t * t; B[0] = s * A0; B[1] = t * A0 + s * A1; B[2] = t * A1 + s * A2; B[3] = t * A2; D[0] = - A0; D[1] = A0 - A1; D[2] = A1 - A2; D[3] = A2; A0 = - s; A1 = s - t; A2 = t; C[0] = - A0; C[1] = A0 - A1; C[2] = A1 - A2; C[3] = A2; } // ---------------------------------------------------------------------------- struct OsdPerPatchVertexBezier { ivec3 patchParam; vec3 P; #if defined OSD_PATCH_ENABLE_SINGLE_CREASE vec3 P1; vec3 P2; vec2 vSegments; #endif }; vec3 OsdEvalBezier(vec3 cp[16], vec2 uv) { vec3 BUCP[4] = vec3[4](vec3(0), vec3(0), vec3(0), vec3(0)); float B[4], D[4]; OsdUnivar4x4(uv.x, B, D); for (int i=0; i<4; ++i) { for (int j=0; j<4; ++j) { vec3 A = cp[4*i + j]; BUCP[i] += A * B[j]; } } vec3 P = vec3(0); OsdUnivar4x4(uv.y, B, D); for (int k=0; k<4; ++k) { P += B[k] * BUCP[k]; } return P; } // When OSD_PATCH_ENABLE_SINGLE_CREASE is defined, // this function evaluates single-crease patch, which is segmented into // 3 parts in the v-direction. // // v=0 vSegment.x vSegment.y v=1 // +------------------+-------------------+------------------+ // | cp 0 | cp 1 | cp 2 | // | (infinite sharp) | (floor sharpness) | (ceil sharpness) | // +------------------+-------------------+------------------+ // vec3 OsdEvalBezier(OsdPerPatchVertexBezier cp[16], ivec3 patchParam, vec2 uv) { vec3 BUCP[4] = vec3[4](vec3(0), vec3(0), vec3(0), vec3(0)); float B[4], D[4]; float s = OsdGetPatchSingleCreaseSegmentParameter(patchParam, uv); OsdUnivar4x4(uv.x, B, D); #if defined OSD_PATCH_ENABLE_SINGLE_CREASE vec2 vSegments = cp[0].vSegments; if (s <= vSegments.x) { for (int i=0; i<4; ++i) { for (int j=0; j<4; ++j) { vec3 A = cp[4*i + j].P; BUCP[i] += A * B[j]; } } } else if (s <= vSegments.y) { for (int i=0; i<4; ++i) { for (int j=0; j<4; ++j) { vec3 A = cp[4*i + j].P1; BUCP[i] += A * B[j]; } } } else { for (int i=0; i<4; ++i) { for (int j=0; j<4; ++j) { vec3 A = cp[4*i + j].P2; BUCP[i] += A * B[j]; } } } #else for (int i=0; i<4; ++i) { for (int j=0; j<4; ++j) { vec3 A = cp[4*i + j].P; BUCP[i] += A * B[j]; } } #endif vec3 P = vec3(0); OsdUnivar4x4(uv.y, B, D); for (int k=0; k<4; ++k) { P += B[k] * BUCP[k]; } return P; } // ---------------------------------------------------------------------------- // Boundary Interpolation // ---------------------------------------------------------------------------- void OsdComputeBSplineBoundaryPoints(inout vec3 cpt[16], ivec3 patchParam) { int boundaryMask = OsdGetPatchBoundaryMask(patchParam); if ((boundaryMask & 1) != 0) { cpt[0] = 2*cpt[4] - cpt[8]; cpt[1] = 2*cpt[5] - cpt[9]; cpt[2] = 2*cpt[6] - cpt[10]; cpt[3] = 2*cpt[7] - cpt[11]; } if ((boundaryMask & 2) != 0) { cpt[3] = 2*cpt[2] - cpt[1]; cpt[7] = 2*cpt[6] - cpt[5]; cpt[11] = 2*cpt[10] - cpt[9]; cpt[15] = 2*cpt[14] - cpt[13]; } if ((boundaryMask & 4) != 0) { cpt[12] = 2*cpt[8] - cpt[4]; cpt[13] = 2*cpt[9] - cpt[5]; cpt[14] = 2*cpt[10] - cpt[6]; cpt[15] = 2*cpt[11] - cpt[7]; } if ((boundaryMask & 8) != 0) { cpt[0] = 2*cpt[1] - cpt[2]; cpt[4] = 2*cpt[5] - cpt[6]; cpt[8] = 2*cpt[9] - cpt[10]; cpt[12] = 2*cpt[13] - cpt[14]; } } // ---------------------------------------------------------------------------- // Tessellation // ---------------------------------------------------------------------------- // // Organization of B-spline and Bezier control points. // // Each patch is defined by 16 control points (labeled 0-15). // // The patch will be evaluated across the domain from (0,0) at // the lower-left to (1,1) at the upper-right. When computing // adaptive tessellation metrics, we consider refined vertex-vertex // and edge-vertex points along the transition edges of the patch // (labeled vv* and ev* respectively). // // The two segments of each transition edge are labeled Lo and Hi, // with the Lo segment occuring before the Hi segment along the // transition edge's domain parameterization. These Lo and Hi segment // tessellation levels determine how domain evaluation coordinates // are remapped along transition edges. The Hi segment value will // be zero for a non-transition edge. // // (0,1) (1,1) // // vv3 ev23 vv2 // | Lo3 | Hi3 | // --O-----------O-----+-----O-----------O-- // | 12 | 13 14 | 15 | // | | | | // | | | | // Hi0 | | | | Hi2 // | | | | // O-----------O-----------O-----------O // | 8 | 9 10 | 11 | // | | | | // ev03 --+ | | +-- ev12 // | | | | // | 4 | 5 6 | 7 | // O-----------O-----------O-----------O // | | | | // Lo0 | | | | Lo2 // | | | | // | | | | // | 0 | 1 2 | 3 | // --O-----------O-----+-----O-----------O-- // | Lo1 | Hi1 | // vv0 ev01 vv1 // // (0,0) (1,0) // #define OSD_MAX_TESS_LEVEL