// // Copyright 2013 Pixar // // Licensed under the Apache License, Version 2.0 (the "Apache License") // with the following modification; you may not use this file except in // compliance with the Apache License and the following modification to it: // Section 6. Trademarks. is deleted and replaced with: // // 6. Trademarks. This License does not grant permission to use the trade // names, trademarks, service marks, or product names of the Licensor // and its affiliates, except as required to comply with Section 4(c) of // the License and to reproduce the content of the NOTICE file. // // You may obtain a copy of the Apache License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the Apache License with the above modification is // distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the Apache License for the specific // language governing permissions and limitations under the Apache License. // #include "../common/glUtils.h" #include GLFWwindow* g_window=0; GLFWmonitor* g_primary=0; #include #include #include #include #include #ifdef OPENSUBDIV_HAS_TBB #include #endif #ifdef OPENSUBDIV_HAS_OPENMP #include #endif #ifdef OPENSUBDIV_HAS_CUDA #include #include #include #include #include "../common/cudaDeviceContext.h" CudaDeviceContext g_cudaDeviceContext; #endif #ifdef OPENSUBDIV_HAS_OPENCL #include #include #include #include #include "../common/clDeviceContext.h" CLDeviceContext g_clDeviceContext; #endif #ifdef OPENSUBDIV_HAS_GLSL_TRANSFORM_FEEDBACK #include #include #include #endif #ifdef OPENSUBDIV_HAS_GLSL_COMPUTE #include #include #include #endif #include #include #include #include #include "../../regression/common/far_utils.h" #include "../common/argOptions.h" #include "../common/viewerArgsUtils.h" #include "../common/stopwatch.h" #include "../common/simple_math.h" #include "../common/glControlMeshDisplay.h" #include "../common/glHud.h" #include "init_shapes.h" #include "particles.h" #include #include #include #include #include #include using namespace OpenSubdiv; //------------------------------------------------------------------------------ enum KernelType { kCPU = 0, kOPENMP = 1, kTBB = 2, kCUDA = 3, kCL = 4, kGLXFB = 5, kGLCompute = 6 }; enum EndCap { kEndCapBilinearBasis, kEndCapBSplineBasis, kEndCapGregoryBasis }; enum HudCheckBox { kHUD_CB_DISPLAY_CONTROL_MESH_EDGES, kHUD_CB_DISPLAY_CONTROL_MESH_VERTS, kHUD_CB_ANIMATE_VERTICES, kHUD_CB_ANIMATE_PARTICLES, kHUD_CB_RANDOM_START, kHUD_CB_FREEZE, kHUD_CB_ADAPTIVE, kHUD_CB_SMOOTH_CORNER_PATCH, kHUD_CB_SINGLE_CREASE_PATCH, kHUD_CB_INF_SHARP_PATCH }; enum DrawMode { kUV, kVARYING, kNORMAL, kSHADE, kFACEVARYING, kMEAN_CURVATURE }; std::vector g_orgPositions, g_positions, g_varyingColors; int g_currentShape = 0, g_adaptive = 1, g_level = 2, g_kernel = kCPU, g_endCap = kEndCapGregoryBasis, g_smoothCornerPatch = 1, g_singleCreasePatch = 0, g_infSharpPatch = 1, g_numElements = 3; int g_running = 1, g_width = 1024, g_height = 1024, g_fullscreen = 0, g_drawMode = kUV, g_prev_x = 0, g_prev_y = 0, g_mbutton[3] = {0, 0, 0}, g_frame=0, g_freeze=0, g_repeatCount; float g_rotate[2] = {0, 0}, g_dolly = 5, g_pan[2] = {0, 0}, g_center[3] = {0, 0, 0}, g_size = 0, g_moveScale = 0.0f; bool g_yup = false; GLuint g_transformUB = 0, g_transformBinding = 0; struct Transform { float ModelViewMatrix[16]; float ProjectionMatrix[16]; float ModelViewProjectionMatrix[16]; } g_transformData; OpenSubdiv::Sdc::Options::FVarLinearInterpolation g_fvarBoundary = //OpenSubdiv::Sdc::Options::FVAR_LINEAR_ALL; OpenSubdiv::Sdc::Options::FVAR_LINEAR_CORNERS_ONLY; // performance float g_evalTime = 0; float g_computeTime = 0; float g_prevTime = 0; float g_currentTime = 0; Stopwatch g_fpsTimer; //------------------------------------------------------------------------------ int g_nParticles = 65536; bool g_randomStart = true;//false; bool g_animParticles = true; GLuint g_samplesVAO=0; GLhud g_hud; GLControlMeshDisplay g_controlMeshDisplay; //------------------------------------------------------------------------------ struct Program { GLuint program; GLuint uniformModelViewMatrix; GLuint uniformProjectionMatrix; GLuint uniformDrawMode; GLuint attrPosition; GLuint attrColor; GLuint attrDu; GLuint attrDv; GLuint attrDuu; GLuint attrDuv; GLuint attrDvv; GLuint attrPatchCoord; GLuint attrFVarData; } g_defaultProgram; //------------------------------------------------------------------------------ static void createRandomColors(int nverts, int stride, float * colors) { // large Pell prime number srand( static_cast(2147483647) ); for (int i=0; i const &patchCoords) = 0; }; // note: Since we don't have a class for device-patchcoord container in osd, // we cheat to use vertexbuffer as a patch-coord (5int) container. // // Please don't follow the pattern in your actual application. // template class EvalOutput : public EvalOutputBase { public: typedef OpenSubdiv::Osd::EvaluatorCacheT EvaluatorCache; EvalOutput(Far::StencilTable const *vertexStencils, Far::StencilTable const *varyingStencils, Far::StencilTable const *faceVaryingStencils, int fvarChannel, int fvarWidth, int numParticles, Far::PatchTable const *patchTable, EvaluatorCache *evaluatorCache = NULL, DEVICE_CONTEXT *deviceContext = NULL) : _srcDesc( /*offset*/ 0, /*length*/ 3, /*stride*/ 3), _srcVaryingDesc(/*offset*/ 0, /*length*/ 3, /*stride*/ 3), _srcFVarDesc( /*offset*/ 0, /*length*/ fvarWidth, /*stride*/ fvarWidth), _vertexDesc( /*offset*/ 0, /*length*/ 3, /*stride*/ 6), _varyingDesc( /*offset*/ 3, /*length*/ 3, /*stride*/ 