// // Copyright 2013 Pixar // // Licensed under the Apache License, Version 2.0 (the "Apache License") // with the following modification; you may not use this file except in // compliance with the Apache License and the following modification to it: // Section 6. Trademarks. is deleted and replaced with: // // 6. Trademarks. This License does not grant permission to use the trade // names, trademarks, service marks, or product names of the Licensor // and its affiliates, except as required to comply with Section 4(c) of // the License and to reproduce the content of the NOTICE file. // // You may obtain a copy of the Apache License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the Apache License with the above modification is // distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the Apache License for the specific // language governing permissions and limitations under the Apache License. // //---------------------------------------------------------- // Patches.Coefficients //---------------------------------------------------------- #if OSD_MAX_VALENCE<=10 uniform float ef[7] = float[]( 0.813008, 0.500000, 0.363636, 0.287505, 0.238692, 0.204549, 0.179211 ); #else uniform float ef[27] = float[]( 0.812816, 0.500000, 0.363644, 0.287514, 0.238688, 0.204544, 0.179229, 0.159657, 0.144042, 0.131276, 0.120632, 0.111614, 0.103872, 0.09715, 0.0912559, 0.0860444, 0.0814022, 0.0772401, 0.0734867, 0.0700842, 0.0669851, 0.0641504, 0.0615475, 0.0591488, 0.0569311, 0.0548745, 0.0529621 ); #endif float csf(uint n, uint j) { if (j%2 == 0) { return cos((2.0f * M_PI * float(float(j-0)/2.0f))/(float(n)+3.0f)); } else { return sin((2.0f * M_PI * float(float(j-1)/2.0f))/(float(n)+3.0f)); } } //---------------------------------------------------------- // Patches.TessVertexGregory //---------------------------------------------------------- #ifdef OSD_PATCH_VERTEX_GREGORY_SHADER uniform samplerBuffer VertexBuffer; uniform isamplerBuffer OsdValenceBuffer; layout (location=0) in vec4 position; OSD_USER_VARYING_ATTRIBUTE_DECLARE out block { GregControlVertex v; OSD_USER_VARYING_DECLARE } outpt; vec3 readVertex(uint vertexIndex) { vertexIndex += OsdBaseVertex(); return vec3(texelFetch(VertexBuffer, int(OSD_NUM_ELEMENTS*vertexIndex)).x, texelFetch(VertexBuffer, int(OSD_NUM_ELEMENTS*vertexIndex+1)).x, texelFetch(VertexBuffer, int(OSD_NUM_ELEMENTS*vertexIndex+2)).x); } void main() { int vID = gl_VertexID; outpt.v.hullPosition = (OsdModelViewMatrix() * position).xyz; OSD_PATCH_CULL_COMPUTE_CLIPFLAGS(position); OSD_USER_VARYING_PER_VERTEX(); int ivalence = texelFetch(OsdValenceBuffer,int(vID * (2 * OSD_MAX_VALENCE + 1))).x; outpt.v.valence = ivalence; uint valence = uint(abs(ivalence)); vec3 f[OSD_MAX_VALENCE]; vec3 pos = position.xyz; vec3 opos = vec3(0,0,0); #ifdef OSD_PATCH_GREGORY_BOUNDARY outpt.v.org = position.xyz; int boundaryEdgeNeighbors[2]; uint currNeighbor = 0; uint ibefore = 0; uint zerothNeighbor = 0; #endif for (uint i=0; i 2) { outpt.v.position = ( readVertex(boundaryEdgeNeighbors[0]) + readVertex(boundaryEdgeNeighbors[1]) + 4.0f * pos)/6.0f; } else { outpt.v.position = pos; } outpt.v.e0 = ( readVertex(boundaryEdgeNeighbors[0]) - readVertex(boundaryEdgeNeighbors[1]) )/6.0; float k = float(float(valence) - 1.0f); //k is the number of faces float c = cos(M_PI/k); float s = sin(M_PI/k); float gamma = -(4.0f*s)/(3.0f*k+c); float alpha_0k = -((1.0f+2.0f*c)*sqrt(1.0f+c))/((3.0f*k+c)*sqrt(1.0f-c)); float beta_0 = s/(3.0f*k + c); int idx_diagonal = texelFetch(OsdValenceBuffer,int((vID) * (2*OSD_MAX_VALENCE+1) + 2*zerothNeighbor + 1 + 1)).x; idx_diagonal = abs(idx_diagonal); vec3 diagonal = readVertex(idx_diagonal); outpt.v.e1 = gamma * pos + alpha_0k * readVertex(boundaryEdgeNeighbors[0]) + alpha_0k * readVertex(boundaryEdgeNeighbors[1]) + beta_0 * diagonal; for (uint x=1; x 2) { Ep = inpt[i].v.position + inpt[i].v.e0*csf(n-3, 2*start) + inpt[i].v.e1*csf(n-3, 2*start + 1); Em = inpt[i].v.position + inpt[i].v.e0*csf(n-3, 2*prev ) + inpt[i].v.e1*csf(n-3, 2*prev + 1); float s1=3-2*csf(n-3,2)-csf(np-3,2); float s2=2*csf(n-3,2); Fp = (csf(np-3,2)*inpt[i].v.position + s1*Ep + s2*Em_ip + inpt[i].v.r[start])/3.0f; s1 = 3.0f-2.0f*cos(2.0f*M_PI/float(n))-cos(2.0f*M_PI/float(nm)); Fm = (csf(nm-3,2)*inpt[i].v.position + s1*Em + s2*Ep_im - inpt[i].v.r[prev])/3.0f; } else if (inpt[i].v.valence < -2) { uint j = (valence + start - inpt[i].v.zerothNeighbor) % valence; Ep = inpt[i].v.position + cos((M_PI*j)/float(valence-1))*inpt[i].v.e0 + sin((M_PI*j)/float(valence-1))*inpt[i].v.e1; j = (valence + prev - inpt[i].v.zerothNeighbor) % valence; Em = inpt[i].v.position + cos((M_PI*j)/float(valence-1))*inpt[i].v.e0 + sin((M_PI*j)/float(valence-1))*inpt[i].v.e1; vec3 Rp = ((-2.0f * inpt[i].v.org - 1.0f * inpt[im].v.org) + (2.0f * inpt[ip].v.org + 1.0f * inpt[(i+2)%4].v.org))/3.0f; vec3 Rm = ((-2.0f * inpt[i].v.org - 1.0f * inpt[ip].v.org) + (2.0f * inpt[im].v.org + 1.0f * inpt[(i+2)%4].v.org))/3.0f; float s1 = 3-2*csf(n-3,2)-csf(np-3,2); float s2 = 2*csf(n-3,2); Fp = (csf(np-3,2)*inpt[i].v.position + s1*Ep + s2*Em_ip + inpt[i].v.r[start])/3.0f; s1 = 3.0f-2.0f*cos(2.0f*M_PI/float(n))-cos(2.0f*M_PI/float(nm)); Fm = (csf(nm-3,2)*inpt[i].v.position + s1*Em + s2*Ep_im - inpt[i].v.r[prev])/3.0f; if (inpt[im].v.valence < 0) { s1 = 3-2*csf(n-3,2)-csf(np-3,2); Fp = Fm = (csf(np-3,2)*inpt[i].v.position + s1*Ep + s2*Em_ip + inpt[i].v.r[start])/3.0f; } else if (inpt[ip].v.valence < 0) { s1 = 3.0f-2.0f*cos(2.0f*M_PI/n)-cos(2.0f*M_PI/nm); Fm = Fp = (csf(nm-3,2)*inpt[i].v.position + s1*Em + s2*Ep_im - inpt[i].v.r[prev])/3.0f; } } else if (inpt[i].v.valence == -2) { Ep = (2.0f * inpt[i].v.org + inpt[ip].v.org)/3.0f; Em = (2.0f * inpt[i].v.org + inpt[im].v.org)/3.0f; Fp = Fm = (4.0f * inpt[i].v.org + inpt[(i+2)%n].v.org + 2.0f * inpt[ip].v.org + 2.0f * inpt[im].v.org)/9.0f; } #else // not OSD_PATCH_GREGORY_BOUNDARY vec3 Ep = inpt[i].v.position + inpt[i].v.e0 * csf(n-3, 2*start) + inpt[i].v.e1*csf(n-3, 2*start + 1); vec3 