gl_MaxTessGenLevel float OsdComputePostProjectionSphereExtent(vec3 center, float diameter) { vec4 p = OsdProjectionMatrix() * vec4(center, 1.0); return abs(diameter * OsdProjectionMatrix()[1][1] / p.w); } float OsdComputeTessLevel(vec3 p0, vec3 p1) { // Adaptive factor can be any computation that depends only on arg values. // Project the diameter of the edge's bounding sphere instead of using the // length of the projected edge itself to avoid problems near silhouettes. p0 = (OsdModelViewMatrix() * vec4(p0, 1.0)).xyz; p1 = (OsdModelViewMatrix() * vec4(p1, 1.0)).xyz; vec3 center = (p0 + p1) / 2.0; float diameter = distance(p0, p1); float projLength = OsdComputePostProjectionSphereExtent(center, diameter); float tessLevel = max(1.0, OsdTessLevel() * projLength); // We restrict adaptive tessellation levels to half of the device // supported maximum because transition edges are split into two // halfs and the sum of the two corresponding levels must not exceed // the device maximum. We impose this limit even for non-transition // edges because a non-transition edge must be able to match up with // one half of the transition edge of an adjacent transition patch. return min(tessLevel, OSD_MAX_TESS_LEVEL / 2); } void OsdGetTessLevelsUniform(ivec3 patchParam, out vec4 tessOuterLo, out vec4 tessOuterHi) { // Uniform factors are simple powers of two for each level. // The maximum here can be increased if we know the maximum // refinement level of the mesh: // min(OSD_MAX_TESS_LEVEL, pow(2, MaximumRefinementLevel-1) int refinementLevel = OsdGetPatchRefinementLevel(patchParam); float tessLevel = min(OsdTessLevel(), OSD_MAX_TESS_LEVEL) / pow(2, refinementLevel-1); // tessLevels of transition edge should be clamped to 2. int transitionMask = OsdGetPatchTransitionMask(patchParam); vec4 tessLevelMin = vec4(1) + vec4(((transitionMask & 8) >> 3), ((transitionMask & 1) >> 0), ((transitionMask & 2) >> 1), ((transitionMask & 4) >> 2)); tessOuterLo = max(vec4(tessLevel), tessLevelMin); tessOuterHi = vec4(0); } void OsdGetTessLevelsRefinedPoints(vec3 cp[16], ivec3 patchParam, out vec4 tessOuterLo, out vec4 tessOuterHi) { // Each edge of a transition patch is adjacent to one or two patches // at the next refined level of subdivision. We compute the corresponding // vertex-vertex and edge-vertex refined points along the edges of the // patch using Catmull-Clark subdivision stencil weights. // For simplicity, we let the optimizer discard unused computation. vec3 vv0 = (cp[0] + cp[2] + cp[8] + cp[10]) * 0.015625 + (cp[1] + cp[4] + cp[6] + cp[9]) * 0.09375 + cp[5] * 0.5625; vec3 ev01 = (cp[1] + cp[2] + cp[9] + cp[10]) * 0.0625 + (cp[5] + cp[6]) * 0.375; vec3 vv1 = (cp[1] + cp[3] + cp[9] + cp[11]) * 0.015625 + (cp[2] + cp[5] + cp[7] + cp[10]) * 0.09375 + cp[6] * 0.5625; vec3 ev12 = (cp[5] + cp[7] + cp[9] + cp[11]) * 0.0625 + (cp[6] + cp[10]) * 0.375; vec3 vv2 = (cp[5] + cp[7] + cp[13] + cp[15]) * 0.015625 + (cp[6] + cp[9] + cp[11] + cp[14]) * 0.09375 + cp[10] * 0.5625; vec3 ev23 = (cp[5] + cp[6] + cp[13] + cp[14]) * 0.0625 + (cp[9] + cp[10]) * 0.375; vec3 vv3 = (cp[4] + cp[6] + cp[12] + cp[14]) * 0.015625 + (cp[5] + cp[8] + cp[10] + cp[13]) * 0.09375 + cp[9] * 0.5625; vec3 ev03 = (cp[4] + cp[6] + cp[8] + cp[10]) * 0.0625 + (cp[5] + cp[9]) * 0.375; tessOuterLo = vec4(0); tessOuterHi = vec4(0); int transitionMask = OsdGetPatchTransitionMask(patchParam); if ((transitionMask & 8) != 0) { tessOuterLo[0] = OsdComputeTessLevel(vv0, ev03); tessOuterHi[0] = OsdComputeTessLevel(vv3, ev03); } else { tessOuterLo[0] = OsdComputeTessLevel(cp[5], cp[9]); } if ((transitionMask & 1) != 0) { tessOuterLo[1] = OsdComputeTessLevel(vv0, ev01); tessOuterHi[1] = OsdComputeTessLevel(vv1, ev01); } else { tessOuterLo[1] = OsdComputeTessLevel(cp[5], cp[6]); } if ((transitionMask & 2) != 0) { tessOuterLo[2] = OsdComputeTessLevel(vv1, ev12); tessOuterHi[2] = OsdComputeTessLevel(vv2, ev12); } else { tessOuterLo[2] = OsdComputeTessLevel(cp[6], cp[10]); } if ((transitionMask & 4) != 0) { tessOuterLo[3] = OsdComputeTessLevel(vv3, ev23); tessOuterHi[3] = OsdComputeTessLevel(vv2, ev23); } else { tessOuterLo[3] = OsdComputeTessLevel(cp[9], cp[10]); } } void OsdGetTessLevelsLimitPoints(OsdPerPatchVertexBezier cpBezier[16], ivec3 patchParam, out vec4 tessOuterLo, out vec4 tessOuterHi) { // Each edge of a transition patch is adjacent to one or two patches // at the next refined level of subdivision. When the patch control // points have been converted to the Bezier basis, the control points // at the four corners are on the limit