// // Copyright 2013 Pixar // // Licensed under the Apache License, Version 2.0 (the "Apache License") // with the following modification; you may not use this file except in // compliance with the Apache License and the following modification to it: // Section 6. Trademarks. is deleted and replaced with: // // 6. Trademarks. This License does not grant permission to use the trade // names, trademarks, service marks, or product names of the Licensor // and its affiliates, except as required to comply with Section 4(c) of // the License and to reproduce the content of the NOTICE file. // // You may obtain a copy of the Apache License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the Apache License with the above modification is // distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the Apache License for the specific // language governing permissions and limitations under the Apache License. // #include "../common/glUtils.h" #include GLFWwindow* g_window=0; GLFWmonitor* g_primary=0; #include #include #include #ifdef OPENSUBDIV_HAS_OPENMP #include #endif #ifdef OPENSUBDIV_HAS_TBB #include #endif #ifdef OPENSUBDIV_HAS_OPENCL #include #include #include "../common/clDeviceContext.h" CLDeviceContext g_clDeviceContext; #endif #ifdef OPENSUBDIV_HAS_CUDA #include #include #include "../common/cudaDeviceContext.h" CudaDeviceContext g_cudaDeviceContext; #endif #ifdef OPENSUBDIV_HAS_GLSL_TRANSFORM_FEEDBACK #include #include #endif #ifdef OPENSUBDIV_HAS_GLSL_COMPUTE #include #include #endif #include #include OpenSubdiv::Osd::GLMeshInterface *g_mesh = NULL; OpenSubdiv::Osd::GLLegacyGregoryPatchTable *g_legacyGregoryPatchTable = NULL; #include "../../regression/common/far_utils.h" #include "../common/glHud.h" #include "../common/glUtils.h" #include "../common/glControlMeshDisplay.h" #include "../common/glShaderCache.h" #include "../common/objAnim.h" #include "../common/simple_math.h" #include "../common/stopwatch.h" #include /* Function to get the correct shader file based on the opengl version. The implentation varies depending if glew is available or not. In case is available the capabilities are queried during execution and the correct source is returned. If glew in not available during compile time the version is determined*/ static const char *shaderSource(){ #if not defined(OSD_USES_GLEW) static const char *res = #if defined(GL_ARB_tessellation_shader) || defined(GL_VERSION_4_0) #include "shader.gen.h" #else #include "shader_gl3.gen.h" #endif ; #else static const char *res = NULL; if (!res){ static const char *gen = #include "shader.gen.h" ; static const char *gen3 = #include "shader_gl3.gen.h" ; //Determine the shader file to use. Since some opengl implementations //define that an extension is available but not an implementation //for it you cannnot trust in the glew header definitions to know that is //available, but you need to query it during runtime. if (GLUtils::SupportsAdaptiveTessellation()) res = gen; else res = gen3; } #endif return res; } #include #include #include #include #include enum KernelType { kCPU = 0, kOPENMP = 1, kTBB = 2, kCUDA = 3, kCL = 4, kGLSL = 5, kGLSLCompute = 6 }; enum DisplayStyle { kDisplayStyleWire, kDisplayStyleShaded, kDisplayStyleWireOnShaded }; enum ShadingMode { kShadingMaterial, kShadingVaryingColor, kShadingInterleavedVaryingColor, kShadingFaceVaryingColor, kShadingPatchType, kShadingPatchCoord, kShadingNormal, kShadingCurvature, kShadingAnalyticCurvature }; enum EndCap { kEndCapNone = 0, kEndCapBSplineBasis, kEndCapGregoryBasis, kEndCapLegacyGregory }; enum HudCheckBox { kHUD_CB_DISPLAY_CONTROL_MESH_EDGES, kHUD_CB_DISPLAY_CONTROL_MESH_VERTS, kHUD_CB_ANIMATE_VERTICES, kHUD_CB_DISPLAY_PATCH_COLOR, kHUD_CB_VIEW_LOD, kHUD_CB_FRACTIONAL_SPACING, kHUD_CB_PATCH_CULL, kHUD_CB_FREEZE, kHUD_CB_DISPLAY_PATCH_COUNTS, kHUD_CB_ADAPTIVE, kHUD_CB_SINGLE_CREASE_PATCH }; int g_currentShape = 0; ObjAnim const * g_objAnim = 0; bool g_axis=true; int g_frame = 0, g_repeatCount = 0; float g_animTime = 0; // GUI variables int g_fullscreen = 0, g_freeze = 0, g_shadingMode = kShadingPatchType, g_displayStyle = kDisplayStyleWireOnShaded, g_adaptive = 1, g_endCap = kEndCapBSplineBasis, g_singleCreasePatch = 1, g_mbutton[3] = {0, 0, 0}, g_running = 1; int g_screenSpaceTess = 1, g_fractionalSpacing = 1, g_patchCull = 0, g_displayPatchCounts = 1; float g_rotate[2] = {0, 0}, g_dolly = 5, g_pan[2] = {0, 0}, g_center[3] = {0, 0, 0}, g_size = 0; int g_prev_x = 0, g_prev_y = 0; int g_width = 1024, g_height = 1024; GLhud g_hud; GLControlMeshDisplay g_controlMeshDisplay; // performance float g_cpuTime = 0; float g_gpuTime = 0; Stopwatch g_fpsTimer; // geometry std::vector g_orgPositions; int g_level = 2; int g_tessLevel = 1; int g_tessLevelMin = 1; int g_kernel = kCPU; float g_moveScale = 0.0f; GLuint g_queries[2] = {0, 0}; GLuint g_transformUB = 0, g_transformBinding = 0, g_tessellationUB = 0, g_tessellationBinding = 1, g_lightingUB = 0, g_lightingBinding = 2; struct Transform { float ModelViewMatrix[16]; float ProjectionMatrix[16]; float ModelViewProjectionMatrix[16]; float ModelViewInverseMatrix[16]; } g_transformData; GLuint g_vao = 0; // XXX: // this struct meant to be used as a stopgap entity until we fully implement // face-varying stuffs into patch table. // struct FVarData { FVarData() : textureBuffer(0) { } ~FVarData() { Release(); } void Release() { if (textureBuffer) glDeleteTextures(1, &textureBuffer); textureBuffer = 0; } void Create(OpenSubdiv::Far::PatchTable const *patchTable, int fvarWidth, std::vector const & fvarSrcData) { Release(); OpenSubdiv::Far::ConstIndexArray indices = patchTable->GetFVarPatchesValues(0); // expand fvardata to per-patch array std::vector data; data.reserve(indices.size() * fvarWidth); for (int fvert = 0; fvert < (int)indices.size(); ++fvert) { int index = indices[fvert] * fvarWidth; for (int i = 0; i < fvarWidth; ++i) { data.push_back(fvarSrcData[index++]); } } GLuint buffer; glGenBuffers(1, &buffer); glBindBuffer(GL_ARRAY_BUFFER, buffer); glBufferData(GL_ARRAY_BUFFER, data.size()*sizeof(float), &data[0], GL_STATIC_DRAW); glGenTextures(1, &textureBuffer); glBindTexture(GL_TEXTURE_BUFFER, textureBuffer); glTexBuffer(GL_TEXTURE_BUFFER, GL_R32F, buffer); glBindTexture(GL_TEXTURE_BUFFER, 0); glBindBuffer(GL_ARRAY_BUFFER, 0); glDeleteBuffers(1, &buffer); } GLuint textureBuffer; } g_fvarData; //------------------------------------------------------------------------------ #include "init_shapes.h" //------------------------------------------------------------------------------ static void updateGeom() { std::vector vertex, varying; int nverts = 0; int stride = (g_shadingMode == kShadingInterleavedVaryingColor ? 7 : 3); if (g_objAnim and g_currentShape==0) { nverts = g_objAnim->GetShape()->GetNumVertices(), vertex.resize(nverts*stride); if (g_shadingMode == kShadingVaryingColor) { varying.resize(nverts*4); } g_objAnim->InterpolatePositions(g_animTime, &vertex[0], stride); if (g_shadingMode == kShadingVaryingColor or g_shadingMode == kShadingInterleavedVaryingColor) { const float *p = &g_objAnim->GetShape()->verts[0]; for (int i = 0; i < nverts; ++i) { if (g_shadingMode == kShadingInterleavedVaryingColor) { int ofs = i * stride; vertex[ofs + 0] = p[1]; vertex[ofs + 1] = p[2]; vertex[ofs + 2] = p[0]; vertex[ofs + 3] = 0.0f; p += 3; } if (g_shadingMode == kShadingVaryingColor) { varying.push_back(p[2]); varying.push_back(p[1]); varying.push_back(p[0]); varying.push_back(1); p += 3; } } } } else { nverts = (int)g_orgPositions.size() / 3; vertex.reserve(nverts*stride); if (g_shadingMode == kShadingVaryingColor) { varying.reserve(nverts*4); } const float *p = &g_orgPositions[0]; float r = sin(g_frame*0.001f) * g_moveScale; for (int i = 0; i < nverts; ++i) { float ct = cos(p[2] * r); float st = sin(p[2] * r); vertex.push_back( p[0]*ct + p[1]*st); vertex.push_back(-p[0]*st + p[1]*ct); vertex.push_back( p[2]); if (g_shadingMode == kShadingInterleavedVaryingColor) { vertex.push_back(p[1]); vertex.push_back(p[2]); vertex.push_back(p[0]); vertex.push_back(1.0f); } else if (g_shadingMode == kShadingVaryingColor) { varying.push_back(p[2]); varying.push_back(p[1]); varying.push_back(p[0]); varying.push_back(1); } p += 3; } } g_mesh->UpdateVertexBuffer(&vertex[0], 0, nverts); if (g_shadingMode == kShadingVaryingColor) g_mesh->UpdateVaryingBuffer(&varying[0], 0, nverts); Stopwatch s; s.Start(); g_mesh->Refine(); s.Stop(); g_cpuTime = float(s.GetElapsed() * 1000.0f); s.Start(); g_mesh->Synchronize(); s.Stop(); g_gpuTime = float(s.GetElapsed() * 1000.0f); } //------------------------------------------------------------------------------ static const char * getKernelName(int kernel) { if (kernel == kCPU) return "CPU"; else if (kernel == kOPENMP) return "OpenMP"; else if (kernel == kTBB) return "TBB"; else if (kernel == kCUDA) return "Cuda"; else if (kernel == kGLSL) return "GLSL TransformFeedback"; else if (kernel == kGLSLCompute) return "GLSL Compute"; else if (kernel == kCL) return "OpenCL"; return "Unknown"; } //------------------------------------------------------------------------------ static void rebuildMesh() { using namespace OpenSubdiv; ShapeDesc const &shapeDesc = g_defaultShapes[g_currentShape]; int level = g_level; int kernel = g_kernel; bool doAnim = g_objAnim and g_currentShape==0; Scheme scheme = shapeDesc.scheme; Shape const * shape = 0; if (doAnim) { shape = g_objAnim->GetShape(); } else { shape = Shape::parseObj(shapeDesc.data.c_str(), shapeDesc.scheme, shapeDesc.isLeftHanded); } // create Far mesh (topology) Sdc::SchemeType sdctype = GetSdcType(*shape); Sdc::Options sdcoptions = GetSdcOptions(*shape); Far::TopologyRefiner * refiner = Far::TopologyRefinerFactory::Create(*shape, Far::TopologyRefinerFactory::Options(sdctype, sdcoptions)); // save coarse topology (used for coarse mesh drawing) g_controlMeshDisplay.SetTopology(refiner->GetLevel(0)); g_orgPositions = shape->verts; delete g_mesh; g_mesh = NULL; // Adaptive refinement currently supported only for catmull-clark scheme bool doAdaptive = (g_adaptive!=0 and scheme==kCatmark); bool interleaveVarying = g_shadingMode == kShadingInterleavedVaryingColor; bool doSingleCreasePatch = (g_singleCreasePatch!=0 and scheme==kCatmark); Osd::MeshBitset bits; bits.set(Osd::MeshAdaptive, doAdaptive); bits.set(Osd::MeshUseSingleCreasePatch, doSingleCreasePatch); bits.set(Osd::MeshInterleaveVarying, interleaveVarying); bits.set(Osd::MeshFVarData, g_shadingMode == kShadingFaceVaryingColor); bits.set(Osd::MeshEndCapBSplineBasis, g_endCap == kEndCapBSplineBasis); bits.set(Osd::MeshEndCapGregoryBasis, g_endCap == kEndCapGregoryBasis); bits.set(Osd::MeshEndCapLegacyGregory, g_endCap == kEndCapLegacyGregory); int numVertexElements = 3; int numVaryingElements = (g_shadingMode == kShadingVaryingColor or interleaveVarying) ? 