6), _fvarDesc( /*offset*/ 0, /*length*/ fvarWidth, /*stride*/ fvarWidth), _duDesc( /*offset*/ 0, /*length*/ 3, /*stride*/ 6), _dvDesc( /*offset*/ 3, /*length*/ 3, /*stride*/ 6), _duuDesc( /*offset*/ 0, /*length*/ 3, /*stride*/ 9), _duvDesc( /*offset*/ 3, /*length*/ 3, /*stride*/ 9), _dvvDesc( /*offset*/ 6, /*length*/ 3, /*stride*/ 9), _deviceContext(deviceContext) { // total number of vertices = coarse points + refined points + local points int numTotalVerts = vertexStencils->GetNumControlVertices() + vertexStencils->GetNumStencils(); _srcData = SRC_VERTEX_BUFFER::Create(3, numTotalVerts, _deviceContext); _srcVaryingData = SRC_VERTEX_BUFFER::Create(3, numTotalVerts, _deviceContext); _vertexData = EVAL_VERTEX_BUFFER::Create(6, numParticles, _deviceContext); _deriv1 = EVAL_VERTEX_BUFFER::Create(6, numParticles, _deviceContext); _deriv2 = EVAL_VERTEX_BUFFER::Create(9, numParticles, _deviceContext); _patchTable = PATCH_TABLE::Create(patchTable, _deviceContext); _patchCoords = NULL; _numCoarseVerts = vertexStencils->GetNumControlVertices(); _vertexStencils = Osd::convertToCompatibleStencilTable(vertexStencils, _deviceContext); _varyingStencils = Osd::convertToCompatibleStencilTable(varyingStencils, _deviceContext); if (faceVaryingStencils) { _numCoarseFVarVerts = faceVaryingStencils->GetNumControlVertices(); int numTotalFVarVerts = faceVaryingStencils->GetNumControlVertices() + faceVaryingStencils->GetNumStencils(); _srcFVarData = EVAL_VERTEX_BUFFER::Create(2, numTotalFVarVerts, _deviceContext); _fvarData = EVAL_VERTEX_BUFFER::Create(fvarWidth, numParticles, _deviceContext); _faceVaryingStencils = Osd::convertToCompatibleStencilTable(faceVaryingStencils, _deviceContext); _fvarChannel = fvarChannel; _fvarWidth = fvarWidth; } else { _numCoarseFVarVerts = 0; _srcFVarData = NULL; _fvarData = NULL; _faceVaryingStencils = NULL; _fvarChannel = 0; _fvarWidth = 0; } _evaluatorCache = evaluatorCache; } ~EvalOutput() { delete _srcData; delete _srcVaryingData; delete _srcFVarData; delete _vertexData; delete _deriv1; delete _deriv2; delete _fvarData; delete _patchTable; delete _patchCoords; delete _vertexStencils; delete _varyingStencils; delete _faceVaryingStencils; } virtual GLuint BindSourceData() const { return _srcData->BindVBO(); } virtual GLuint BindVertexData() const { return _vertexData->BindVBO(); } virtual GLuint Bind1stDerivatives() const { return _deriv1->BindVBO(); } virtual GLuint Bind2ndDerivatives() const { return _deriv2->BindVBO(); } virtual GLuint BindFaceVaryingData() const { return _fvarData->BindVBO(); } virtual GLuint BindPatchCoords() const { return _patchCoords->BindVBO(); } virtual void UpdateData(const float *src, int startVertex, int numVertices) { _srcData->UpdateData(src, startVertex, numVertices, _deviceContext); } virtual void UpdateVaryingData(const float *src, int startVertex, int numVertices) { _srcVaryingData->UpdateData(src, startVertex, numVertices, _deviceContext); } virtual void UpdateFaceVaryingData(const float *src, int startVertex, int numVertices) { _srcFVarData->UpdateData(src, startVertex, numVertices, _deviceContext); } virtual bool HasFaceVaryingData() const { return _faceVaryingStencils != NULL; } virtual void Refine() { Osd::BufferDescriptor dstDesc = _srcDesc; dstDesc.offset += _numCoarseVerts * _srcDesc.stride; EVALUATOR const *evalInstance = OpenSubdiv::Osd::GetEvaluator( _evaluatorCache, _srcDesc, dstDesc, _deviceContext); EVALUATOR::EvalStencils(_srcData, _srcDesc, _srcData, dstDesc, _vertexStencils, evalInstance, _deviceContext); dstDesc = _srcVaryingDesc; dstDesc.offset += _numCoarseVerts * _srcVaryingDesc.stride; evalInstance = OpenSubdiv::Osd::GetEvaluator( _evaluatorCache, _srcVaryingDesc, dstDesc, _deviceContext); EVALUATOR::EvalStencils(_srcVaryingData, _srcVaryingDesc, _srcVaryingData, dstDesc, _varyingStencils, evalInstance, _deviceContext); if (HasFaceVaryingData()) { Osd::BufferDescriptor dstFVarDesc = _srcFVarDesc; dstFVarDesc.offset += _numCoarseFVarVerts * _srcFVarDesc.stride; evalInstance = OpenSubdiv::Osd::GetEvaluator( _evaluatorCache, _srcFVarDesc, dstFVarDesc, _deviceContext); EVALUATOR::EvalStencils(_srcFVarData, _srcFVarDesc, _srcFVarData, dstFVarDesc, _faceVaryingStencils, evalInstance, _deviceContext); } } virtual void EvalPatches() { EVALUATOR const *evalInstance = OpenSubdiv::Osd::GetEvaluator( _evaluatorCache, _srcDesc, _vertexDesc, _deviceContext); EVALUATOR::EvalPatches( _srcData, _srcDesc, _vertexData, _vertexDesc, _patchCoords->GetNumVertices(), _patchCoords, _patchTable, evalInstance, _deviceContext); } virtual void EvalPatchesWith1stDerivatives() { EVALUATOR const *evalInstance = OpenSubdiv::Osd::GetEvaluator( _evaluatorCache, _srcDesc, _vertexDesc, _duDesc, _dvDesc, _deviceContext); EVALUATOR::EvalPatches( _srcData, _srcDesc, _vertexData, _vertexDesc, _deriv1, _duDesc, _deriv1, _dvDesc, _patchCoords->GetNumVertices(), _patchCoords, _patchTable, evalInstance, _deviceContext); } virtual void EvalPatchesWith2ndDerivatives() { EVALUATOR const *evalInstance = OpenSubdiv::Osd::GetEvaluator( _evaluatorCache, _srcDesc, _vertexDesc, _duDesc, _dvDesc, _duuDesc, _duvDesc, _dvvDesc, _deviceContext); EVALUATOR::EvalPatches( _srcData, _srcDesc, _vertexData, _vertexDesc, _deriv1, _duDesc, _deriv1, _dvDesc, _deriv2, _duuDesc, _deriv2, _duvDesc, _deriv2, _dvvDesc, _patchCoords->GetNumVertices(), _patchCoords, _patchTable, evalInstance, _deviceContext); } virtual void EvalPatchesVarying() { EVALUATOR const *evalInstance = OpenSubdiv::Osd::GetEvaluator( _evaluatorCache, _srcVaryingDesc, _varyingDesc, _deviceContext); EVALUATOR::EvalPatchesVarying( _srcVaryingData, _srcVaryingDesc, // varying data is interleaved in vertexData. _vertexData, _varyingDesc, _patchCoords->GetNumVertices(), _patchCoords, _patchTable, evalInstance, _deviceContext); } virtual void EvalPatchesFaceVarying() { EVALUATOR const *evalInstance = OpenSubdiv::Osd::GetEvaluator( _evaluatorCache, _srcFVarDesc, _fvarDesc, _deviceContext); EVALUATOR::EvalPatchesFaceVarying( _srcFVarData, _srcFVarDesc, _fvarData, _fvarDesc, _patchCoords->GetNumVertices(), _patchCoords, _patchTable, _fvarChannel, evalInstance, _deviceContext); } virtual void UpdatePatchCoords( std::vector const &patchCoords) { if (_patchCoords && _patchCoords->GetNumVertices() != (int)patchCoords.size()) { delete _patchCoords; _patchCoords = NULL; } if (! _patchCoords) { _patchCoords = EVAL_VERTEX_BUFFER::Create(5, (int)patchCoords.size(), _deviceContext); } _patchCoords->UpdateData((float*)&patchCoords[0], 0, (int)patchCoords.size(), _deviceContext); } private: SRC_VERTEX_BUFFER *_srcData; SRC_VERTEX_BUFFER *_srcVaryingData; EVAL_VERTEX_BUFFER *_srcFVarData; EVAL_VERTEX_BUFFER *_vertexData; EVAL_VERTEX_BUFFER *_deriv1; EVAL_VERTEX_BUFFER *_deriv2; EVAL_VERTEX_BUFFER *_fvarData; EVAL_VERTEX_BUFFER *_patchCoords; PATCH_TABLE *_patchTable; Osd::BufferDescriptor _srcDesc; Osd::BufferDescriptor _srcVaryingDesc; Osd::BufferDescriptor _srcFVarDesc; Osd::BufferDescriptor _vertexDesc; Osd::BufferDescriptor _varyingDesc; Osd::BufferDescriptor _fvarDesc; Osd::BufferDescriptor _duDesc; Osd::BufferDescriptor _dvDesc; Osd::BufferDescriptor _duuDesc; Osd::BufferDescriptor _duvDesc; Osd::BufferDescriptor _dvvDesc; int _numCoarseVerts; int _numCoarseFVarVerts; STENCIL_TABLE const *_vertexStencils; STENCIL_TABLE const *_varyingStencils; STENCIL_TABLE const *_faceVaryingStencils; int _fvarChannel; int _fvarWidth; EvaluatorCache *_evaluatorCache; DEVICE_CONTEXT *_deviceContext; }; // This example uses one shared interleaved buffer for evaluated // 1st derivatives and a second shared interleaved buffer for // evaluated 2nd derivatives. We use this specialized device // context to allow the XFB evaluator to take advantage of this // and make more efficient use of available XFB buffer bindings. struct XFBDeviceContext { bool AreInterleavedDerivativeBuffers() const { return true; } } g_xfbDeviceContext; EvalOutputBase *g_evalOutput = NULL; STParticles * g_particles=0; //------------------------------------------------------------------------------ static void updateGeom() { int nverts = (int)g_orgPositions.size() / 3; const float *p = &g_orgPositions[0]; float r = sin(g_frame*0.1f) * g_moveScale; for (int i = 0; i < nverts; ++i) { //float move = 0.05f*cosf(p[0]*20+g_frame*0.01f); float ct = cos(p[2] * r); float st = sin(p[2] * r); g_positions[i*3+0] = p[0]*ct + p[1]*st; g_positions[i*3+1] = -p[0]*st + p[1]*ct; g_positions[i*3+2] = p[2]; p+=3; } // Run Compute pass to pose the control vertices --------------------------- Stopwatch s; s.Start(); // update coarse vertices g_evalOutput->UpdateData(&g_positions[0], 0, nverts); // update coarse varying if (g_drawMode == kVARYING) { g_evalOutput->UpdateVaryingData(&g_varyingColors[0], 0, nverts); } // Refine g_evalOutput->Refine(); s.Stop(); g_computeTime = float(s.GetElapsed() * 1000.0f); // Run Eval pass to get the samples locations ------------------------------ s.Start(); // Apply 'dynamics' update assert(g_particles); float elapsed = g_currentTime - g_prevTime; g_particles->Update(elapsed); g_prevTime = g_currentTime; std::vector const &patchCoords = g_particles->GetPatchCoords(); // update patchcoord to be evaluated g_evalOutput->UpdatePatchCoords(patchCoords); // Evaluate the positions of the samples on the limit surface if (g_drawMode == kMEAN_CURVATURE) { // evaluate positions and 2nd derivatives g_evalOutput->EvalPatchesWith2ndDerivatives(); } else if (g_drawMode == kNORMAL || g_drawMode == kSHADE) { // evaluate positions and 1st derivatives g_evalOutput->EvalPatchesWith1stDerivatives(); } else { // evaluate positions g_evalOutput->EvalPatches(); } // color if (g_drawMode == kVARYING) { g_evalOutput->EvalPatchesVarying(); } else if (g_drawMode == kFACEVARYING && g_evalOutput->HasFaceVaryingData()) { g_evalOutput->EvalPatchesFaceVarying(); } s.Stop(); g_evalTime = float(s.GetElapsed()); } //------------------------------------------------------------------------------ static void createOsdMesh(ShapeDesc const & shapeDesc, int level) { Shape * shape = Shape::parseObj(shapeDesc); // create Far mesh (topology) Sdc::SchemeType sdctype = GetSdcType(*shape); Sdc::Options sdcoptions = GetSdcOptions(*shape); sdcoptions.SetFVarLinearInterpolation(g_fvarBoundary); Far::TopologyRefiner *topologyRefiner = Far::TopologyRefinerFactory::Create(*shape, Far::TopologyRefinerFactory::Options(sdctype, sdcoptions)); g_orgPositions=shape->verts; g_positions.resize(g_orgPositions.size(), 0.0f); // compute model bounding float min[3] = { FLT_MAX, FLT_MAX, FLT_MAX}; float max[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX}; for (size_t i=0; i GetSpeed() : 0.2f; // save coarse topology (used for coarse mesh drawing) g_controlMeshDisplay.SetTopology(topologyRefiner->GetLevel(0)); // create random varying color { int numCoarseVerts = topologyRefiner->GetLevel(0).GetNumVertices(); g_varyingColors.resize(numCoarseVerts*3); createRandomColors(numCoarseVerts, 3, &g_varyingColors[0]); } Far::StencilTable