surface (since a Bezier patch // interpolates its corner control points). We can compute an adaptive // tessellation level for transition edges on the limit surface by // evaluating a limit position at the mid point of each transition edge. tessOuterLo = vec4(0); tessOuterHi = vec4(0); int transitionMask = OsdGetPatchTransitionMask(patchParam); #if defined OSD_PATCH_ENABLE_SINGLE_CREASE // PERFOMANCE: we just need to pick the correct corner points from P, P1, P2 vec3 p0 = OsdEvalBezier(cpBezier, patchParam, vec2(0.0, 0.0)); vec3 p3 = OsdEvalBezier(cpBezier, patchParam, vec2(1.0, 0.0)); vec3 p12 = OsdEvalBezier(cpBezier, patchParam, vec2(0.0, 1.0)); vec3 p15 = OsdEvalBezier(cpBezier, patchParam, vec2(1.0, 1.0)); if ((transitionMask & 8) != 0) { vec3 ev03 = OsdEvalBezier(cpBezier, patchParam, vec2(0.0, 0.5)); tessOuterLo[0] = OsdComputeTessLevel(p0, ev03); tessOuterHi[0] = OsdComputeTessLevel(p12, ev03); } else { tessOuterLo[0] = OsdComputeTessLevel(p0, p12); } if ((transitionMask & 1) != 0) { vec3 ev01 = OsdEvalBezier(cpBezier, patchParam, vec2(0.5, 0.0)); tessOuterLo[1] = OsdComputeTessLevel(p0, ev01); tessOuterHi[1] = OsdComputeTessLevel(p3, ev01); } else { tessOuterLo[1] = OsdComputeTessLevel(p0, p3); } if ((transitionMask & 2) != 0) { vec3 ev12 = OsdEvalBezier(cpBezier, patchParam, vec2(1.0, 0.5)); tessOuterLo[2] = OsdComputeTessLevel(p3, ev12); tessOuterHi[2] = OsdComputeTessLevel(p15, ev12); } else { tessOuterLo[2] = OsdComputeTessLevel(p3, p15); } if ((transitionMask & 4) != 0) { vec3 ev23 = OsdEvalBezier(cpBezier, patchParam, vec2(0.5, 1.0)); tessOuterLo[3] = OsdComputeTessLevel(p12, ev23); tessOuterHi[3] = OsdComputeTessLevel(p15, ev23); } else { tessOuterLo[3] = OsdComputeTessLevel(p12, p15); } #else if ((transitionMask & 8) != 0) { vec3 ev03 = OsdEvalBezier(cpBezier, patchParam, vec2(0.0, 0.5)); tessOuterLo[0] = OsdComputeTessLevel(cpBezier[0].P, ev03); tessOuterHi[0] = OsdComputeTessLevel(cpBezier[12].P, ev03); } else { tessOuterLo[0] = OsdComputeTessLevel(cpBezier[0].P, cpBezier[12].P); } if ((transitionMask & 1) != 0) { vec3 ev01 = OsdEvalBezier(cpBezier, patchParam, vec2(0.5, 0.0)); tessOuterLo[1] = OsdComputeTessLevel(cpBezier[0].P, ev01); tessOuterHi[1] = OsdComputeTessLevel(cpBezier[3].P, ev01); } else { tessOuterLo[1] = OsdComputeTessLevel(cpBezier[0].P, cpBezier[3].P); } if ((transitionMask & 2) != 0) { vec3 ev12 = OsdEvalBezier(cpBezier, patchParam, vec2(1.0, 0.5)); tessOuterLo[2] = OsdComputeTessLevel(cpBezier[3].P, ev12); tessOuterHi[2] = OsdComputeTessLevel(cpBezier[15].P, ev12); } else { tessOuterLo[2] = OsdComputeTessLevel(cpBezier[3].P, cpBezier[15].P); } if ((transitionMask & 4) != 0) { vec3 ev23 = OsdEvalBezier(cpBezier, patchParam, vec2(0.5, 1.0)); tessOuterLo[3] = OsdComputeTessLevel(cpBezier[12].P, ev23); tessOuterHi[3] = OsdComputeTessLevel(cpBezier[15].P, ev23); } else { tessOuterLo[3] = OsdComputeTessLevel(cpBezier[12].P, cpBezier[15].P); } #endif } // Round up to the nearest even integer float OsdRoundUpEven(float x) { return 2*ceil(x/2); } // Round up to the nearest odd integer float OsdRoundUpOdd(float x) { return 2*ceil((x+1)/2)-1; } // Compute outer and inner tessellation levels taking into account the // current tessellation spacing mode. void OsdComputeTessLevels(inout vec4 tessOuterLo, inout vec4 tessOuterHi, out vec4 tessLevelOuter, out vec2 tessLevelInner) { // Outer levels are the sum of the Lo and Hi segments where the Hi // segments will have lengths of zero for non-transition edges. #if defined OSD_FRACTIONAL_EVEN_SPACING // Combine fractional outer transition edge levels before rounding. vec4 combinedOuter = tessOuterLo + tessOuterHi; // Round the segments of transition edges separately. We will recover the // fractional parameterization of transition edges after tessellation. tessLevelOuter = combinedOuter; if (tessOuterHi[0] > 0) { tessLevelOuter[0] = OsdRoundUpEven(tessOuterLo[0]) + OsdRoundUpEven(tessOuterHi[0]); } if (tessOuterHi[1] > 0) { tessLevelOuter[1] = OsdRoundUpEven(tessOuterLo[1]) + OsdRoundUpEven(tessOuterHi[1]); } if (tessOuterHi[2] > 0) { tessLevelOuter[2] = OsdRoundUpEven(tessOuterLo[2]) + OsdRoundUpEven(tessOuterHi[2]); } if (tessOuterHi[3] > 0) { tessLevelOuter[3] = OsdRoundUpEven(tessOuterLo[3]) + OsdRoundUpEven(tessOuterHi[3]); } #elif defined OSD_FRACTIONAL_ODD_SPACING // Combine fractional outer transition edge levels before rounding. vec4 combinedOuter = tessOuterLo + tessOuterHi; // Round the segments of transition edges separately. We will recover the // fractional parameterization of transition