4 : 0; if (kernel == kCPU) { g_mesh = new Osd::Mesh( refiner, numVertexElements, numVaryingElements, level, bits); #ifdef OPENSUBDIV_HAS_OPENMP } else if (kernel == kOPENMP) { g_mesh = new Osd::Mesh( refiner, numVertexElements, numVaryingElements, level, bits); #endif #ifdef OPENSUBDIV_HAS_TBB } else if (kernel == kTBB) { g_mesh = new Osd::Mesh( refiner, numVertexElements, numVaryingElements, level, bits); #endif #ifdef OPENSUBDIV_HAS_OPENCL } else if(kernel == kCL) { // CLKernel static Osd::EvaluatorCacheT clEvaluatorCache; g_mesh = new Osd::Mesh( refiner, numVertexElements, numVaryingElements, level, bits, &clEvaluatorCache, &g_clDeviceContext); #endif #ifdef OPENSUBDIV_HAS_CUDA } else if(kernel == kCUDA) { g_mesh = new Osd::Mesh( refiner, numVertexElements, numVaryingElements, level, bits); #endif #ifdef OPENSUBDIV_HAS_GLSL_TRANSFORM_FEEDBACK } else if(kernel == kGLSL) { static Osd::EvaluatorCacheT glXFBEvaluatorCache; g_mesh = new Osd::Mesh( refiner, numVertexElements, numVaryingElements, level, bits, &glXFBEvaluatorCache); #endif #ifdef OPENSUBDIV_HAS_GLSL_COMPUTE } else if(kernel == kGLSLCompute) { static Osd::EvaluatorCacheT glComputeEvaluatorCache; g_mesh = new Osd::Mesh( refiner, numVertexElements, numVaryingElements, level, bits, &glComputeEvaluatorCache); #endif } else { printf("Unsupported kernel %s\n", getKernelName(kernel)); } if (g_shadingMode == kShadingFaceVaryingColor and shape->HasUV()) { std::vector fvarData; InterpolateFVarData(*refiner, *shape, fvarData); // set fvardata to texture buffer g_fvarData.Create(g_mesh->GetFarPatchTable(), shape->GetFVarWidth(), fvarData); } // legacy gregory delete g_legacyGregoryPatchTable; g_legacyGregoryPatchTable = NULL; if (g_endCap == kEndCapLegacyGregory) { g_legacyGregoryPatchTable = Osd::GLLegacyGregoryPatchTable::Create(g_mesh->GetFarPatchTable()); } if (not doAnim) { delete shape; } // compute model bounding float min[3] = { FLT_MAX, FLT_MAX, FLT_MAX}; float max[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX}; for (size_t i=0; i GetPatchTable()->GetPatchIndexBuffer()); glBindBuffer(GL_ARRAY_BUFFER, g_mesh->BindVertexBuffer()); glEnableVertexAttribArray(0); if (g_shadingMode == kShadingVaryingColor) { glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 3, 0); glBindBuffer(GL_ARRAY_BUFFER, g_mesh->BindVaryingBuffer()); glEnableVertexAttribArray(1); glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 4, 0); } else if (g_shadingMode == kShadingInterleavedVaryingColor) { glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 7, 0); glEnableVertexAttribArray(1); glVertexAttribPointer(1, 4, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 7, (void*)(sizeof (GLfloat) * 3)); } else { glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 3, 0); glDisableVertexAttribArray(1); } glBindBuffer(GL_ARRAY_BUFFER, 0); glBindVertexArray(0); } //------------------------------------------------------------------------------ static void fitFrame() { g_pan[0] = g_pan[1] = 0; g_dolly = g_size; } //------------------------------------------------------------------------------ union Effect { Effect(int displayStyle_, int shadingMode_, int screenSpaceTess_, int fractionalSpacing_, int patchCull_, int singleCreasePatch_) : value(0) { displayStyle = displayStyle_; shadingMode = shadingMode_; screenSpaceTess = screenSpaceTess_; fractionalSpacing = fractionalSpacing_; patchCull = patchCull_; singleCreasePatch = singleCreasePatch_; } struct { unsigned int displayStyle:2; unsigned int shadingMode:4; unsigned int screenSpaceTess:1; unsigned int fractionalSpacing:1; unsigned int patchCull:1; unsigned int singleCreasePatch:1; }; int value; bool operator < (const Effect &e) const { return value < e.value; } }; static Effect GetEffect() { return Effect(g_displayStyle, g_shadingMode, g_screenSpaceTess, g_fractionalSpacing, g_patchCull, g_singleCreasePatch); } // --------------------------------------------------------------------------- struct EffectDesc { EffectDesc(OpenSubdiv::Far::PatchDescriptor desc, Effect effect) : desc(desc), effect(effect), maxValence(0), numElements(0) { } OpenSubdiv::Far::PatchDescriptor desc; Effect effect; int maxValence; int numElements; bool operator < (const EffectDesc &e) const { return (desc < e.desc || ((desc == e.desc && (maxValence < e.maxValence || ((maxValence == e.maxValence) && (numElements < e.numElements || ((numElements == e.numElements) && (effect < e.effect)))))))); } }; // --------------------------------------------------------------------------- class ShaderCache : public GLShaderCache { public: virtual GLDrawConfig *CreateDrawConfig(EffectDesc const &effectDesc) { using namespace OpenSubdiv; // compile shader program GLDrawConfig *config = new GLDrawConfig(GLUtils::GetShaderVersionInclude().c_str()); Far::PatchDescriptor::Type type = effectDesc.desc.GetType(); // common defines std::stringstream ss; if (type == Far::PatchDescriptor::QUADS) { ss << "#define PRIM_QUAD\n"; } else { ss << "#define PRIM_TRI\n"; } // OSD tessellation controls if (effectDesc.effect.screenSpaceTess) { ss << "#define OSD_ENABLE_SCREENSPACE_TESSELLATION\n"; } if (effectDesc.effect.fractionalSpacing) { ss << "#define OSD_FRACTIONAL_ODD_SPACING\n"; } if (effectDesc.effect.patchCull) { ss << "#define OSD_ENABLE_PATCH_CULL\n"; } if (effectDesc.effect.singleCreasePatch) { ss << "#define OSD_PATCH_ENABLE_SINGLE_CREASE\n"; } // for legacy gregory ss << "#define OSD_MAX_VALENCE " << effectDesc.maxValence << "\n"; ss << "#define OSD_NUM_ELEMENTS " << effectDesc.numElements << "\n"; // display styles switch (effectDesc.effect.displayStyle) { case kDisplayStyleWire: ss << "#define GEOMETRY_OUT_WIRE\n"; break; case kDisplayStyleWireOnShaded: ss << "#define GEOMETRY_OUT_LINE\n"; break; case kDisplayStyleShaded: ss << "#define GEOMETRY_OUT_FILL\n"; break; } // shading mode