// // Copyright (C) Pixar. All rights reserved. // // This license governs use of the accompanying software. If you // use the software, you accept this license. If you do not accept // the license, do not use the software. // // 1. Definitions // The terms "reproduce," "reproduction," "derivative works," and // "distribution" have the same meaning here as under U.S. // copyright law. A "contribution" is the original software, or // any additions or changes to the software. // A "contributor" is any person or entity that distributes its // contribution under this license. // "Licensed patents" are a contributor's patent claims that read // directly on its contribution. // // 2. Grant of Rights // (A) Copyright Grant- Subject to the terms of this license, // including the license conditions and limitations in section 3, // each contributor grants you a non-exclusive, worldwide, // royalty-free copyright license to reproduce its contribution, // prepare derivative works of its contribution, and distribute // its contribution or any derivative works that you create. // (B) Patent Grant- Subject to the terms of this license, // including the license conditions and limitations in section 3, // each contributor grants you a non-exclusive, worldwide, // royalty-free license under its licensed patents to make, have // made, use, sell, offer for sale, import, and/or otherwise // dispose of its contribution in the software or derivative works // of the contribution in the software. // // 3. Conditions and Limitations // (A) No Trademark License- This license does not grant you // rights to use any contributor's name, logo, or trademarks. // (B) If you bring a patent claim against any contributor over // patents that you claim are infringed by the software, your // patent license from such contributor to the software ends // automatically. // (C) If you distribute any portion of the software, you must // retain all copyright, patent, trademark, and attribution // notices that are present in the software. // (D) If you distribute any portion of the software in source // code form, you may do so only under this license by including a // complete copy of this license with your distribution. If you // distribute any portion of the software in compiled or object // code form, you may only do so under a license that complies // with this license. // (E) The software is licensed "as-is." You bear the risk of // using it. The contributors give no express warranties, // guarantees or conditions. You may have additional consumer // rights under your local laws which this license cannot change. // To the extent permitted under your local laws, the contributors // exclude the implied warranties of merchantability, fitness for // a particular purpose and non-infringement. // #ifndef FAR_LOOP_SUBDIVISION_TABLES_FACTORY_H #define FAR_LOOP_SUBDIVISION_TABLES_FACTORY_H #include "../version.h" #include "../far/loopSubdivisionTables.h" #include "../far/meshFactory.h" #include "../far/kernelBatchFactory.h" #include "../far/subdivisionTablesFactory.h" #include #include namespace OpenSubdiv { namespace OPENSUBDIV_VERSION { template class FarMeshFactory; /// \brief A specialized factory for FarLoopSubdivisionTables /// /// Separating the factory allows us to isolate Far data structures from Hbr dependencies. /// template class FarLoopSubdivisionTablesFactory { protected: template friend class FarMeshFactory; /// Creates a FarLoopSubdivisiontables instance. /// /// @param meshFactory a valid FarMeshFactory instance /// /// @param farMesh /// /// @param batches a vector of Kernel refinement batches : the factory /// will reserve and append refinement tasks /// static FarLoopSubdivisionTables * Create( FarMeshFactory * meshFactory, FarMesh * farMesh, FarKernelBatchVector * batches ); }; // This factory walks the Hbr vertices and accumulates the weights and adjacency // (valance) information specific to the loop subdivision scheme. The results // are stored in a FarLoopSubdivisionTable. template