edges after tessellation. // // The sum of the two outer odd segment lengths will be an even number // which the tessellator will increase by +1 so that there will be a // total odd number of segments. We clamp the combinedOuter tess levels // (used to compute the inner tess levels) so that the outer transition // edges will be sampled without degenerate triangles. tessLevelOuter = combinedOuter; if (tessOuterHi[0] > 0) { tessLevelOuter[0] = OsdRoundUpOdd(tessOuterLo[0]) + OsdRoundUpOdd(tessOuterHi[0]); combinedOuter = max(vec4(3), combinedOuter); } if (tessOuterHi[1] > 0) { tessLevelOuter[1] = OsdRoundUpOdd(tessOuterLo[1]) + OsdRoundUpOdd(tessOuterHi[1]); combinedOuter = max(vec4(3), combinedOuter); } if (tessOuterHi[2] > 0) { tessLevelOuter[2] = OsdRoundUpOdd(tessOuterLo[2]) + OsdRoundUpOdd(tessOuterHi[2]); combinedOuter = max(vec4(3), combinedOuter); } if (tessOuterHi[3] > 0) { tessLevelOuter[3] = OsdRoundUpOdd(tessOuterLo[3]) + OsdRoundUpOdd(tessOuterHi[3]); combinedOuter = max(vec4(3), combinedOuter); } #else // Round equally spaced transition edge levels before combining. tessOuterLo = round(tessOuterLo); tessOuterHi = round(tessOuterHi); vec4 combinedOuter = tessOuterLo + tessOuterHi; tessLevelOuter = combinedOuter; #endif // Inner levels are the averages the corresponding outer levels. tessLevelInner[0] = (combinedOuter[1] + combinedOuter[3]) * 0.5; tessLevelInner[1] = (combinedOuter[0] + combinedOuter[2]) * 0.5; } void OsdGetTessLevelsUniform(ivec3 patchParam, out vec4 tessLevelOuter, out vec2 tessLevelInner, out vec4 tessOuterLo, out vec4 tessOuterHi) { // uniform tessellation OsdGetTessLevelsUniform(patchParam, tessOuterLo, tessOuterHi); OsdComputeTessLevels(tessOuterLo, tessOuterHi, tessLevelOuter, tessLevelInner); } void OsdGetTessLevelsAdaptiveRefinedPoints(vec3 cpRefined[16], ivec3 patchParam, out vec4 tessLevelOuter, out vec2 tessLevelInner, out vec4 tessOuterLo, out vec4 tessOuterHi) { OsdGetTessLevelsRefinedPoints(cpRefined, patchParam, tessOuterLo, tessOuterHi); OsdComputeTessLevels(tessOuterLo, tessOuterHi, tessLevelOuter, tessLevelInner); } void OsdGetTessLevelsAdaptiveLimitPoints(OsdPerPatchVertexBezier cpBezier[16], ivec3 patchParam, out vec4 tessLevelOuter, out vec2 tessLevelInner, out vec4 tessOuterLo, out vec4 tessOuterHi) { OsdGetTessLevelsLimitPoints(cpBezier, patchParam, tessOuterLo, tessOuterHi); OsdComputeTessLevels(tessOuterLo, tessOuterHi, tessLevelOuter, tessLevelInner); } void OsdGetTessLevels(vec3 cp0, vec3 cp1, vec3 cp2, vec3 cp3, ivec3 patchParam, out vec4 tessLevelOuter, out vec2 tessLevelInner) { vec4 tessOuterLo = vec4(0); vec4 tessOuterHi = vec4(0); #if defined OSD_ENABLE_SCREENSPACE_TESSELLATION tessOuterLo[0] = OsdComputeTessLevel(cp0, cp1); tessOuterLo[1] = OsdComputeTessLevel(cp0, cp3); tessOuterLo[2] = OsdComputeTessLevel(cp2, cp3); tessOuterLo[3] = OsdComputeTessLevel(cp1, cp2); tessOuterHi = vec4(0); #else OsdGetTessLevelsUniform(patchParam, tessOuterLo, tessOuterHi); #endif OsdComputeTessLevels(tessOuterLo, tessOuterHi, tessLevelOuter, tessLevelInner); } #if defined OSD_FRACTIONAL_EVEN_SPACING || defined OSD_FRACTIONAL_ODD_SPACING float OsdGetTessFractionalSplit(float t, float level, float levelUp) { // Fractional tessellation of an edge will produce n segments where n // is the tessellation level of the edge (level) rounded up to the // nearest even or odd integer (levelUp). There will be n-2 segments of // equal length (dx1) and two additional segments of equal length (dx0) // that are typically shorter than the other segments. The two additional // segments should be placed symmetrically on opposite sides of the // edge (offset). #if defined OSD_FRACTIONAL_EVEN_SPACING if (level <= 2) return t; float base = pow(2.0,floor(log2(levelUp))); float offset = 1.0/(int(2*base-levelUp)/2 & int(base/2-1)); #elif defined OSD_FRACTIONAL_ODD_SPACING if (level <= 1) return t; float base = pow(2.0,floor(log2(levelUp))); float offset = 1.0/(((int(2*base-levelUp)/2+1) & int(base/2-1))+1); #endif float dx0 = (1.0 - (levelUp-level)/2) / levelUp; float dx1 = (1.0 - 2.0*dx0) / (levelUp - 2.0*ceil(dx0)); if (t < 0.5) { float x = levelUp/2 - round(t*levelUp); return 0.5 - (x*dx1 + int(x*offset > 1) * (dx0 - dx1)); } else if (t > 0.5) { float x = round(t*levelUp) - levelUp/2; return 0.5 + (x*dx1 + int(x*offset > 1) * (dx0 - dx1)); } else { return t; } } #endif float OsdGetTessTransitionSplit(float t, float lo, float hi) { #if defined OSD_FRACTIONAL_EVEN_SPACING float loRoundUp = OsdRoundUpEven(lo); float hiRoundUp = OsdRoundUpEven(hi); // Convert