switch(effectDesc.effect.shadingMode) { case kShadingMaterial: ss << "#define SHADING_MATERIAL\n"; break; case kShadingVaryingColor: ss << "#define SHADING_VARYING_COLOR\n"; break; case kShadingInterleavedVaryingColor: ss << "#define SHADING_VARYING_COLOR\n"; break; case kShadingFaceVaryingColor: ss << "#define OSD_FVAR_WIDTH 2\n"; ss << "#define SHADING_FACEVARYING_COLOR\n"; break; case kShadingPatchType: ss << "#define SHADING_PATCH_TYPE\n"; break; case kShadingPatchCoord: ss << "#define SHADING_PATCH_COORD\n"; break; case kShadingNormal: ss << "#define SHADING_NORMAL\n"; break; case kShadingCurvature: ss << "#define SHADING_CURVATURE\n"; break; case kShadingAnalyticCurvature: ss << "#define OSD_COMPUTE_NORMAL_DERIVATIVES\n"; ss << "#define SHADING_ANALYTIC_CURVATURE\n"; break; } if (type == Far::PatchDescriptor::TRIANGLES) { ss << "#define LOOP\n"; } else if (type == Far::PatchDescriptor::QUADS) { } else { ss << "#define SMOOTH_NORMALS\n"; } // need for patch color-coding : we need these defines in the fragment shader if (type == Far::PatchDescriptor::GREGORY) { ss << "#define OSD_PATCH_GREGORY\n"; } else if (type == Far::PatchDescriptor::GREGORY_BOUNDARY) { ss << "#define OSD_PATCH_GREGORY_BOUNDARY\n"; } else if (type == Far::PatchDescriptor::GREGORY_BASIS) { ss << "#define OSD_PATCH_GREGORY_BASIS\n"; } // include osd PatchCommon ss << Osd::GLSLPatchShaderSource::GetCommonShaderSource(); std::string common = ss.str(); ss.str(""); // vertex shader ss << common // enable local vertex shader << (effectDesc.desc.IsAdaptive() ? "" : "#define VERTEX_SHADER\n") << shaderSource() << Osd::GLSLPatchShaderSource::GetVertexShaderSource(type); config->CompileAndAttachShader(GL_VERTEX_SHADER, ss.str()); ss.str(""); if (effectDesc.desc.IsAdaptive()) { // tess control shader ss << common << shaderSource() << Osd::GLSLPatchShaderSource::GetTessControlShaderSource(type); config->CompileAndAttachShader(GL_TESS_CONTROL_SHADER, ss.str()); ss.str(""); // tess eval shader ss << common << shaderSource() << Osd::GLSLPatchShaderSource::GetTessEvalShaderSource(type); config->CompileAndAttachShader(GL_TESS_EVALUATION_SHADER, ss.str()); ss.str(""); } // geometry shader ss << common << "#define GEOMETRY_SHADER\n" << shaderSource(); config->CompileAndAttachShader(GL_GEOMETRY_SHADER, ss.str()); ss.str(""); // fragment shader ss << common << "#define FRAGMENT_SHADER\n" << shaderSource(); config->CompileAndAttachShader(GL_FRAGMENT_SHADER, ss.str()); ss.str(""); if (!config->Link()) { delete config; return NULL; } // assign uniform locations GLuint uboIndex; GLuint program = config->GetProgram(); uboIndex = glGetUniformBlockIndex(program, "Transform"); if (uboIndex != GL_INVALID_INDEX) glUniformBlockBinding(program, uboIndex, g_transformBinding); uboIndex = glGetUniformBlockIndex(program, "Tessellation"); if (uboIndex != GL_INVALID_INDEX) glUniformBlockBinding(program, uboIndex, g_tessellationBinding); uboIndex = glGetUniformBlockIndex(program, "Lighting"); if (uboIndex != GL_INVALID_INDEX) glUniformBlockBinding(program, uboIndex, g_lightingBinding); // assign texture locations GLint loc; glUseProgram(program); if ((loc = glGetUniformLocation(program, "OsdPatchParamBuffer")) != -1) { glUniform1i(loc, 0); // GL_TEXTURE0 } if ((loc = glGetUniformLocation(program, "OsdFVarDataBuffer")) != -1) { glUniform1i(loc, 1); // GL_TEXTURE1 } // for legacy gregory patches if ((loc = glGetUniformLocation(program, "OsdVertexBuffer")) != -1) { glUniform1i(loc, 2); // GL_TEXTURE2 } if ((loc = glGetUniformLocation(program, "OsdValenceBuffer")) != -1) { glUniform1i(loc, 3); // GL_TEXTURE3 } if ((loc = glGetUniformLocation(program, "OsdQuadOffsetBuffer")) != -1) { glUniform1i(loc, 4); // GL_TEXTURE4 } glUseProgram(0); return config; } }; ShaderCache g_shaderCache; //------------------------------------------------------------------------------ static void updateUniformBlocks() { if (! g_transformUB) { glGenBuffers(1, &g_transformUB); glBindBuffer(GL_UNIFORM_BUFFER, g_transformUB); glBufferData(GL_UNIFORM_BUFFER, sizeof(g_transformData), NULL, GL_STATIC_DRAW); }; glBindBuffer(GL_UNIFORM_BUFFER, g_transformUB); glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(g_transformData), &g_transformData); glBindBuffer(GL_UNIFORM_BUFFER, 0); glBindBufferBase(GL_UNIFORM_BUFFER, g_transformBinding, g_transformUB); // Update and bind tessellation state struct Tessellation { float TessLevel; } tessellationData; tessellationData.TessLevel = static_cast(1 << g_tessLevel); if (! g_tessellationUB) { glGenBuffers(1, &g_tessellationUB); glBindBuffer(GL_UNIFORM_BUFFER, g_tessellationUB); glBufferData(GL_UNIFORM_BUFFER, sizeof(tessellationData), NULL, GL_STATIC_DRAW); }; glBindBuffer(GL_UNIFORM_BUFFER, g_tessellationUB); glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(tessellationData), &tessellationData); glBindBuffer(GL_UNIFORM_BUFFER, 0); glBindBufferBase(GL_UNIFORM_BUFFER, g_tessellationBinding, g_tessellationUB); // Update and bind lighting state struct Lighting { struct Light { float position[4]; float ambient[4]; float diffuse[4]; float specular[4]; } lightSource[2]; } lightingData = { {{ { 0.5, 0.2f, 1.0f, 0.0f }, { 0.1f, 0.1f, 0.1f, 1.0f }, { 0.7f, 0.7f, 0.7f, 1.0f }, { 0.8f, 0.8f, 0.8f, 1.0f } }, { { -0.8f, 0.4f, -1.0f, 0.0f }, { 0.0f, 0.0f, 0.0f, 1.0f }, { 0.5f, 0.5f, 0.5f, 1.0f }, { 0.8f, 0.8f, 0.8f, 1.0f } }} }; if (! g_lightingUB) { glGenBuffers(1, &g_lightingUB); glBindBuffer(GL_UNIFORM_BUFFER, g_lightingUB); glBufferData(GL_UNIFORM_BUFFER, sizeof(lightingData), NULL, GL_STATIC_DRAW); }; glBindBuffer(GL_UNIFORM_BUFFER, g_lightingUB); glBufferSubData(GL_UNIFORM_BUFFER, 