const * vertexStencils = NULL; Far::StencilTable const * varyingStencils = NULL; Far::StencilTable const * faceVaryingStencils = NULL; int fvarChannel = 0; int fvarWidth = shape->GetFVarWidth(); bool hasFVarData = !shape->uvs.empty(); { if (g_adaptive) { // Apply feature adaptive refinement to the mesh so that we can use the // limit evaluation API features. Far::TopologyRefiner::AdaptiveOptions options(level); options.considerFVarChannels = hasFVarData; options.useSingleCreasePatch = g_singleCreasePatch; options.useInfSharpPatch = g_infSharpPatch; topologyRefiner->RefineAdaptive(options); } else { Far::TopologyRefiner::UniformOptions options(level); topologyRefiner->RefineUniform(options); } // Generate stencil table to update the bi-cubic patches control // vertices after they have been re-posed (both for vertex & varying // interpolation) Far::StencilTableFactory::Options soptions; soptions.generateOffsets=true; soptions.generateIntermediateLevels=g_adaptive; vertexStencils = Far::StencilTableFactory::Create(*topologyRefiner, soptions); soptions.interpolationMode = Far::StencilTableFactory::INTERPOLATE_VARYING; varyingStencils = Far::StencilTableFactory::Create(*topologyRefiner, soptions); if (hasFVarData) { soptions.interpolationMode = Far::StencilTableFactory::INTERPOLATE_FACE_VARYING; soptions.fvarChannel = fvarChannel; faceVaryingStencils = Far::StencilTableFactory::Create(*topologyRefiner, soptions); } // Generate bi-cubic patch table for the limit surface Far::PatchTableFactory::Options poptions(level); if (g_endCap == kEndCapBilinearBasis) { poptions.SetEndCapType( Far::PatchTableFactory::Options::ENDCAP_BILINEAR_BASIS); } else if (g_endCap == kEndCapBSplineBasis) { poptions.SetEndCapType( Far::PatchTableFactory::Options::ENDCAP_BSPLINE_BASIS); } else { poptions.SetEndCapType( Far::PatchTableFactory::Options::ENDCAP_GREGORY_BASIS); } poptions.generateLegacySharpCornerPatches = !g_smoothCornerPatch; poptions.useSingleCreasePatch = g_singleCreasePatch; poptions.useInfSharpPatch = g_infSharpPatch; poptions.generateFVarTables = hasFVarData; poptions.generateFVarLegacyLinearPatches = false; poptions.includeFVarBaseLevelIndices = true;; Far::PatchTable const * patchTable = Far::PatchTableFactory::Create(*topologyRefiner, poptions); // append local points stencils if (Far::StencilTable const *localPointStencilTable = patchTable->GetLocalPointStencilTable()) { Far::StencilTable const *table = Far::StencilTableFactory::AppendLocalPointStencilTable( *topologyRefiner, vertexStencils, localPointStencilTable); delete vertexStencils; vertexStencils = table; } if (Far::StencilTable const *localPointVaryingStencilTable = patchTable->GetLocalPointVaryingStencilTable()) { Far::StencilTable const *table = Far::StencilTableFactory::AppendLocalPointStencilTable( *topologyRefiner, varyingStencils, localPointVaryingStencilTable); delete varyingStencils; varyingStencils = table; } if (Far::StencilTable const *localPointFaceVaryingStencilTable = patchTable->GetLocalPointFaceVaryingStencilTable()) { Far::StencilTable const *table = Far::StencilTableFactory::AppendLocalPointStencilTableFaceVarying( *topologyRefiner, faceVaryingStencils, localPointFaceVaryingStencilTable); delete faceVaryingStencils; faceVaryingStencils = table; } if (g_patchTable) delete g_patchTable; g_patchTable = patchTable; } // In following template instantiations, same type of vertex buffers are // used for both source and destination (first and second template // parameters), since we'd like to draw control mesh wireframe too in // this example viewer. // If we don't need to draw the coarse control mesh, the src buffer doesn't // have to be interoperable to GL (it can be CpuVertexBuffer etc). delete g_evalOutput; if (g_kernel == kCPU) { g_evalOutput = new EvalOutput (vertexStencils, varyingStencils, faceVaryingStencils, fvarChannel, fvarWidth, g_nParticles, g_patchTable); #ifdef OPENSUBDIV_HAS_OPENMP } else if (g_kernel == kOPENMP) { g_evalOutput = new EvalOutput (vertexStencils, varyingStencils, faceVaryingStencils, fvarChannel, fvarWidth, g_nParticles, g_patchTable); #endif #ifdef OPENSUBDIV_HAS_TBB } else if (g_kernel == kTBB) { g_evalOutput = new EvalOutput (vertexStencils, varyingStencils, faceVaryingStencils, fvarChannel, fvarWidth, g_nParticles, g_patchTable); #endif #ifdef OPENSUBDIV_HAS_CUDA } else if (g_kernel == kCUDA) { g_evalOutput = new EvalOutput (vertexStencils, varyingStencils, faceVaryingStencils, fvarChannel, fvarWidth, g_nParticles, g_patchTable); #endif #ifdef OPENSUBDIV_HAS_OPENCL } else if (g_kernel == kCL) { static Osd::EvaluatorCacheT clEvaluatorCache; g_evalOutput = new EvalOutput (vertexStencils, varyingStencils, faceVaryingStencils, fvarChannel, fvarWidth, g_nParticles, g_patchTable, &clEvaluatorCache, &g_clDeviceContext); #endif #ifdef OPENSUBDIV_HAS_GLSL_TRANSFORM_FEEDBACK } else if (g_kernel == kGLXFB) { static Osd::EvaluatorCacheT glXFBEvaluatorCache; g_evalOutput = new EvalOutput (vertexStencils, varyingStencils, faceVaryingStencils, fvarChannel, fvarWidth, g_nParticles, g_patchTable, &glXFBEvaluatorCache, &g_xfbDeviceContext); #endif #ifdef OPENSUBDIV_HAS_GLSL_COMPUTE } else if (g_kernel == kGLCompute) { static Osd::EvaluatorCacheT glComputeEvaluatorCache; g_evalOutput = new EvalOutput (vertexStencils, varyingStencils, faceVaryingStencils, fvarChannel, fvarWidth, g_nParticles, g_patchTable, &glComputeEvaluatorCache); #endif } if (g_evalOutput->HasFaceVaryingData()) { g_evalOutput->UpdateFaceVaryingData( &shape->uvs[0], 