the parametric t into a segment index along the combined edge. float ti = round(t * (loRoundUp + hiRoundUp)); if (ti <= loRoundUp) { float t0 = ti / loRoundUp; return OsdGetTessFractionalSplit(t0, lo, loRoundUp) * 0.5; } else { float t1 = (ti - loRoundUp) / hiRoundUp; return OsdGetTessFractionalSplit(t1, hi, hiRoundUp) * 0.5 + 0.5; } #elif defined OSD_FRACTIONAL_ODD_SPACING float loRoundUp = OsdRoundUpOdd(lo); float hiRoundUp = OsdRoundUpOdd(hi); // Convert the parametric t into a segment index along the combined edge. // The +1 below is to account for the extra segment produced by the // tessellator since the sum of two odd tess levels will be rounded // up by one to the next odd integer tess level. float ti = round(t * (loRoundUp + hiRoundUp + 1)); if (ti <= loRoundUp) { float t0 = ti / loRoundUp; return OsdGetTessFractionalSplit(t0, lo, loRoundUp) * 0.5; } else if (ti > (loRoundUp+1)) { float t1 = (ti - (loRoundUp+1)) / hiRoundUp; return OsdGetTessFractionalSplit(t1, hi, hiRoundUp) * 0.5 + 0.5; } else { return 0.5; } #else // Convert the parametric t into a segment index along the combined edge. float ti = round(t * (lo + hi)); if (ti <= lo) { return (ti / lo) * 0.5; } else { return ((ti - lo) / hi) * 0.5 + 0.5; } #endif } vec2 OsdGetTessParameterization(vec2 uv, vec4 tessOuterLo, vec4 tessOuterHi) { vec2 UV = uv; if (UV.x == 0 && tessOuterHi[0] > 0) { UV.y = OsdGetTessTransitionSplit(UV.y, tessOuterLo[0], tessOuterHi[0]); } else if (UV.y == 0 && tessOuterHi[1] > 0) { UV.x = OsdGetTessTransitionSplit(UV.x, tessOuterLo[1], tessOuterHi[1]); } else if (UV.x == 1 && tessOuterHi[2] > 0) { UV.y = OsdGetTessTransitionSplit(UV.y, tessOuterLo[2], tessOuterHi[2]); } else if (UV.y == 1 && tessOuterHi[3] > 0) { UV.x = OsdGetTessTransitionSplit(UV.x, tessOuterLo[3], tessOuterHi[3]); } return UV; } // ---------------------------------------------------------------------------- // BSpline // ---------------------------------------------------------------------------- // compute single-crease patch matrix mat4 OsdComputeMs(float sharpness) { float s = pow(2.0f, sharpness); float s2 = s*s; float s3 = s2*s; mat4 m = mat4( 0, s + 1 + 3*s2 - s3, 7*s - 2 - 6*s2 + 2*s3, (1-s)*(s-1)*(s-1), 0, (1+s)*(1+s), 6*s - 2 - 2*s2, (s-1)*(s-1), 0, 1+s, 6*s - 2, 1-s, 0, 1, 6*s - 2, 1); m /= (s*6.0); m[0][0] = 1.0/6.0; return m; } // flip matrix orientation mat4 OsdFlipMatrix(mat4 m) { return mat4(m[3][3], m[3][2], m[3][1], m[3][0], m[2][3], m[2][2], m[2][1], m[2][0], m[1][3], m[1][2], m[1][1], m[1][0], m[0][3], m[0][2], m[0][1], m[0][0]); } // convert BSpline cv to Bezier cv void OsdComputePerPatchVertexBSpline(ivec3 patchParam, int ID, vec3 cv[16], out OsdPerPatchVertexBezier result) { // Regular BSpline to Bezier mat4 Q = mat4( 1.f/6.f, 4.f/6.f, 1.f/6.f, 0.f, 0.f, 4.f/6.f, 2.f/6.f, 0.f, 0.f, 2.f/6.f, 4.f/6.f, 0.f, 0.f, 1.f/6.f, 4.f/6.f, 1.f/6.f ); result.patchParam = patchParam; int i = ID%4; int j = ID/4; #if defined OSD_PATCH_ENABLE_SINGLE_CREASE // Infinitely Sharp (boundary) mat4 Mi = mat4( 1.f/6.f, 4.f/6.f, 1.f/6.f, 0.f, 0.f, 4.f/6.f, 2.f/6.f, 0.f, 0.f, 2.f/6.f, 4.f/6.f, 0.f, 0.f, 0.f, 1.f, 0.f ); mat4 Mj, Ms; float sharpness = OsdGetPatchSharpness(patchParam); if (sharpness > 0) { float Sf = floor(sharpness); float Sc = ceil(sharpness); float Sr = fract(sharpness); mat4 Mf = OsdComputeMs(Sf); mat4 Mc = OsdComputeMs(Sc); Mj = (1-Sr) * Mf + Sr * Mi; Ms = (1-Sr) * Mf + Sr * Mc; float s0 = 1 - pow(2, -floor(sharpness)); float s1 = 1 - pow(2, -ceil(sharpness)); result.vSegments = vec2(s0, s1); } else { Mj = Ms = Mi; result.vSegments = vec2(0); } result.P = vec3(0); // 0 to 1-2^(-Sf) result.P1 = vec3(0); // 1-2^(-Sf) to 1-2^(-Sc) result.P2 = vec3(0); // 1-2^(-Sc) to 1 mat4 MUi, MUj, MUs; mat4 MVi, MVj, MVs; MUi = MUj = MUs = Q; MVi = MVj = MVs = Q; int boundaryMask = OsdGetPatchBoundaryMask(patchParam); if ((boundaryMask & 1) != 0) { MVi = OsdFlipMatrix(Mi); MVj = OsdFlipMatrix(Mj); MVs = OsdFlipMatrix(Ms); } if ((boundaryMask & 2) != 0) { MUi = Mi; MUj = Mj; MUs = Ms; } if ((boundaryMask & 4) != 0) { MVi = Mi; MVj = Mj; MVs = Ms; } if ((boundaryMask & 8) != 0) { MUi = OsdFlipMatrix(Mi); MUj = OsdFlipMatrix(Mj); MUs = OsdFlipMatrix(Ms); } vec3 Hi[4], Hj[4], Hs[4]; for (int l=0; l<4; ++l) { Hi[l] = Hj[l] = Hs[l] = vec3(0); for (int k=0; k<4; ++k) { Hi[l] += MUi[i][k] * cv[l*4 + k]; Hj[l] += MUj[i][k] * cv[l*4 + k]; Hs[l] += MUs[i][k] * cv[l*4 + k]; } } for (int k=0; k<4; ++k) { result.P += MVi[j][k]*Hi[k]; result.P1 += MVj[j][k]*Hj[k]; result.P2 += MVs[j][k]*Hs[k]; } #else