0, sizeof(lightingData), &lightingData); glBindBuffer(GL_UNIFORM_BUFFER, 0); glBindBufferBase(GL_UNIFORM_BUFFER, g_lightingBinding, g_lightingUB); } static void bindTextures() { // bind patch textures if (g_mesh->GetPatchTable()->GetPatchParamTextureBuffer()) { glActiveTexture(GL_TEXTURE0); glBindTexture(GL_TEXTURE_BUFFER, g_mesh->GetPatchTable()->GetPatchParamTextureBuffer()); } if (true) { glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_BUFFER, g_fvarData.textureBuffer); } // legacy gregory if (g_legacyGregoryPatchTable) { glActiveTexture(GL_TEXTURE2); glBindTexture(GL_TEXTURE_BUFFER, g_legacyGregoryPatchTable->GetVertexTextureBuffer()); glActiveTexture(GL_TEXTURE3); glBindTexture(GL_TEXTURE_BUFFER, g_legacyGregoryPatchTable->GetVertexValenceTextureBuffer()); glActiveTexture(GL_TEXTURE4); glBindTexture(GL_TEXTURE_BUFFER, g_legacyGregoryPatchTable->GetQuadOffsetsTextureBuffer()); } glActiveTexture(GL_TEXTURE0); } static GLenum bindProgram(Effect effect, OpenSubdiv::Osd::PatchArray const & patch) { EffectDesc effectDesc(patch.GetDescriptor(), effect); // only legacy gregory needs maxValence and numElements // neither legacy gregory nor gregory basis need single crease typedef OpenSubdiv::Far::PatchDescriptor Descriptor; if (patch.GetDescriptor().GetType() == Descriptor::GREGORY or patch.GetDescriptor().GetType() == Descriptor::GREGORY_BOUNDARY) { int maxValence = g_mesh->GetMaxValence(); int numElements = (g_shadingMode == kShadingInterleavedVaryingColor ? 7 : 3); effectDesc.maxValence = maxValence; effectDesc.numElements = numElements; effectDesc.effect.singleCreasePatch = 0; } if (patch.GetDescriptor().GetType() == Descriptor::GREGORY_BASIS) { effectDesc.effect.singleCreasePatch = 0; } // lookup shader cache (compile the shader if needed) GLDrawConfig *config = g_shaderCache.GetDrawConfig(effectDesc); if (!config) return 0; GLuint program = config->GetProgram(); glUseProgram(program); // bind standalone uniforms GLint uniformPrimitiveIdBase = glGetUniformLocation(program, "PrimitiveIdBase"); if (uniformPrimitiveIdBase >=0) glUniform1i(uniformPrimitiveIdBase, patch.GetPrimitiveIdBase()); // legacy gregory if (g_endCap == kEndCapLegacyGregory) { GLint uniformGregoryQuadOffsetBase = glGetUniformLocation(program, "GregoryQuadOffsetBase"); int quadOffsetBase = g_legacyGregoryPatchTable->GetQuadOffsetsBase(patch.GetDescriptor().GetType()); if (uniformGregoryQuadOffsetBase >= 0) glUniform1i(uniformGregoryQuadOffsetBase, quadOffsetBase); } // update uniform GLint uniformDiffuseColor = glGetUniformLocation(program, "diffuseColor"); if (uniformDiffuseColor >= 0) glUniform4f(uniformDiffuseColor, 0.4f, 0.4f, 0.8f, 1); // return primtype GLenum primType; switch(effectDesc.desc.GetType()) { case Descriptor::QUADS: primType = GL_LINES_ADJACENCY; break; case Descriptor::TRIANGLES: primType = GL_TRIANGLES; break; default: #if defined(GL_ARB_tessellation_shader) || defined(GL_VERSION_4_0) primType = GL_PATCHES; glPatchParameteri(GL_PATCH_VERTICES, effectDesc.desc.GetNumControlVertices()); #else primType = GL_POINTS; #endif break; } return primType; } //------------------------------------------------------------------------------ static void display() { Stopwatch s; s.Start(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glViewport(0, 0, g_width, g_height); g_hud.FillBackground(); // prepare view matrix double aspect = g_width/(double)g_height; identity(g_transformData.ModelViewMatrix); translate(g_transformData.ModelViewMatrix, -g_pan[0], -g_pan[1], -g_dolly); rotate(g_transformData.ModelViewMatrix, g_rotate[1], 1, 0, 0); rotate(g_transformData.ModelViewMatrix, g_rotate[0], 0, 1, 0); rotate(g_transformData.ModelViewMatrix, -90, 1, 0, 0); translate(g_transformData.ModelViewMatrix, -g_center[0], -g_center[1], -g_center[2]); perspective(g_transformData.ProjectionMatrix, 45.0f, (float)aspect, 0.1f, 500.0f); multMatrix(g_transformData.ModelViewProjectionMatrix, g_transformData.ModelViewMatrix, g_transformData.ProjectionMatrix); inverseMatrix(g_transformData.ModelViewInverseMatrix, g_transformData.ModelViewMatrix); // make sure that the vertex buffer is interoped back as a GL resources. GLuint vbo = g_mesh->BindVertexBuffer(); // vertex texture update for legacy gregory drawing if (g_legacyGregoryPatchTable) { glActiveTexture(GL_TEXTURE1); g_legacyGregoryPatchTable->UpdateVertexBuffer(vbo); } if (g_shadingMode == kShadingVaryingColor) g_mesh->BindVaryingBuffer(); // update transform and lighting uniform blocks updateUniformBlocks(); // also bind patch related textures bindTextures(); if (g_displayStyle == kDisplayStyleWire) glDisable(GL_CULL_FACE); glEnable(GL_DEPTH_TEST); glBindVertexArray(g_vao); OpenSubdiv::Osd::PatchArrayVector const & patches = g_mesh->GetPatchTable()->GetPatchArrays(); // patch drawing int patchCount[13]; // [Type] (see far/patchTable.h) int numTotalPatches = 0; int numDrawCalls = 0; memset(patchCount, 0, sizeof(patchCount)); // primitive counting glBeginQuery(GL_PRIMITIVES_GENERATED, g_queries[0]); #if defined(GL_VERSION_3_3) glBeginQuery(GL_TIME_ELAPSED, g_queries[1]); #endif // core draw-calls for (int i=0; i<(int)patches.size(); ++i) { OpenSubdiv::Osd::PatchArray const & patch = patches[i]; OpenSubdiv::Far::PatchDescriptor desc = patch.GetDescriptor(); OpenSubdiv::Far::PatchDescriptor::Type patchType = desc.GetType(); patchCount[patchType] += patch.GetNumPatches(); numTotalPatches += patch.GetNumPatches(); GLenum primType = bindProgram(GetEffect(), patch); glDrawElements(primType, patch.GetNumPatches() * desc.GetNumControlVertices(), GL_UNSIGNED_INT, (void *)(patch.GetIndexBase() * sizeof(unsigned int))); ++numDrawCalls; } s.Stop(); float drawCpuTime = float(s.GetElapsed() * 1000.0f); glEndQuery(GL_PRIMITIVES_GENERATED); #if defined(GL_VERSION_3_3) glEndQuery(GL_TIME_ELAPSED); #endif glBindVertexArray(0); glUseProgram(0); if (g_displayStyle == kDisplayStyleWire) glEnable(GL_CULL_FACE); // draw the control mesh int stride = g_shadingMode == kShadingInterleavedVaryingColor ? 