0, (int)shape->uvs.size()/shape->GetFVarWidth()); } delete shape; // Create the 'uv particles' manager - this class manages the limit // location samples (ptex face index, (s,t) and updates them between frames. // Note: the number of limit locations can be entirely arbitrary delete g_particles; g_particles = new STParticles(*topologyRefiner, g_patchTable, g_nParticles, !g_randomStart); g_nParticles = g_particles->GetNumParticles(); g_particles->SetSpeed(speed); g_prevTime = -1; g_currentTime = 0; updateGeom(); delete topologyRefiner; } //------------------------------------------------------------------------------ static bool linkDefaultProgram() { #if defined(GL_ARB_tessellation_shader) || defined(GL_VERSION_4_0) #define GLSL_VERSION_DEFINE "#version 400\n" #else #define GLSL_VERSION_DEFINE "#version 150\n" #endif static const char *vsSrc = GLSL_VERSION_DEFINE "in vec3 position;\n" "in vec3 color;\n" "in vec3 du;\n" "in vec3 dv;\n" "in vec3 duu;\n" "in vec3 duv;\n" "in vec3 dvv;\n" "in vec2 patchCoord;\n" "in vec2 fvarData;\n" "out vec4 fragColor;\n" "uniform mat4 ModelViewMatrix;\n" "uniform mat4 ProjectionMatrix;\n" "uniform int DrawMode;\n" "void main() {\n" " vec3 normal = (ModelViewMatrix * " " vec4(normalize(cross(du, dv)), 0)).xyz;\n" " gl_Position = ProjectionMatrix * ModelViewMatrix * " " vec4(position, 1);\n" " if (DrawMode == 0) {\n" // UV " fragColor = vec4(patchCoord.x, patchCoord.y, 0, 1);\n" " } else if (DrawMode == 2) {\n" " fragColor = vec4(normal*0.5+vec3(0.5), 1);\n" " } else if (DrawMode == 3) {\n" " fragColor = vec4(vec3(1)*dot(normal, vec3(0,0,1)), 1);\n" " } else if (DrawMode == 4) {\n" // face varying " // generating a checkerboard pattern\n" " int checker = int(floor(20*fvarData.r)+floor(20*fvarData.g))&1;\n" " fragColor = vec4(fvarData.rg*checker, 1-checker, 1);\n" " } else if (DrawMode == 5) {\n" // mean curvature " vec3 N = normalize(cross(du, dv));\n" " float E = dot(du, du);\n" " float F = dot(du, dv);\n" " float G = dot(dv, dv);\n" " float e = dot(N, duu);\n" " float f = dot(N, duv);\n" " float g = dot(N, dvv);\n" " float H = 0.5 * abs(0.5 * (E*g - 2*F*f - G*e) / (E*G - F*F));\n" " fragColor = vec4(H, H, H, 1.0);\n" " } else {\n" // varying " fragColor = vec4(color, 1);\n" " }\n" "}\n"; static const char *fsSrc = GLSL_VERSION_DEFINE "in vec4 fragColor;\n" "out vec4 color;\n" "void main() {\n" " color = fragColor;\n" "}\n"; GLuint program = glCreateProgram(); GLuint vertexShader = GLUtils::CompileShader(GL_VERTEX_SHADER, vsSrc); GLuint fragmentShader = GLUtils::CompileShader(GL_FRAGMENT_SHADER, fsSrc); glAttachShader(program, vertexShader); glAttachShader(program, fragmentShader); glBindAttribLocation(program, 0, "position"); glBindAttribLocation(program, 1, "color"); glBindAttribLocation(program, 2, "du"); glBindAttribLocation(program, 3, "dv"); glBindAttribLocation(program, 4, "duu"); glBindAttribLocation(program, 5, "duv"); glBindAttribLocation(program, 6, "dvv"); glBindAttribLocation(program, 7, "patchCoord"); glBindAttribLocation(program, 8, "fvarData"); glBindFragDataLocation(program, 0, "color"); glLinkProgram(program); GLint status; glGetProgramiv(program, GL_LINK_STATUS, &status); if (status == GL_FALSE) { GLint infoLogLength; glGetProgramiv(program, GL_INFO_LOG_LENGTH, &infoLogLength); char *infoLog = new char[infoLogLength]; glGetProgramInfoLog(program, infoLogLength, NULL, infoLog); printf("%s\n", infoLog); delete[] infoLog; exit(1); } g_defaultProgram.program = program; g_defaultProgram.uniformModelViewMatrix = glGetUniformLocation(program, "ModelViewMatrix"); g_defaultProgram.uniformProjectionMatrix = glGetUniformLocation(program, "ProjectionMatrix"); g_defaultProgram.uniformDrawMode = glGetUniformLocation(program, "DrawMode"); g_defaultProgram.attrPosition = glGetAttribLocation(program, "position"); g_defaultProgram.attrColor = glGetAttribLocation(program, "color"); g_defaultProgram.attrDu = glGetAttribLocation(program, "du"); g_defaultProgram.attrDv = glGetAttribLocation(program, "dv"); g_defaultProgram.attrDuu = glGetAttribLocation(program, "duu"); g_defaultProgram.attrDuv = glGetAttribLocation(program, "duv"); g_defaultProgram.attrDvv = glGetAttribLocation(program, "dvv"); g_defaultProgram.attrPatchCoord = glGetAttribLocation(program, "patchCoord"); g_defaultProgram.attrFVarData = glGetAttribLocation(program, "fvarData"); return true; } //------------------------------------------------------------------------------ static void drawSamples() { glUseProgram(g_defaultProgram.program); glUniformMatrix4fv(g_defaultProgram.uniformModelViewMatrix, 1, GL_FALSE, g_transformData.ModelViewMatrix); glUniformMatrix4fv(g_defaultProgram.uniformProjectionMatrix, 1, GL_FALSE, g_transformData.ProjectionMatrix); glUniform1i(g_defaultProgram.uniformDrawMode, g_drawMode); glBindVertexArray(g_samplesVAO); glEnableVertexAttribArray(g_defaultProgram.attrPosition); glEnableVertexAttribArray(g_defaultProgram.attrColor); glBindBuffer(GL_ARRAY_BUFFER, g_evalOutput->BindVertexData()); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 6, 0); glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 6, (float*)12); glEnableVertexAttribArray(g_defaultProgram.attrDu); glEnableVertexAttribArray(g_defaultProgram.attrDv); glBindBuffer(GL_ARRAY_BUFFER, g_evalOutput->Bind1stDerivatives()); glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 6, 0); glVertexAttribPointer(3, 3, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 