OsdComputeBSplineBoundaryPoints(cv, patchParam); vec3 H[4]; for (int l=0; l<4; ++l) { H[l] = vec3(0); for (int k=0; k<4; ++k) { H[l] += Q[i][k] * cv[l*4 + k]; } } { result.P = vec3(0); for (int k=0; k<4; ++k) { result.P += Q[j][k]*H[k]; } } #endif } void OsdEvalPatchBezier(ivec3 patchParam, vec2 UV, OsdPerPatchVertexBezier cv[16], out vec3 P, out vec3 dPu, out vec3 dPv, out vec3 N, out vec3 dNu, out vec3 dNv) { #ifdef OSD_COMPUTE_NORMAL_DERIVATIVES float B[4], D[4], C[4]; vec3 BUCP[4] = vec3[4](vec3(0), vec3(0), vec3(0), vec3(0)), DUCP[4] = vec3[4](vec3(0), vec3(0), vec3(0), vec3(0)), CUCP[4] = vec3[4](vec3(0), vec3(0), vec3(0), vec3(0)); OsdUnivar4x4(UV.x, B, D, C); #else float B[4], D[4]; vec3 BUCP[4] = vec3[4](vec3(0), vec3(0), vec3(0), vec3(0)), DUCP[4] = vec3[4](vec3(0), vec3(0), vec3(0), vec3(0)); OsdUnivar4x4(UV.x, B, D); #endif // ---------------------------------------------------------------- #if defined OSD_PATCH_ENABLE_SINGLE_CREASE vec2 vSegments = cv[0].vSegments; float s = OsdGetPatchSingleCreaseSegmentParameter(patchParam, UV); for (int i=0; i<4; ++i) { for (int j=0; j<4; ++j) { int k = 4*i + j; vec3 A = (s <= vSegments.x) ? cv[k].P : ((s <= vSegments.y) ? cv[k].P1 : cv[k].P2); BUCP[i] += A * B[j]; DUCP[i] += A * D[j]; #ifdef OSD_COMPUTE_NORMAL_DERIVATIVES CUCP[i] += A * C[j]; #endif } } #else // ---------------------------------------------------------------- for (int i=0; i<4; ++i) { for (int j=0; j<4; ++j) { vec3 A = cv[4*i + j].P; BUCP[i] += A * B[j]; DUCP[i] += A * D[j]; #ifdef OSD_COMPUTE_NORMAL_DERIVATIVES CUCP[i] += A * C[j]; #endif } } #endif // ---------------------------------------------------------------- P = vec3(0); dPu = vec3(0); dPv = vec3(0); #ifdef OSD_COMPUTE_NORMAL_DERIVATIVES // used for weingarten term OsdUnivar4x4(UV.y, B, D, C); vec3 dUU = vec3(0); vec3 dVV = vec3(0); vec3 dUV = vec3(0); for (int k=0; k<4; ++k) { P += B[k] * BUCP[k]; dPu += B[k] * DUCP[k]; dPv += D[k] * BUCP[k]; dUU += B[k] * CUCP[k]; dVV += C[k] * BUCP[k]; dUV += D[k] * DUCP[k]; } int level = OsdGetPatchFaceLevel(patchParam); dPu *= 3 * level; dPv *= 3 * level; dUU *= 6 * level; dVV *= 6 * level; dUV *= 9 * level; vec3 n = cross(dPu, dPv); N = normalize(n); float E = dot(dPu, dPu); float F = dot(dPu, dPv); float G = dot(dPv, dPv); float e = dot(N, dUU); float f = dot(N, dUV); float g = dot(N, dVV); dNu = (f*F-e*G)/(E*G-F*F) * dPu + (e*F-f*E)/(E*G-F*F) * dPv; dNv = (g*F-f*G)/(E*G-F*F) * dPu + (f*F-g*E)/(E*G-F*F) * dPv; dNu = dNu/length(n) - n * (dot(dNu,n)/pow(dot(n,n), 1.5)); dNv = dNv/length(n) - n * (dot(dNv,n)/pow(dot(n,n), 1.5)); #else OsdUnivar4x4(UV.y, B, D); for (int k=0; k<4; ++k) { P += B[k] * BUCP[k]; dPu += B[k] * DUCP[k]; dPv += D[k] * BUCP[k]; } int level = OsdGetPatchFaceLevel(patchParam); dPu *= 3 * level; dPv *= 3 * level; N = normalize(cross(dPu, dPv)); dNu = vec3(0); dNv = vec3(0); #endif } // ---------------------------------------------------------------------------- // Gregory Basis // ---------------------------------------------------------------------------- struct OsdPerPatchVertexGregoryBasis { ivec3 patchParam; vec3 P; }; void OsdComputePerPatchVertexGregoryBasis(ivec3 patchParam, int ID, vec3 cv, out OsdPerPatchVertexGregoryBasis result) { result.patchParam = patchParam; result.P = cv; } void OsdEvalPatchGregory(ivec3 patchParam, vec2 UV, vec3 cv[20], out vec3 P, out vec3 dPu, out vec3 dPv, out vec3 N, out vec3 dNu, out vec3 dNv) { float u = UV.x, v = UV.y; float U = 1-u, V = 1-v; //(0,1) (1,1) // P3 e3- e2+ P2 // 15------17-------11-------10 // | | | | // | | | | // | | f3- | f2+ | // | 19 13 | // e3+ 16-----18 14-----12 e2- // | f3+ f2- | // | | // | | // | f0- f1+ | // e0- 2------4 8------6 e1+ // | 3 f0+ 9 | // | | | f1- | // | | | | // | | | | // 0--------1--------7--------5 // P0 e0+ e1- P1 //(0,0) (1,0) float d11 = u+v; float d12 = U+v; float d21 = u+V; float d22 = U+V; vec3 q[16]; q[ 5] = (d11 == 0.0) ? cv[3] : (u*cv[3] + v*cv[4])/d11; q[ 6] = (d12 == 0.0) ? cv[8] : (U*cv[9] + v*cv[8])/d12; q[ 9] = (d21 == 0.0) ? cv[18] : (u*cv[19] + V*cv[18])/d21; q[10] = (d22 == 0.0) ? cv[13] : (U*cv[13] + V*cv[14])/d22; q[ 0] = cv[0]; q[ 1] = cv[1]; q[ 2] = cv[7]; q[ 3] = cv[5]; q[ 4] = cv[2]; q[ 7] = cv[6]; q[ 8] = cv[16]; q[11] = cv[12]; q[12] = cv[15]; q[13] = cv[17]; q[14] = cv[11]; q[15] = cv[10]; P = vec3(0); dPu = vec3(0); dPv = vec3(0); #ifdef OSD_COMPUTE_NORMAL_DERIVATIVES float B[4], D[4], C[4]; vec3 BUCP[4] = vec3[4](vec3(0), vec3(0), vec3(0), vec3(0)), DUCP[4] = vec3[4](vec3(0), vec3(0), vec3(0), vec3(0)), CUCP[4] = vec3[4](vec3(0), vec3(0), vec3(0), vec3(0)); vec3 