7 : 3; g_controlMeshDisplay.Draw(vbo, stride*sizeof(float), g_transformData.ModelViewProjectionMatrix); glBindBuffer(GL_ARRAY_BUFFER, 0); GLuint numPrimsGenerated = 0; GLuint timeElapsed = 0; glGetQueryObjectuiv(g_queries[0], GL_QUERY_RESULT, &numPrimsGenerated); #if defined(GL_VERSION_3_3) glGetQueryObjectuiv(g_queries[1], GL_QUERY_RESULT, &timeElapsed); #endif float drawGpuTime = timeElapsed / 1000.0f / 1000.0f; g_fpsTimer.Stop(); float elapsed = (float)g_fpsTimer.GetElapsed(); if (not g_freeze) { g_animTime += elapsed; } g_fpsTimer.Start(); if (g_hud.IsVisible()) { typedef OpenSubdiv::Far::PatchDescriptor Descriptor; double fps = 1.0/elapsed; if (g_displayPatchCounts) { int x = -280; int y = -180; g_hud.DrawString(x, y, "NonPatch : %d", patchCount[Descriptor::QUADS]); y += 20; g_hud.DrawString(x, y, "Regular : %d", patchCount[Descriptor::REGULAR]); y+= 20; g_hud.DrawString(x, y, "Gregory : %d", patchCount[Descriptor::GREGORY]); y+= 20; g_hud.DrawString(x, y, "Boundary Gregory : %d", patchCount[Descriptor::GREGORY_BOUNDARY]); y+= 20; g_hud.DrawString(x, y, "Gregory Basis : %d", patchCount[Descriptor::GREGORY_BASIS]); y+= 20; } int y = -220; g_hud.DrawString(10, y, "Tess level : %d", g_tessLevel); y+= 20; g_hud.DrawString(10, y, "Patches : %d", numTotalPatches); y+= 20; g_hud.DrawString(10, y, "Draw calls : %d", numDrawCalls); y+= 20; g_hud.DrawString(10, y, "Primitives : %d", numPrimsGenerated); y+= 20; g_hud.DrawString(10, y, "Vertices : %d", g_mesh->GetNumVertices()); y+= 20; g_hud.DrawString(10, y, "GPU Kernel : %.3f ms", g_gpuTime); y+= 20; g_hud.DrawString(10, y, "CPU Kernel : %.3f ms", g_cpuTime); y+= 20; g_hud.DrawString(10, y, "GPU Draw : %.3f ms", drawGpuTime); y+= 20; g_hud.DrawString(10, y, "CPU Draw : %.3f ms", drawCpuTime); y+= 20; g_hud.DrawString(10, y, "FPS : %3.1f", fps); y+= 20; g_hud.Flush(); } glFinish(); GLUtils::CheckGLErrors("display leave\n"); } //------------------------------------------------------------------------------ static void motion(GLFWwindow *, double dx, double dy) { int x=(int)dx, y=(int)dy; if (g_hud.MouseCapture()) { // check gui g_hud.MouseMotion(x, y); } else if (g_mbutton[0] && !g_mbutton[1] && !g_mbutton[2]) { // orbit g_rotate[0] += x - g_prev_x; g_rotate[1] += y - g_prev_y; } else if (!g_mbutton[0] && !g_mbutton[1] && g_mbutton[2]) { // pan g_pan[0] -= g_dolly*(x - g_prev_x)/g_width; g_pan[1] += g_dolly*(y - g_prev_y)/g_height; } else if ((g_mbutton[0] && !g_mbutton[1] && g_mbutton[2]) or (!g_mbutton[0] && g_mbutton[1] && !g_mbutton[2])) { // dolly g_dolly -= g_dolly*0.01f*(x - g_prev_x); if(g_dolly <= 0.01) g_dolly = 0.01f; } g_prev_x = x; g_prev_y = y; } //------------------------------------------------------------------------------ static void mouse(GLFWwindow *, int button, int state, int /* mods */) { if (state == GLFW_RELEASE) g_hud.MouseRelease(); if (button == 0 && state == GLFW_PRESS && g_hud.MouseClick(g_prev_x, g_prev_y)) return; if (button < 3) { g_mbutton[button] = (state == GLFW_PRESS); } } //------------------------------------------------------------------------------ static void uninitGL() { glDeleteQueries(2, g_queries); glDeleteVertexArrays(1, &g_vao); if (g_mesh) delete g_mesh; if (g_legacyGregoryPatchTable) delete g_legacyGregoryPatchTable; } //------------------------------------------------------------------------------ static void reshape(GLFWwindow *, int width, int height) { g_width = width; g_height = height; int windowWidth = g_width, windowHeight = g_height; // window size might not match framebuffer size on a high DPI display glfwGetWindowSize(g_window, &windowWidth, &windowHeight); g_hud.Rebuild(windowWidth, windowHeight, width, height); } //------------------------------------------------------------------------------ void windowClose(GLFWwindow*) { g_running = false; } //------------------------------------------------------------------------------ static void toggleFullScreen() { // XXXX manuelk : to re-implement from glut } //------------------------------------------------------------------------------ static void keyboard(GLFWwindow *, int key, int /* scancode */, int event, int /* mods */) { if (event == GLFW_RELEASE) return; if (g_hud.KeyDown(tolower(key))) return; switch (key) { case 'Q': g_running = 0; break; case 'F': fitFrame(); break; case GLFW_KEY_TAB: toggleFullScreen(); break; case '+': case '=': g_tessLevel++; break; case '-': g_tessLevel = std::max(g_tessLevelMin, g_tessLevel-1); break; case GLFW_KEY_ESCAPE: g_hud.SetVisible(!g_hud.IsVisible()); break; case 'X': GLUtils::WriteScreenshot(g_width, g_height); break; } } //------------------------------------------------------------------------------ static void callbackDisplayStyle(int b) { g_displayStyle = b; } static void callbackShadingMode(int b) { if (g_shadingMode == kShadingVaryingColor or b == kShadingVaryingColor or g_shadingMode == kShadingInterleavedVaryingColor or b == kShadingInterleavedVaryingColor or g_shadingMode == kShadingFaceVaryingColor or b == kShadingFaceVaryingColor) { // need