Em = inpt[i].v.position + inpt[i].v.e0 * csf(n-3, 2*prev ) + inpt[i].v.e1*csf(n-3, 2*prev + 1); vec3 Em_ip = inpt[ip].v.position + inpt[ip].v.e0 * csf(np-3, 2*prev_p ) + inpt[ip].v.e1*csf(np-3, 2*prev_p + 1); vec3 Ep_im = inpt[im].v.position + inpt[im].v.e0 * csf(nm-3, 2*start_m) + inpt[im].v.e1*csf(nm-3, 2*start_m + 1); float s1 = 3-2*csf(n-3,2)-csf(np-3,2); float s2 = 2*csf(n-3,2); vec3 Fp = (csf(np-3,2)*inpt[i].v.position + s1*Ep + s2*Em_ip + inpt[i].v.r[start])/3.0f; s1 = 3.0f-2.0f*cos(2.0f*M_PI/float(n))-cos(2.0f*M_PI/float(nm)); vec3 Fm = (csf(nm-3,2)*inpt[i].v.position + s1*Em + s2*Ep_im - inpt[i].v.r[prev])/3.0f; #endif outpt[ID].v.Ep = Ep; outpt[ID].v.Em = Em; outpt[ID].v.Fp = Fp; outpt[ID].v.Fm = Fm; OSD_USER_VARYING_PER_CONTROL_POINT(ID, ID); int patchLevel = GetPatchLevel(); outpt[ID].v.patchCoord = vec4(0, 0, patchLevel+0.5f, GetPrimitiveID()+0.5f); OSD_COMPUTE_PTEX_COORD_TESSCONTROL_SHADER; if (ID == 0) { OSD_PATCH_CULL(4); #ifdef OSD_ENABLE_SCREENSPACE_TESSELLATION gl_TessLevelOuter[0] = TessAdaptive(inpt[0].v.hullPosition.xyz, inpt[1].v.hullPosition.xyz); gl_TessLevelOuter[1] = TessAdaptive(inpt[0].v.hullPosition.xyz, inpt[3].v.hullPosition.xyz); gl_TessLevelOuter[2] = TessAdaptive(inpt[2].v.hullPosition.xyz, inpt[3].v.hullPosition.xyz); gl_TessLevelOuter[3] = TessAdaptive(inpt[1].v.hullPosition.xyz, inpt[2].v.hullPosition.xyz); gl_TessLevelInner[0] = max(gl_TessLevelOuter[1], gl_TessLevelOuter[3]); gl_TessLevelInner[1] = max(gl_TessLevelOuter[0], gl_TessLevelOuter[2]); #else gl_TessLevelInner[0] = GetTessLevel(patchLevel); gl_TessLevelInner[1] = GetTessLevel(patchLevel); gl_TessLevelOuter[0] = GetTessLevel(patchLevel); gl_TessLevelOuter[1] = GetTessLevel(patchLevel); gl_TessLevelOuter[2] = GetTessLevel(patchLevel); gl_TessLevelOuter[3] = GetTessLevel(patchLevel); #endif } } #endif //---------------------------------------------------------- // Patches.TessEvalGregory //---------------------------------------------------------- #ifdef OSD_PATCH_TESS_EVAL_GREGORY_SHADER layout(quads) in; layout(cw) in; #if defined OSD_FRACTIONAL_ODD_SPACING layout(fractional_odd_spacing) in; #elif defined OSD_FRACTIONAL_EVEN_SPACING layout(fractional_even_spacing) in; #endif in block { GregEvalVertex v; OSD_USER_VARYING_DECLARE } inpt[]; out block { OutputVertex v; OSD_USER_VARYING_DECLARE } outpt; void main() { float u = gl_TessCoord.x, v = gl_TessCoord.y; vec3 p[20]; p[0] = inpt[0].v.position; p[1] = inpt[0].v.Ep; p[2] = inpt[0].v.Em; p[3] = inpt[0].v.Fp; p[4] = inpt[0].v.Fm; p[5] = inpt[1].v.position; p[6] = inpt[1].v.Ep; p[7] = inpt[1].v.Em; p[8] = inpt[1].v.Fp; p[9] = inpt[1].v.Fm; p[10] = inpt[2].v.position; p[11] = inpt[2].v.Ep; p[12] = inpt[2].v.Em; p[13] = inpt[2].v.Fp; p[14] = inpt[2].v.Fm; p[15] = inpt[3].v.position; p[16] = inpt[3].v.Ep; p[17] = inpt[3].v.Em; p[18] = inpt[3].v.Fp; p[19] = inpt[3].v.Fm; vec3 q[16]; float U = 1-u, V=1-v; float d11 = u+v; if(u+v==0.0f) d11 = 1.0f; float d12 = U+v; if(U+v==0.0f) d12 = 1.0f; float d21 = u+V; if(u+V==0.0f) d21 = 1.0f; float d22 = U+V; if(U+V==0.0f) d22 = 1.0f; q[ 5] = (u*p[3] + v*p[4])/d11; q[ 6] = (U*p[9] + v*p[8])/d12; q[ 9] = (u*p[19] + V*p[18])/d21; q[10] = (U*p[13] + V*p[14])/d22; q[ 0] = p[0]; q[ 1] = p[1]; q[ 2] = p[7]; q[ 3] = p[5]; q[ 4] = p[2]; q[ 7] = p[6]; q[ 8] = p[16]; q[11] = p[12]; q[12] = p[15]; q[13] = p[17]; q[14] = p[11]; q[15] = p[10]; vec3 WorldPos = vec3(0, 0, 0); vec3 Tangent = vec3(0, 0, 0); vec3 BiTangent = vec3(0, 0, 0); #ifdef OSD_COMPUTE_NORMAL_DERIVATIVES float B[4], D[4], C[4]; vec3 BUCP[4], DUCP[4], CUCP[4]; vec3 dUU = vec3(0); vec3 dVV = vec3(0); vec3 dUV = vec3(0); Univar4x4(u, B, D, C); for (int i=0; i<4; ++i) { BUCP[i] = vec3(0); DUCP[i] = vec3(0); CUCP[i] = vec3(0); for (uint j=0; j<4; ++j) { // reverse face front vec3 A = q[i + 4*j]; BUCP[i] += A * B[j]; DUCP[i] += A * D[j]; CUCP[i] += A * C[j]; } } Univar4x4(v, B, D, C); for (int i=0; i<4; ++i) { WorldPos += B[i] * BUCP[i]; Tangent += B[i] * DUCP[i]; BiTangent += D[i] * BUCP[i]; dUU += B[i] * CUCP[i]; dVV += C[i] * BUCP[i]; dUV += D[i] * DUCP[i]; } int level = int(inpt[0].v.ptexInfo.z); BiTangent *= 3 * level; Tangent *= 3 * level; dUU *= 6 * level; dVV *= 6 * level; dUV *= 9 * level; vec3 n = cross(Tangent, BiTangent); vec3 normal = normalize(n); float E = dot(Tangent, Tangent); float F = dot(Tangent, BiTangent); float G = dot(BiTangent, BiTangent); float e = dot(normal, dUU); float f = dot(normal, dUV); float g = dot(normal, dVV); vec3 Nu = (f*F-e*G)/(E*G-F*F) * Tangent + (e*F-f*E)/(E*G-F*F) * BiTangent; vec3 Nv = (g*F-f*G)/(E*G-F*F) * Tangent + (f*F-g*E)/(E*G-F*F) * BiTangent; Nu = Nu/length(n) - n * (dot(Nu,n)/pow(dot(n,n), 1.5)); Nv = Nv/length(n) - n * (dot(Nv,n)/pow(dot(n,n), 1.5)); BiTangent = (OsdModelViewMatrix() * vec4(BiTangent, 0)).xyz; Tangent = (OsdModelViewMatrix() * vec4(Tangent, 0)).xyz; normal = normalize(cross(BiTangent, Tangent)); outpt.v.Nu = Nu; outpt.v.Nv = Nv; #else float B[4], D[4]; vec3 BUCP[4], DUCP[4]; Univar4x4(u, B, D); for (int i=0; i<4; ++i) { BUCP[i] = vec3(0); DUCP[i] = vec3(0); for (uint j=0; j<4; ++j) { // reverse face front vec3 A = q[i + 4*j]; BUCP[i] += A * B[j]; DUCP[i] += A * D[j]; } } Univar4x4(v, B, D); for (int i=0; i<4; ++i) { WorldPos += B[i] * BUCP[i]; Tangent += B[i] * DUCP[i]; BiTangent += D[i] * BUCP[i]; } int level = int(inpt[0].v.ptexInfo.z); BiTangent *= 3 * level; Tangent *= 3 * level; BiTangent = (OsdModelViewMatrix() * vec4(BiTangent, 0)).xyz; Tangent = (OsdModelViewMatrix() * vec4(Tangent, 0)).xyz; vec3 normal = normalize(cross(BiTangent, Tangent)); #endif outpt.v.position = OsdModelViewMatrix() * vec4(WorldPos, 1.0f); outpt.v.normal = normal; outpt.v.tangent = BiTangent; outpt.v.bitangent = Tangent; OSD_USER_VARYING_PER_EVAL_POINT(vec2(u,v), 0, 3, 1, 2); outpt.v.patchCoord = inpt[0].v.patchCoord; outpt.v.patchCoord.xy = vec2(v, u); OSD_COMPUTE_PTEX_COORD_TESSEVAL_SHADER; OSD_DISPLACEMENT_CALLBACK; gl_Position = OsdModelViewProjectionMatrix() * vec4(WorldPos, 1.0f); } #endif