dUU = vec3(0); vec3 dVV = vec3(0); vec3 dUV = vec3(0); OsdUnivar4x4(UV.x, B, D, C); for (int i=0; i<4; ++i) { for (int j=0; j<4; ++j) { vec3 A = q[4*i + j]; BUCP[i] += A * B[j]; DUCP[i] += A * D[j]; CUCP[i] += A * C[j]; } } OsdUnivar4x4(UV.y, B, D, C); for (int i=0; i<4; ++i) { P += B[i] * BUCP[i]; dPu += B[i] * DUCP[i]; dPv += D[i] * BUCP[i]; dUU += B[i] * CUCP[i]; dVV += C[i] * BUCP[i]; dUV += D[i] * DUCP[i]; } int level = OsdGetPatchFaceLevel(patchParam); dPu *= 3 * level; dPv *= 3 * level; dUU *= 6 * level; dVV *= 6 * level; dUV *= 9 * level; vec3 n = cross(dPu, dPv); N = normalize(n); float E = dot(dPu, dPu); float F = dot(dPu, dPv); float G = dot(dPv, dPv); float e = dot(N, dUU); float f = dot(N, dUV); float g = dot(N, dVV); dNu = (f*F-e*G)/(E*G-F*F) * dPu + (e*F-f*E)/(E*G-F*F) * dPv; dNv = (g*F-f*G)/(E*G-F*F) * dPu + (f*F-g*E)/(E*G-F*F) * dPv; dNu = dNu/length(n) - n * (dot(dNu,n)/pow(dot(n,n), 1.5)); dNv = dNv/length(n) - n * (dot(dNv,n)/pow(dot(n,n), 1.5)); #else float B[4], D[4]; vec3 BUCP[4] = vec3[4](vec3(0), vec3(0), vec3(0), vec3(0)), DUCP[4] = vec3[4](vec3(0), vec3(0), vec3(0), vec3(0)); OsdUnivar4x4(UV.x, B, D); for (int i=0; i<4; ++i) { for (int j=0; j<4; ++j) { vec3 A = q[4*i + j]; BUCP[i] += A * B[j]; DUCP[i] += A * D[j]; } } OsdUnivar4x4(UV.y, B, D); for (int i=0; i<4; ++i) { P += B[i] * BUCP[i]; dPu += B[i] * DUCP[i]; dPv += D[i] * BUCP[i]; } int level = OsdGetPatchFaceLevel(patchParam); dPu *= 3 * level; dPv *= 3 * level; N = normalize(cross(dPu, dPv)); dNu = vec3(0); dNv = vec3(0); #endif } // ---------------------------------------------------------------------------- // Legacy Gregory // ---------------------------------------------------------------------------- #if defined(OSD_PATCH_GREGORY) || defined(OSD_PATCH_GREGORY_BOUNDARY) // precomputed catmark coefficient table up to valence 29 uniform float OsdCatmarkCoefficient[30] = float[]( 0, 0, 0, 0.812816, 0.500000, 0.363644, 0.287514, 0.238688, 0.204544, 0.179229, 0.159657, 0.144042, 0.131276, 0.120632, 0.111614, 0.103872, 0.09715, 0.0912559, 0.0860444, 0.0814022, 0.0772401, 0.0734867, 0.0700842, 0.0669851, 0.0641504, 0.0615475, 0.0591488, 0.0569311, 0.0548745, 0.0529621 ); float OsdComputeCatmarkCoefficient(int valence) { #if OSD_MAX_VALENCE < 30 return OsdCatmarkCoefficient[valence]; #else if (valence < 30) { return OsdCatmarkCoefficient[valence]; } else { float t = 2.0f * float(M_PI) / float(valence); return 1.0f / (valence * (cos(t) + 5.0f + sqrt((cos(t) + 9) * (cos(t) + 1)))/16.0f); } #endif } float cosfn(int n, int j) { return cos((2.0f * M_PI * j)/float(n)); } float sinfn(int n, int j) { return sin((2.0f * M_PI * j)/float(n)); } #if !defined OSD_MAX_VALENCE || OSD_MAX_VALENCE < 1 #undef OSD_MAX_VALENCE #define OSD_MAX_VALENCE 4 #endif struct OsdPerVertexGregory { vec3 P; ivec3 clipFlag; int valence; vec3 e0; vec3 e1; #ifdef OSD_PATCH_GREGORY_BOUNDARY int zerothNeighbor; vec3 org; #endif vec3 r[OSD_MAX_VALENCE]; }; struct OsdPerPatchVertexGregory { ivec3 patchParam; vec3 P; vec3 Ep; vec3 Em; vec3 Fp; vec3 Fm; }; #ifndef OSD_NUM_ELEMENTS #define OSD_NUM_ELEMENTS 3 #endif uniform samplerBuffer OsdVertexBuffer; uniform isamplerBuffer OsdValenceBuffer; vec3 OsdReadVertex(int vertexIndex) { int index = int(OSD_NUM_ELEMENTS * (vertexIndex + OsdBaseVertex())); return vec3(texelFetch(OsdVertexBuffer, index).x, texelFetch(OsdVertexBuffer, index+1).x, texelFetch(OsdVertexBuffer, index+2).x); } int OsdReadVertexValence(int vertexID) { int index = int(vertexID * (2 * OSD_MAX_VALENCE + 1)); return texelFetch(OsdValenceBuffer, index).x; } int OsdReadVertexIndex(int vertexID, int valenceVertex) { int index = int(vertexID * (2 * OSD_MAX_VALENCE + 1) + 1 + valenceVertex); return texelFetch(OsdValenceBuffer, index).x; } uniform isamplerBuffer OsdQuadOffsetBuffer; int OsdReadQuadOffset(int primitiveID, int offsetVertex) { int index = int(4*primitiveID+OsdGregoryQuadOffsetBase() + offsetVertex); return texelFetch(OsdQuadOffsetBuffer, index).x; } void OsdComputePerVertexGregory(int vID, vec3 P, out OsdPerVertexGregory v) { v.clipFlag = ivec3(0); int ivalence = OsdReadVertexValence(vID); v.valence = ivalence; int valence = abs(ivalence); vec3 f[OSD_MAX_VALENCE]; vec3 pos = P; vec3 opos = vec3(0); #ifdef OSD_PATCH_GREGORY_BOUNDARY v.org = pos; int boundaryEdgeNeighbors[2]; int currNeighbor = 0; int ibefore = 0; int zerothNeighbor = 0; #endif for (int i=0; i 2) { v.P = (OsdReadVertex(boundaryEdgeNeighbors[0]) + OsdReadVertex(boundaryEdgeNeighbors[1]) + 4.0f * pos)/6.0f; } else { v.P = pos; } v.e0 = (OsdReadVertex(boundaryEdgeNeighbors[0]) - OsdReadVertex(boundaryEdgeNeighbors[1]))/6.0; float k = float(float(valence) - 1.0f); //k is the number of faces float c = cos(M_PI/k); float s = sin(M_PI/k); float gamma = -(4.0f*s)/(3.0f*k+c); float alpha_0k = -((1.0f+2.0f*c)*sqrt(1.0f+c))/((3.0f*k+c)*sqrt(1.0f-c)); float beta_0 = s/(3.0f*k + c); int idx_diagonal = OsdReadVertexIndex(vID, 2*zerothNeighbor + 1); vec3 diagonal = OsdReadVertex(idx_diagonal); v.e1 = gamma * pos + alpha_0k * OsdReadVertex(boundaryEdgeNeighbors[0]) + alpha_0k * OsdReadVertex(boundaryEdgeNeighbors[1]) + beta_0 * diagonal; for (int x=1; x> 8) & 0xff; int start_m = OsdReadQuadOffset(primitiveID, im) & 0xff; int prev_p = (OsdReadQuadOffset(primitiveID, ip) >> 8) & 0xff; int np = abs(v[ip].valence); int nm = abs(v[im].valence); // Control Vertices based on : // "Approximating Subdivision Surfaces with Gregory Patches // for Hardware Tessellation" // Loop, Schaefer, Ni, Castano (ACM ToG Siggraph Asia 2009) // // P3 e3- e2+ P2 // O--------O--------O--------O // | | | | // | | | | // | | f3- | f2+ | // | O O | // e3+ O------O O------O e2- // | f3+ f2- | // | | // | | // | f0- f1+ | // e0- O------O O------O e1+ // | O O | // | | f0+ | f1- | // | | | | // | | | | // O--------O--------O--------O // P0 e0+ e1- P1 // #ifdef OSD_PATCH_GREGORY_BOUNDARY vec3 Em_ip; if (v[ip].valence < -2) { int j = (np + prev_p - v[ip].zerothNeighbor) % np; Em_ip = v[ip].P + cos((M_PI*j)/float(np-1))*v[ip].e0 + sin((M_PI*j)/float(np-1))*v[ip].e1; } else { Em_ip = v[ip].P + v[ip].e0*cosfn(np, prev_p ) + v[ip].e1*sinfn(np, prev_p); } vec3 Ep_im; if (v[im].valence < -2) { int j = (nm + start_m - v[im].zerothNeighbor) % nm; Ep_im = v[im].P + cos((M_PI*j)/float(nm-1))*v[im].e0 + sin((M_PI*j)/float(nm-1))*v[im].e1; } else { Ep_im = v[im].P + v[im].e0*cosfn(nm, start_m) + v[im].e1*sinfn(nm, start_m); } if (v[i].valence < 0) { n = (n-1)*2; } if (v[im].valence < 0) { nm = (nm-1)*2; } if (v[ip].valence < 0) { np = (np-1)*2; } if (v[i].valence > 2) { result.Ep = v[i].P + v[i].e0*cosfn(n, start) + v[i].e1*sinfn(n, start); result.Em = v[i].P + v[i].e0*cosfn(n, prev ) + v[i].e1*sinfn(n, prev); float s1=3-2*cosfn(n,1)-cosfn(np,1); float s2=2*cosfn(n,1); result.Fp = (cosfn(np,1)*v[i].P + s1*result.Ep + s2*Em_ip + v[i].r[start])/3.0f; s1 = 3.0f-2.0f*cos(2.0f*M_PI/float(n))-cos(2.0f*M_PI/float(nm)); result.Fm = (cosfn(nm,1)*v[i].P + s1*result.Em + s2*Ep_im - v[i].r[prev])/3.0f; } else if (v[i].valence < -2) { int j = (valence + start - v[i].zerothNeighbor) % valence; result.Ep = v[i].P + cos((M_PI*j)/float(valence-1))*v[i].e0 + sin((M_PI*j)/float(valence-1))*v[i].e1; j = (valence + prev - v[i].zerothNeighbor) % valence; result.Em = v[i].P + cos((M_PI*j)/float(valence-1))*v[i].e0 + sin((M_PI*j)/float(valence-1))*v[i].e1; vec3 Rp = ((-2.0f * v[i].org - 1.0f * v[im].org) + (2.0f * v[ip].org + 1.0f * v[(i+2)%4].org))/3.0f; vec3 Rm = ((-2.0f * v[i].org - 1.0f * v[ip].org) + (2.0f * v[im].org + 1.0f * v[(i+2)%4].org))/3.0f; float s1 = 3-2*cosfn(n,1)-cosfn(np,1); float s2 = 2*cosfn(n,1); result.Fp = (cosfn(np,1)*v[i].P + s1*result.Ep + s2*Em_ip + v[i].r[start])/3.0f; s1 = 3.0f-2.0f*cos(2.0f*M_PI/float(n))-cos(2.0f*M_PI/float(nm)); result.Fm = (cosfn(nm,1)*v[i].P + s1*result.Em + s2*Ep_im - v[i].r[prev])/3.0f; if (v[im].valence < 0) { s1 = 3-2*cosfn(n,1)-cosfn(np,1); result.Fp = result.Fm = (cosfn(np,1)*v[i].P + s1*result.Ep + s2*Em_ip + v[i].r[start])/3.0f; } else if (v[ip].valence < 0) { s1 = 3.0f-2.0f*cos(2.0f*M_PI/n)-cos(2.0f*M_PI/nm); result.Fm = result.Fp = (cosfn(nm,1)*v[i].P + s1*result.Em + s2*Ep_im - v[i].r[prev])/3.0f; } } else if (v[i].valence == -2) { result.Ep = (2.0f * v[i].org + v[ip].org)/3.0f; result.Em = (2.0f * v[i].org + v[im].org)/3.0f; result.Fp = result.Fm = (4.0f * v[i].org + v[(i+2)%n].org + 2.0f * v[ip].org + 2.0f * v[im].org)/9.0f; } #else // not OSD_PATCH_GREGORY_BOUNDARY result.Ep = v[i].P + v[i].e0 * cosfn(n, start) + v[i].e1*sinfn(n, start); result.Em = v[i].P + v[i].e0 * cosfn(n, prev ) + v[i].e1*sinfn(n, prev); vec3 Em_ip = v[ip].P + v[ip].e0 * cosfn(np, prev_p ) + v[ip].e1*sinfn(np, prev_p); vec3 Ep_im = v[im].P + v[im].e0 * cosfn(nm, start_m) + v[im].e1*sinfn(nm, start_m); float s1 = 3-2*cosfn(n,1)-cosfn(np,1); float s2 = 2*cosfn(n,1); result.Fp = (cosfn(np,1)*v[i].P + s1*result.Ep + s2*Em_ip + v[i].r[start])/3.0f; s1 = 3.0f-2.0f*cos(2.0f*M_PI/float(n))-cos(2.0f*M_PI/float(nm)); result.Fm = (cosfn(nm,1)*v[i].P + s1*result.Em + s2*Ep_im - v[i].r[prev])/3.0f; #endif } #endif // OSD_PATCH_GREGORY || OSD_PATCH_GREGORY_BOUNDARY