to rebuild for varying reconstruct g_shadingMode = b; rebuildMesh(); return; } g_shadingMode = b; } static void callbackEndCap(int endCap) { g_endCap = endCap; rebuildMesh(); } static void callbackKernel(int k) { g_kernel = k; #ifdef OPENSUBDIV_HAS_OPENCL if (g_kernel == kCL and (not g_clDeviceContext.IsInitialized())) { if (g_clDeviceContext.Initialize() == false) { printf("Error in initializing OpenCL\n"); exit(1); } } #endif #ifdef OPENSUBDIV_HAS_CUDA if (g_kernel == kCUDA and (not g_cudaDeviceContext.IsInitialized())) { if (g_cudaDeviceContext.Initialize() == false) { printf("Error in initializing Cuda\n"); exit(1); } } #endif rebuildMesh(); } static void callbackLevel(int l) { g_level = l; rebuildMesh(); } static void callbackModel(int m) { if (m < 0) m = 0; if (m >= (int)g_defaultShapes.size()) m = (int)g_defaultShapes.size() - 1; g_currentShape = m; rebuildMesh(); } static void callbackCheckBox(bool checked, int button) { if (GLUtils::SupportsAdaptiveTessellation()) { switch(button) { case kHUD_CB_ADAPTIVE: g_adaptive = checked; rebuildMesh(); return; case kHUD_CB_SINGLE_CREASE_PATCH: g_singleCreasePatch = checked; rebuildMesh(); return; default: break; } } switch (button) { case kHUD_CB_DISPLAY_CONTROL_MESH_EDGES: g_controlMeshDisplay.SetEdgesDisplay(checked); break; case kHUD_CB_DISPLAY_CONTROL_MESH_VERTS: g_controlMeshDisplay.SetVerticesDisplay(checked); break; case kHUD_CB_ANIMATE_VERTICES: g_moveScale = checked; break; case kHUD_CB_VIEW_LOD: g_screenSpaceTess = checked; break; case kHUD_CB_FRACTIONAL_SPACING: g_fractionalSpacing = checked; break; case kHUD_CB_PATCH_CULL: g_patchCull = checked; break; case kHUD_CB_FREEZE: g_freeze = checked; break; case kHUD_CB_DISPLAY_PATCH_COUNTS: g_displayPatchCounts = checked; break; } } static void initHUD() { int windowWidth = g_width, windowHeight = g_height; int frameBufferWidth = g_width, frameBufferHeight = g_height; // window size might not match framebuffer size on a high DPI display glfwGetWindowSize(g_window, &windowWidth, &windowHeight); glfwGetFramebufferSize(g_window, &frameBufferWidth, &frameBufferHeight); g_hud.Init(windowWidth, windowHeight, frameBufferWidth, frameBufferHeight); int y = 10; g_hud.AddCheckBox("Control edges (H)", g_controlMeshDisplay.GetEdgesDisplay(), 10, y, callbackCheckBox, kHUD_CB_DISPLAY_CONTROL_MESH_EDGES, 'h'); y += 20; g_hud.AddCheckBox("Control vertices (J)", g_controlMeshDisplay.GetVerticesDisplay(), 10, y, callbackCheckBox, kHUD_CB_DISPLAY_CONTROL_MESH_VERTS, 'j'); y += 20; g_hud.AddCheckBox("Animate vertices (M)", g_moveScale != 0, 10, y, callbackCheckBox, kHUD_CB_ANIMATE_VERTICES, 'm'); y += 20; g_hud.AddCheckBox("Screen space LOD (V)", g_screenSpaceTess != 0, 10, y, callbackCheckBox, kHUD_CB_VIEW_LOD, 'v'); y += 20; g_hud.AddCheckBox("Fractional spacing (T)", g_fractionalSpacing != 0, 10, y, callbackCheckBox, kHUD_CB_FRACTIONAL_SPACING, 't'); y += 20; g_hud.AddCheckBox("Frustum Patch Culling (B)", g_patchCull != 0, 10, y, callbackCheckBox, kHUD_CB_PATCH_CULL, 'b'); y += 20; g_hud.AddCheckBox("Freeze (spc)", g_freeze != 0, 10, y, callbackCheckBox, kHUD_CB_FREEZE, ' '); y += 20; int displaystyle_pulldown = g_hud.AddPullDown("DisplayStyle (W)", 200, 10, 250, callbackDisplayStyle, 'w'); g_hud.AddPullDownButton(displaystyle_pulldown, "Wire", kDisplayStyleWire, g_displayStyle == kDisplayStyleWire); g_hud.AddPullDownButton(displaystyle_pulldown, "Shaded", kDisplayStyleShaded, g_displayStyle == kDisplayStyleShaded); g_hud.AddPullDownButton(displaystyle_pulldown, "Wire+Shaded", kDisplayStyleWireOnShaded, g_displayStyle == kDisplayStyleWireOnShaded); int shading_pulldown = g_hud.AddPullDown("Shading (C)", 200, 70, 250, callbackShadingMode, 'c'); g_hud.AddPullDownButton(shading_pulldown, "Material", kShadingMaterial, g_shadingMode == kShadingMaterial); g_hud.AddPullDownButton(shading_pulldown, "Varying Color", kShadingVaryingColor, g_shadingMode == kShadingVaryingColor); g_hud.AddPullDownButton(shading_pulldown, "Varying Color (Interleaved)", kShadingInterleavedVaryingColor, g_shadingMode == kShadingInterleavedVaryingColor); g_hud.AddPullDownButton(shading_pulldown, "FaceVarying Color", kShadingFaceVaryingColor, g_shadingMode == kShadingFaceVaryingColor); g_hud.AddPullDownButton(shading_pulldown, "Patch Type", kShadingPatchType, g_shadingMode == kShadingPatchType); g_hud.AddPullDownButton(shading_pulldown, "Patch Coord", kShadingPatchCoord, g_shadingMode == kShadingPatchCoord); g_hud.AddPullDownButton(shading_pulldown, "Normal", kShadingNormal, g_shadingMode == kShadingNormal); g_hud.AddPullDownButton(shading_pulldown, "Curvature", kShadingCurvature, g_shadingMode == kShadingCurvature); g_hud.AddPullDownButton(shading_pulldown, "Analytic Curvature", kShadingAnalyticCurvature, g_shadingMode == kShadingAnalyticCurvature); int compute_pulldown = g_hud.AddPullDown("Compute (K)", 475, 10, 300, callbackKernel, 'k'); g_hud.AddPullDownButton(compute_pulldown, "CPU", kCPU); #ifdef OPENSUBDIV_HAS_OPENMP g_hud.AddPullDownButton(compute_pulldown, "OpenMP", kOPENMP); #endif #ifdef OPENSUBDIV_HAS_TBB g_hud.AddPullDownButton(compute_pulldown, "TBB", kTBB); #endif #ifdef OPENSUBDIV_HAS_CUDA g_hud.AddPullDownButton(compute_pulldown, "CUDA", kCUDA); #endif #ifdef OPENSUBDIV_HAS_OPENCL if (CLDeviceContext::HAS_CL_VERSION_1_1()) { g_hud.AddPullDownButton(compute_pulldown, "OpenCL", kCL); } #endif #ifdef OPENSUBDIV_HAS_GLSL_TRANSFORM_FEEDBACK g_hud.AddPullDownButton(compute_pulldown, "GLSL TransformFeedback", kGLSL); #endif #ifdef OPENSUBDIV_HAS_GLSL_COMPUTE if (GLUtils::GL_ARBComputeShaderOrGL_VERSION_4_3()) { g_hud.AddPullDownButton(compute_pulldown, "GLSL Compute", kGLSLCompute); } #endif if (GLUtils::SupportsAdaptiveTessellation()) { g_hud.AddCheckBox("Adaptive (`)", g_adaptive!