6, (float*)12); glEnableVertexAttribArray(g_defaultProgram.attrDuu); glEnableVertexAttribArray(g_defaultProgram.attrDuv); glEnableVertexAttribArray(g_defaultProgram.attrDvv); glBindBuffer(GL_ARRAY_BUFFER, g_evalOutput->Bind2ndDerivatives()); glVertexAttribPointer(4, 3, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 9, 0); glVertexAttribPointer(5, 3, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 9, (float*)12); glVertexAttribPointer(6, 3, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 9, (float*)24); glEnableVertexAttribArray(g_defaultProgram.attrPatchCoord); glBindBuffer(GL_ARRAY_BUFFER, g_evalOutput->BindPatchCoords()); glVertexAttribPointer(7, 2, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 5, (float*)12); if (g_evalOutput->HasFaceVaryingData()) { glEnableVertexAttribArray(g_defaultProgram.attrFVarData); glBindBuffer(GL_ARRAY_BUFFER, g_evalOutput->BindFaceVaryingData()); glVertexAttribPointer(8, 2, GL_FLOAT, GL_FALSE, sizeof (GLfloat) * 2, 0); } glPointSize(2.0f); int nPatchCoords = (int)g_particles->GetPatchCoords().size(); glDrawArrays(GL_POINTS, 0, nPatchCoords); glPointSize(1.0f); glDisableVertexAttribArray(g_defaultProgram.attrPosition); glDisableVertexAttribArray(g_defaultProgram.attrColor); glDisableVertexAttribArray(g_defaultProgram.attrDu); glDisableVertexAttribArray(g_defaultProgram.attrDv); glDisableVertexAttribArray(g_defaultProgram.attrDuu); glDisableVertexAttribArray(g_defaultProgram.attrDuv); glDisableVertexAttribArray(g_defaultProgram.attrDvv); glDisableVertexAttribArray(g_defaultProgram.attrPatchCoord); glDisableVertexAttribArray(g_defaultProgram.attrFVarData); glBindVertexArray(0); glUseProgram(0); } //------------------------------------------------------------------------------ static void display() { Stopwatch s; s.Start(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glViewport(0, 0, g_width, g_height); g_hud.FillBackground(); double aspect = g_width/(double)g_height; identity(g_transformData.ModelViewMatrix); translate(g_transformData.ModelViewMatrix, -g_pan[0], -g_pan[1], -g_dolly); rotate(g_transformData.ModelViewMatrix, g_rotate[1], 1, 0, 0); rotate(g_transformData.ModelViewMatrix, g_rotate[0], 0, 1, 0); if (!g_yup) { rotate(g_transformData.ModelViewMatrix, -90, 1, 0, 0); } translate(g_transformData.ModelViewMatrix, -g_center[0], -g_center[1], -g_center[2]); perspective(g_transformData.ProjectionMatrix, 45.0f, (float)aspect, 0.01f, 500.0f); multMatrix(g_transformData.ModelViewProjectionMatrix, g_transformData.ModelViewMatrix, g_transformData.ProjectionMatrix); glEnable(GL_DEPTH_TEST); s.Stop(); float drawCpuTime = float(s.GetElapsed() * 1000.0f); s.Start(); glFinish(); s.Stop(); float drawGpuTime = float(s.GetElapsed() * 1000.0f); drawSamples(); // draw the control mesh g_controlMeshDisplay.Draw( g_evalOutput->BindSourceData(), 3*sizeof(float), g_transformData.ModelViewProjectionMatrix); if (g_hud.IsVisible()) { g_fpsTimer.Stop(); double elapsed = g_fpsTimer.GetElapsed(); g_fpsTimer.Start(); double fps = 1.0/elapsed; if (g_animParticles) g_currentTime += (float)elapsed; int nPatchCoords = (int)g_particles->GetPatchCoords().size(); g_hud.DrawString(10, -150, "Particle Speed ([) (]): %.1f", g_particles->GetSpeed()); g_hud.DrawString(10, -120, "# Samples : (%d / %d)", nPatchCoords, g_nParticles); g_hud.DrawString(10, -100, "Compute : %.3f ms", g_computeTime); g_hud.DrawString(10, -80, "Eval : %.3f ms", g_evalTime * 1000.f); g_hud.DrawString(10, -60, "GPU Draw : %.3f ms", drawGpuTime); g_hud.DrawString(10, -40, "CPU Draw : %.3f ms", drawCpuTime); g_hud.DrawString(10, -20, "FPS : %3.1f", fps); g_hud.Flush(); } glFinish(); GLUtils::CheckGLErrors("display leave"); } //------------------------------------------------------------------------------ static void idle() { if (! g_freeze) g_frame++; updateGeom(); if (g_repeatCount != 0 && g_frame >= g_repeatCount) g_running = 0; } //------------------------------------------------------------------------------ static void motion(GLFWwindow *, double dx, double dy) { int x=(int)dx, y=(int)dy; if (g_mbutton[0] && !g_mbutton[1] && !g_mbutton[2]) { // orbit g_rotate[0] += x - g_prev_x; g_rotate[1] += y - g_prev_y; } else if (!g_mbutton[0] && !g_mbutton[1] && g_mbutton[2]) { // pan g_pan[0] -= g_dolly*(x - g_prev_x)/g_width; g_pan[1] += g_dolly*(y - g_prev_y)/g_height; } else if ((g_mbutton[0] && !g_mbutton[1] && g_mbutton[2]) || (!g_mbutton[0] && g_mbutton[1] && !g_mbutton[2])) { // dolly g_dolly -= g_dolly*0.01f*(x - g_prev_x); if(g_dolly <= 0.01) g_dolly = 0.01f; } g_prev_x = x; g_prev_y = y; } //------------------------------------------------------------------------------ static void mouse(GLFWwindow *, int button, int state, int /* mods */) { if (button == 0 && state == GLFW_PRESS && g_hud.MouseClick(g_prev_x, g_prev_y)) return; if (button < 3) { g_mbutton[button] = (state == GLFW_PRESS); } } //------------------------------------------------------------------------------ static void reshape(GLFWwindow *, int width, int height) { g_width = width; g_height = height; int windowWidth = g_width, windowHeight = g_height; // window size might not match framebuffer size on a high DPI display glfwGetWindowSize(g_window, &windowWidth, &windowHeight); g_hud.Rebuild(windowWidth, windowHeight, width, height); } //------------------------------------------------------------------------------ void windowClose(GLFWwindow*) { g_running = false; } //------------------------------------------------------------------------------ static void setSamples(bool