#pragma once #include #include #include #include #include #include #include // // A few basic linear algebra operations // // // Make the given matrix an identity matrix // inline void setIdentity(float* m) { m[0] = m[5] = m[10] = m[15] = 1.0f; m[1] = m[2] = m[3] = m[4] = m[6] = m[7] = m[8] = m[9] = m[11] = m[12] = m[13] = m[14] = 0.0f; } // // Multiply A * B and store the result in D // inline void multMatrix(float *d, const float *a, const float *b) { for (int i=0; i<4; ++i) { for (int j=0; j<4; ++j) { d[i*4 + j] = a[i*4 + 0] * b[0*4 + j] + a[i*4 + 1] * b[1*4 + j] + a[i*4 + 2] * b[2*4 + j] + a[i*4 + 3] * b[3*4 + j]; } } } // // Create a perspective projection matrix // void setPersp( GLdouble fov, GLdouble aspect, GLdouble znear, GLdouble zfar, float* m ) { float xymax = znear * tan(fov * 3.141592653589793238462 / 360.); float ymin = -xymax; float xmin = -xymax; float width = xymax - xmin; float height = xymax - ymin; float depth = zfar - znear; float q = -(zfar + znear) / depth; float qn = -2 * (zfar * znear) / depth; float w = 2 * znear / width; w = w / aspect; float h = 2 * znear / height; m[0] = w; m[1] = 0; m[2] = 0; m[3] = 0; m[4] = 0; m[5] = h; m[6] = 0; m[7] = 0; m[8] = 0; m[9] = 0; m[10] = q; m[11] = -1; m[12] = 0; m[13] = 0; m[14] = qn; m[15] = 0; } // // Apply a translation to the given matrix m // void translateMatrix(float x, float y, float z, float* m) { m[0] += m[3]*x; m[4] += m[7]*x; m[8] += m[11]*x; m[12] += m[15]*x; m[1] += m[3]*y; m[5] += m[7]*y; m[9] += m[11]*y; m[13] += m[15]*y; m[2] += m[3]*z; m[6] += m[7]*z; m[10]+= m[11]*z; m[14] += m[15]*z; } // // Apply a rotation to the given matrix m // void rotateMatrix(float angle, float x, float y, float z, float* m) { float rads = (2*3.14159 / 360.) * angle; float c = cosf(rads); float s = sinf(rads); float xx = x * x; float xy = x * y; float xz = x * z; float yy = y * y; float yz = y * z; float zz = z * z; float m2[16]; m2[0] = xx * (1 - c) + c; m2[4] = xy * (1 - c) - z * s; m2[8] = xz * (1 - c) + y * s; m2[12] = 0; m2[1] = xy * (1 - c) + z * s; m2[5] = yy * (1 - c) + c; m2[9] = yz * (1 - c) - x * s; m2[13] = 0; m2[2] = xz * (1 - c) - y * s; m2[6] = yz * (1 - c) + x * s; m2[10]= zz * (1 - c) + c; m2[14]= 0; m2[3]= 0; m2[7]= 0; m2[11]= 0; m2[15]= 1; float mOrig[16]; for (int i = 0; i < 16; i++) mOrig[i] = m[i]; multMatrix(m, mOrig, m2); } // // Print out the matrix (as usual, column-major order is assumed) // inline void printMatrix(float* m) { for (int r = 0; r < 4; r++) { std::cout << " "; for (int c = 0; c < 4; c++) { std::cout << std::setprecision(3) << m[c*4 + r]; if (c != 3) std::cout << ","; else std::cout << std::endl; } } } // // Perform a cross-product of three points to calculate a face normal // inline void cross(float *n, const float *p0, const float *p1, const float *p2) { float a[3] = { p1[0]-p0[0], p1[1]-p0[1], p1[2]-p0[2] }; float b[3] = { p2[0]-p0[0], p2[1]-p0[1], p2[2]-p0[2] }; n[0] = a[1]*b[2]-a[2]*b[1]; n[1] = a[2]*b[0]-a[0]*b[2]; n[2] = a[0]*b[1]-a[1]*b[0]; float rn = 1.0f/sqrtf(n[0]*n[0] + n[1]*n[1] + n[2]*n[2]); n[0] *= rn; n[1] *= rn; n[2] *= rn; } // // Normalize the given vector // inline void normalize(float * p) { float dist = sqrtf( p[0]*p[0] + p[1]*p[1] + p[2]*p[2] ); p[0]/=dist; p[1]/=dist; p[2]/=dist; } // // Compute the center of the list of points and the size of the bound // inline void computeCenterAndSize(const std::vector& positions, float* center, float* size) { float fmax = std::numeric_limits().max(), fmin = std::numeric_limits().min(); float min[3] = { fmax, fmax, fmax}; float max[3] = { fmin, fmin, fmin}; for (size_t i=0; i < positions.size()/3; ++i) { for(int j=0; j<3; ++j) { float v = positions[i*3+j]; min[j] = std::min(min[j], v); max[j] = std::max(max[j], v); } } for (int j=0; j<3; ++j) { center[j] = (min[j] + max[j]) * 0.5f; *size += (max[j]-min[j])*(max[j]-min[j]); } *size = sqrtf(*size); }