=0, 10, 190, callbackCheckBox, kHUD_CB_ADAPTIVE, '`'); g_hud.AddCheckBox("Single Crease Patch (S)", g_singleCreasePatch!=0, 10, 210, callbackCheckBox, kHUD_CB_SINGLE_CREASE_PATCH, 's'); int endcap_pulldown = g_hud.AddPullDown( "End cap (E)", 10, 230, 200, callbackEndCap, 'e'); g_hud.AddPullDownButton(endcap_pulldown,"None", kEndCapNone, g_endCap == kEndCapNone); g_hud.AddPullDownButton(endcap_pulldown, "BSpline", kEndCapBSplineBasis, g_endCap == kEndCapBSplineBasis); g_hud.AddPullDownButton(endcap_pulldown, "GregoryBasis", kEndCapGregoryBasis, g_endCap == kEndCapGregoryBasis); g_hud.AddPullDownButton(endcap_pulldown, "LegacyGregory", kEndCapLegacyGregory, g_endCap == kEndCapLegacyGregory); } for (int i = 1; i < 11; ++i) { char level[16]; sprintf(level, "Lv. %d", i); g_hud.AddRadioButton(3, level, i==2, 10, 310+i*20, callbackLevel, i, '0'+(i%10)); } int shapes_pulldown = g_hud.AddPullDown("Shape (N)", -300, 10, 300, callbackModel, 'n'); for (int i = 0; i < (int)g_defaultShapes.size(); ++i) { g_hud.AddPullDownButton(shapes_pulldown, g_defaultShapes[i].name.c_str(),i); } g_hud.AddCheckBox("Show patch counts", g_displayPatchCounts!=0, -280, -20, callbackCheckBox, kHUD_CB_DISPLAY_PATCH_COUNTS); g_hud.Rebuild(windowWidth, windowHeight, frameBufferWidth, frameBufferHeight); } //------------------------------------------------------------------------------ static void initGL() { glClearColor(0.1f, 0.1f, 0.1f, 1.0f); glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LEQUAL); glCullFace(GL_BACK); glEnable(GL_CULL_FACE); glGenQueries(2, g_queries); glGenVertexArrays(1, &g_vao); } //------------------------------------------------------------------------------ static void idle() { if (not g_freeze) { g_frame++; updateGeom(); } if (g_repeatCount != 0 and g_frame >= g_repeatCount) g_running = 0; } //------------------------------------------------------------------------------ static void callbackErrorOsd(OpenSubdiv::Far::ErrorType err, const char *message) { printf("Error: %d\n", err); printf("%s", message); } //------------------------------------------------------------------------------ static void callbackErrorGLFW(int error, const char* description) { fprintf(stderr, "GLFW Error (%d) : %s\n", error, description); } //------------------------------------------------------------------------------ //------------------------------------------------------------------------------ int main(int argc, char ** argv) { bool fullscreen = false; std::string str; std::vector animobjs; for (int i = 1; i < argc; ++i) { if (strstr(argv[i], ".obj")) { animobjs.push_back(argv[i]); } else if (!strcmp(argv[i], "-axis")) { g_axis = false; } else if (!strcmp(argv[i], "-d")) { g_level = atoi(argv[++i]); } else if (!strcmp(argv[i], "-c")) { g_repeatCount = atoi(argv[++i]); } else if (!strcmp(argv[i], "-f")) { fullscreen = true; } else { std::ifstream ifs(argv[1]); if (ifs) { std::stringstream ss; ss << ifs.rdbuf(); ifs.close(); str = ss.str(); g_defaultShapes.push_back(ShapeDesc(argv[1], str.c_str(), kCatmark)); } } } if (not animobjs.empty()) { g_defaultShapes.push_back(ShapeDesc(animobjs[0], "", kCatmark)); g_objAnim = ObjAnim::Create(animobjs, g_axis); } initShapes(); g_fpsTimer.Start(); OpenSubdiv::Far::SetErrorCallback(callbackErrorOsd); glfwSetErrorCallback(callbackErrorGLFW); if (not glfwInit()) { printf("Failed to initialize GLFW\n"); return 1; } static const char windowTitle[] = "OpenSubdiv glViewer " OPENSUBDIV_VERSION_STRING; GLUtils::SetMinimumGLVersion(argc, argv); if (fullscreen) { g_primary = glfwGetPrimaryMonitor(); // apparently glfwGetPrimaryMonitor fails under linux : if no primary, // settle for the first one in the list if (not g_primary) { int count = 0; GLFWmonitor ** monitors = glfwGetMonitors(&count); if (count) g_primary = monitors[0]; } if (g_primary) { GLFWvidmode const * vidmode = glfwGetVideoMode(g_primary); g_width = vidmode->width; g_height = vidmode->height; } } g_window = glfwCreateWindow(g_width, g_height, windowTitle, fullscreen and g_primary ? g_primary : NULL, NULL); if (not g_window) { std::cerr << "Failed to create OpenGL context.\n"; glfwTerminate(); return 1; } glfwMakeContextCurrent(g_window); GLUtils::PrintGLVersion(); // accommocate high DPI displays (e.g. mac retina displays) glfwGetFramebufferSize(g_window, &g_width, &g_height); glfwSetFramebufferSizeCallback(g_window, reshape); glfwSetKeyCallback(g_window, keyboard); glfwSetCursorPosCallback(g_window, motion); glfwSetMouseButtonCallback(g_window, mouse); glfwSetWindowCloseCallback(g_window, windowClose); #if defined(OSD_USES_GLEW) #ifdef CORE_PROFILE // this is the only way to initialize glew correctly under core profile context. glewExperimental = true; #endif if (GLenum r = glewInit() != GLEW_OK) { printf("Failed to initialize glew. Error = %s\n", glewGetErrorString(r)); exit(1); } #ifdef CORE_PROFILE // clear GL errors which was generated during glewInit() glGetError(); #endif #endif // activate feature adaptive tessellation if OSD supports it g_adaptive = GLUtils::SupportsAdaptiveTessellation(); initGL(); glfwSwapInterval(0); initHUD(); rebuildMesh(); while (g_running) { idle(); display(); glfwPollEvents(); glfwSwapBuffers(g_window); glFinish(); } uninitGL(); glfwTerminate(); } //------------------------------------------------------------------------------