add) { if (add) { g_nParticles = g_nParticles * 2; } else { g_nParticles = std::max(1, g_nParticles / 2); } createOsdMesh(g_defaultShapes[g_currentShape], g_level); } //------------------------------------------------------------------------------ static void fitFrame() { g_pan[0] = g_pan[1] = 0; g_dolly = g_size; } //------------------------------------------------------------------------------ static void keyboard(GLFWwindow *, int key, int /* scancode */, int event, int /* mods */) { if (event == GLFW_RELEASE) return; if (g_hud.KeyDown(tolower(key))) return; switch (key) { case 'Q': g_running = 0; break; case 'F': fitFrame(); break; case '=': setSamples(true); break; case '-': setSamples(false); break; case '[': if (g_particles) { g_particles->SetSpeed(g_particles->GetSpeed()-0.1f); } break; case ']': if (g_particles) { g_particles->SetSpeed(g_particles->GetSpeed()+0.1f); } break; case GLFW_KEY_ESCAPE: g_hud.SetVisible(!g_hud.IsVisible()); break; } } //------------------------------------------------------------------------------ static void callbackError(OpenSubdiv::Far::ErrorType err, const char *message) { printf("OpenSubdiv Error: %d\n", err); printf(" %s\n", message); } //------------------------------------------------------------------------------ static void callbackModel(int m) { if (m < 0) m = 0; if (m >= (int)g_defaultShapes.size()) m = (int)g_defaultShapes.size() - 1; g_currentShape = m; createOsdMesh(g_defaultShapes[g_currentShape], g_level); } //------------------------------------------------------------------------------ static void callbackEndCap(int endCap) { g_endCap = endCap; createOsdMesh(g_defaultShapes[g_currentShape], g_level); } //------------------------------------------------------------------------------ static void callbackKernel(int k) { g_kernel = k; #ifdef OPENSUBDIV_HAS_OPENCL if (g_kernel == kCL && (!g_clDeviceContext.IsInitialized())) { if (g_clDeviceContext.Initialize() == false) { printf("Error in initializing OpenCL\n"); exit(1); } } #endif #ifdef OPENSUBDIV_HAS_CUDA if (g_kernel == kCUDA && (!g_cudaDeviceContext.IsInitialized())) { if (g_cudaDeviceContext.Initialize() == false) { printf("Error in initializing Cuda\n"); exit(1); } } #endif createOsdMesh(g_defaultShapes[g_currentShape], g_level); } //------------------------------------------------------------------------------ static void callbackLevel(int l) { g_level = l; createOsdMesh(g_defaultShapes[g_currentShape], g_level); } //------------------------------------------------------------------------------ static void callbackDisplayVaryingColors(int mode) { g_drawMode = mode; } //------------------------------------------------------------------------------ static void callbackCheckBox(bool checked, int button) { switch (button) { case kHUD_CB_DISPLAY_CONTROL_MESH_EDGES: g_controlMeshDisplay.SetEdgesDisplay(checked); break; case kHUD_CB_DISPLAY_CONTROL_MESH_VERTS: g_controlMeshDisplay.SetVerticesDisplay(checked); break; case kHUD_CB_ANIMATE_VERTICES: g_moveScale = checked; break; case kHUD_CB_ANIMATE_PARTICLES: g_animParticles = checked; break; case kHUD_CB_RANDOM_START: g_randomStart = checked; createOsdMesh(g_defaultShapes[g_currentShape], g_level); break; case kHUD_CB_FREEZE: g_freeze = checked; break; case kHUD_CB_ADAPTIVE: g_adaptive = checked; createOsdMesh(g_defaultShapes[g_currentShape], g_level); break; case kHUD_CB_SMOOTH_CORNER_PATCH: g_smoothCornerPatch = checked; createOsdMesh(g_defaultShapes[g_currentShape], g_level); return; case kHUD_CB_SINGLE_CREASE_PATCH: g_singleCreasePatch = checked; createOsdMesh(g_defaultShapes[g_currentShape], g_level); return; case kHUD_CB_INF_SHARP_PATCH: g_infSharpPatch = checked; createOsdMesh(g_defaultShapes[g_currentShape], g_level); return; } } //------------------------------------------------------------------------------ static void initHUD() { int windowWidth = g_width, windowHeight = g_height, frameBufferWidth = g_width, frameBufferHeight = g_height; // window size might not match framebuffer size on a high DPI display glfwGetWindowSize(g_window, &windowWidth, &windowHeight); glfwGetFramebufferSize(g_window, &frameBufferWidth, &frameBufferHeight); g_hud.Init(windowWidth, windowHeight, frameBufferWidth, frameBufferHeight); g_hud.AddCheckBox("Control edges (H)", g_controlMeshDisplay.GetEdgesDisplay(), 10, 10, callbackCheckBox, kHUD_CB_DISPLAY_CONTROL_MESH_EDGES, 'h'); g_hud.AddCheckBox("Control vertices (J)", g_controlMeshDisplay.GetVerticesDisplay(), 10, 30, callbackCheckBox, kHUD_CB_DISPLAY_CONTROL_MESH_VERTS, 'j'); g_hud.AddCheckBox("Animate vertices (M)", g_moveScale != 0, 10, 50, callbackCheckBox, kHUD_CB_ANIMATE_VERTICES, 'm'); g_hud.AddCheckBox("Animate particles (P)", g_animParticles != 0, 10, 70, callbackCheckBox, kHUD_CB_ANIMATE_PARTICLES, 'p'); g_hud.AddCheckBox("Freeze (spc)", g_freeze != 0, 10, 90, callbackCheckBox, kHUD_CB_FREEZE, ' '); g_hud.AddCheckBox("Random Start", g_randomStart, 10, 110, callbackCheckBox, kHUD_CB_RANDOM_START); int compute_pulldown = g_hud.AddPullDown("Compute (K)", 475, 10, 300, callbackKernel, 'k'); g_hud.AddPullDownButton(compute_pulldown, "CPU", kCPU); #ifdef OPENSUBDIV_HAS_OPENMP g_hud.AddPullDownButton(compute_pulldown, "OPENMP", kOPENMP); #endif #ifdef OPENSUBDIV_HAS_TBB g_hud.AddPullDownButton(compute_pulldown, "TBB", kTBB); #endif #ifdef OPENSUBDIV_HAS_CUDA g_hud.AddPullDownButton(compute_pulldown, "CUDA", kCUDA); #endif #ifdef OPENSUBDIV_HAS_OPENCL if (CLDeviceContext::HAS_CL_VERSION_1_1()) { g_hud.AddPullDownButton(compute_pulldown, "OpenCL", kCL); } #endif #ifdef OPENSUBDIV_HAS_GLSL_TRANSFORM_FEEDBACK g_hud.AddPullDownButton(compute_pulldown, "GL XFB", kGLXFB); #endif #ifdef OPENSUBDIV_HAS_GLSL_COMPUTE if (GLUtils::GL_ARBComputeShaderOrGL_VERSION_4_3()) { g_hud.AddPullDownButton(compute_pulldown, "GL Compute", kGLCompute); } #endif int shading_pulldown = g_hud.AddPullDown("Shading (W)", 250, 10, 250, callbackDisplayVaryingColors, 'w'); g_hud.AddPullDownButton(shading_pulldown, "(u,v)", kUV, g_drawMode==kUV); g_hud.AddPullDownButton(shading_pulldown, "Varying", kVARYING, g_drawMode==kVARYING); g_hud.AddPullDownButton(shading_pulldown, "Normal", kNORMAL, g_drawMode==kNORMAL); g_hud.AddPullDownButton(shading_pulldown, "Shade", kSHADE, g_drawMode==kSHADE); g_hud.AddPullDownButton(shading_pulldown, "FaceVarying", kFACEVARYING, g_drawMode==kFACEVARYING); g_hud.AddPullDownButton(shading_pulldown, "Mean Curvature", kMEAN_CURVATURE, g_drawMode==kMEAN_CURVATURE); g_hud.AddCheckBox("Adaptive (`)", g_adaptive != 0, 10, 150, callbackCheckBox, kHUD_CB_ADAPTIVE, '`'); g_hud.AddCheckBox("Smooth Corner Patch (O)", g_smoothCornerPatch!=0, 10, 170, callbackCheckBox, kHUD_CB_SMOOTH_CORNER_PATCH, 'o'); // g_hud.AddCheckBox("Single Crease Patch (S)", g_singleCreasePatch!=0, // 10, 190, callbackCheckBox, kHUD_CB_SINGLE_CREASE_PATCH, 's'); g_hud.AddCheckBox("Inf Sharp Patch (I)", g_infSharpPatch!=0, 10, 190, callbackCheckBox, kHUD_CB_INF_SHARP_PATCH, 'i'); int endcap_pulldown = g_hud.AddPullDown("End cap (E)", 10, 230, 200, callbackEndCap, 'e'); g_hud.AddPullDownButton(endcap_pulldown, "Linear", kEndCapBilinearBasis, g_endCap == kEndCapBilinearBasis); g_hud.AddPullDownButton(endcap_pulldown, "Regular", kEndCapBSplineBasis, g_endCap == kEndCapBSplineBasis); g_hud.AddPullDownButton(endcap_pulldown, "Gregory", kEndCapGregoryBasis, g_endCap == kEndCapGregoryBasis); for (int i = 1; i < 11; ++i) { char level[16]; sprintf(level, "Lv. %d", i); g_hud.AddRadioButton(3, level, i==g_level, 10, 270+i*20, callbackLevel, i, '0'+(i%10)); } int pulldown_handle = g_hud.AddPullDown("Shape (N)", -300, 10, 300, callbackModel, 'n'); for (int i = 0; i < (int)g_defaultShapes.size(); ++i) { g_hud.AddPullDownButton(pulldown_handle, g_defaultShapes[i].name.c_str(),i); } g_hud.Rebuild(windowWidth, windowHeight, frameBufferWidth, frameBufferHeight); } //------------------------------------------------------------------------------ static void initGL() { glClearColor(0.1f, 0.1f, 0.1f, 0.0f); glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LEQUAL); glCullFace(GL_BACK); glEnable(GL_CULL_FACE); glGenVertexArrays(1, &g_samplesVAO); } //------------------------------------------------------------------------------ static void uninitGL() { glDeleteVertexArrays(1, &g_samplesVAO); } //------------------------------------------------------------------------------ static void callbackErrorGLFW(int error, const char* description) { fprintf(stderr, "GLFW Error (%d) : %s\n", error, description); } //------------------------------------------------------------------------------ int main(int argc, char **argv) { ArgOptions args; args.Parse(argc, argv); args.PrintUnrecognizedArgsWarnings(); g_yup = args.GetYUp(); g_adaptive = args.GetAdaptive(); g_level = args.GetLevel(); g_repeatCount = args.GetRepeatCount(); ViewerArgsUtils::PopulateShapes(args, &g_defaultShapes); initShapes(); Far::SetErrorCallback(callbackError); glfwSetErrorCallback(callbackErrorGLFW); if (! glfwInit()) { printf("Failed to initialize GLFW\n"); return 1; } static const char windowTitle[] = "OpenSubdiv glEvalLimit " OPENSUBDIV_VERSION_STRING; GLUtils::SetMinimumGLVersion(); if (args.GetFullScreen()) { g_primary = glfwGetPrimaryMonitor(); // apparently glfwGetPrimaryMonitor fails under linux : if no primary, // settle for the first one in the list if (! g_primary) { int count=0; GLFWmonitor ** monitors = glfwGetMonitors(&count); if (count) g_primary = monitors[0]; } if (g_primary) { GLFWvidmode const * vidmode = glfwGetVideoMode(g_primary); g_width = vidmode->width; g_height = vidmode->height; } } if (! (g_window=glfwCreateWindow(g_width, g_height, windowTitle, args.GetFullScreen() && g_primary ? g_primary : NULL, NULL))) { std::cerr << "Failed to create OpenGL context.\n"; glfwTerminate(); return 1; } glfwMakeContextCurrent(g_window); GLUtils::PrintGLVersion(); // accommodate high DPI displays (e.g. mac retina displays) glfwGetFramebufferSize(g_window, &g_width, &g_height); glfwSetFramebufferSizeCallback(g_window, reshape); glfwSetKeyCallback(g_window, keyboard); glfwSetCursorPosCallback(g_window, motion); glfwSetMouseButtonCallback(g_window, mouse); glfwSetWindowCloseCallback(g_window, windowClose); #if defined(OSD_USES_GLEW) #ifdef CORE_PROFILE // this is the only way to initialize glew correctly under core profile context. glewExperimental = true; #endif if (GLenum r = glewInit() != GLEW_OK) { printf("Failed to initialize glew. Error = %s\n", glewGetErrorString(r)); exit(1); } #ifdef CORE_PROFILE // clear GL errors which was generated during glewInit() glGetError(); #endif #endif //std::string & data = g_defaultShapes[ g_currentShape ].data; //Scheme scheme = g_defaultShapes[ g_currentShape ].scheme; //createOsdMesh( data, g_level, scheme ); initGL(); linkDefaultProgram(); glfwSwapInterval(0); initHUD(); callbackModel(g_currentShape); g_fpsTimer.Start(); while (g_running) { idle(); display(); glfwPollEvents(); glfwSwapBuffers(g_window); glFinish(); } uninitGL(); glfwTerminate(); }