FarLoopSubdivisionTables * FarLoopSubdivisionTablesFactory::Create( FarMeshFactory * meshFactory, FarMesh * farMesh, FarKernelBatchVector * batches ) { assert( meshFactory and farMesh ); int maxlevel = meshFactory->GetMaxLevel(); std::vector & remap = meshFactory->getRemappingTable(); FarSubdivisionTablesFactory tablesFactory( meshFactory->GetHbrMesh(), maxlevel, remap ); FarLoopSubdivisionTables * result = new FarLoopSubdivisionTables(farMesh, maxlevel); // Allocate memory for the indexing tables result->_E_IT.resize(tablesFactory.GetNumEdgeVerticesTotal(maxlevel)*4); result->_E_W.resize(tablesFactory.GetNumEdgeVerticesTotal(maxlevel)*2); result->_V_ITa.resize((tablesFactory.GetNumVertexVerticesTotal(maxlevel) - tablesFactory.GetNumVertexVerticesTotal(0))*5); // subtract coarse cage vertices result->_V_IT.resize(tablesFactory.GetVertVertsValenceSum()); result->_V_W.resize(tablesFactory.GetNumVertexVerticesTotal(maxlevel) - tablesFactory.GetNumVertexVerticesTotal(0)); // Prepare batch table batches->reserve(maxlevel*5); int vertexOffset = 0; int V_IT_offset = 0; int edgeTableOffset = 0; int vertTableOffset = 0; int * E_IT = result->_E_IT.empty() ? 0 : &result->_E_IT[0]; float * E_W = result->_E_W.empty() ? 0 : &result->_E_W[0]; int * V_ITa = result->_V_ITa.empty() ? 0 : &result->_V_ITa[0]; unsigned int * V_IT = result->_V_IT.empty() ? 0 : &result->_V_IT[0]; float * V_W = result->_V_W.empty() ? 0 : &result->_V_W[0]; for (int level=1; level<=maxlevel; ++level) { // pointer to the first vertex corresponding to this level vertexOffset = tablesFactory._vertVertIdx[level-1] + (int)tablesFactory._vertVertsList[level-1].size(); result->_vertsOffsets[level] = vertexOffset; // Edge vertices int nEdgeVertices = (int)tablesFactory._edgeVertsList[level].size(); if (nEdgeVertices > 0) batches->push_back(FarKernelBatch( FarKernelBatch::LOOP_EDGE_VERTEX, level, 0, 0, nEdgeVertices, edgeTableOffset, vertexOffset) ); vertexOffset += nEdgeVertices; edgeTableOffset += nEdgeVertices; for (int i=0; i < nEdgeVertices; ++i) { HbrVertex * v = tablesFactory._edgeVertsList[level][i]; assert(v); HbrHalfedge * e = v->GetParentEdge(); assert(e); float esharp = e->GetSharpness(), endPtWeight = 0.5f, oppPtWeight = 0.5f; E_IT[4*i+0]= remap[e->GetOrgVertex()->GetID()]; E_IT[4*i+1]= remap[e->GetDestVertex()->GetID()]; if (!e->IsBoundary() && esharp <= 1.0f) { endPtWeight = 0.375f + esharp * (0.5f - 0.375f); oppPtWeight = 0.125f * (1 - esharp); HbrHalfedge* ee = e->GetNext(); E_IT[4*i+2]= remap[ee->GetDestVertex()->GetID()]; ee = e->GetOpposite()->GetNext(); E_IT[4*i+3]= remap[ee->GetDestVertex()->GetID()]; } else { E_IT[4*i+2]= -1; E_IT[4*i+3]= -1; } E_W[2*i+0] = endPtWeight; E_W[2*i+1] = oppPtWeight; } E_IT += 4 * nEdgeVertices; E_W += 2 * nEdgeVertices; // Vertex vertices FarVertexKernelBatchFactory batchFactory((int)tablesFactory._vertVertsList[level].size(), 0); int nVertVertices = (int)tablesFactory._vertVertsList[level].size(); for (int i=0; i < nVertVertices; ++i) { HbrVertex * v = tablesFactory._vertVertsList[level][i], * pv = v->GetParentVertex(); assert(v and pv); // Look at HbrCatmarkSubdivision::Subdivide for more details about // the multi-pass interpolation unsigned char masks[2]; int npasses; float weights[2]; masks[0] = pv->GetMask(false); masks[1] = pv->GetMask(true); // If the masks are identical, only a single pass is necessary. If the // vertex is transitioning to another rule, two passes are necessary, // except when transitioning from k_Dart to k_Smooth : the same // compute kernel is applied twice. Combining this special case allows // to batch the compute kernels into fewer calls. if (masks[0] != masks[1] and ( not (masks[0]==HbrVertex::k_Smooth and masks[1]==HbrVertex::k_Dart))) { weights[1] = pv->GetFractionalMask(); weights[0] = 1.0f - weights[1]; npasses = 2; } else { weights[0] = 1.0f; weights[1] = 0.0f; npasses = 1; } int rank = FarSubdivisionTablesFactory::GetMaskRanking(masks[0], masks[1]); V_ITa[5*i+0] = V_IT_offset; V_ITa[5*i+1] = 0; V_ITa[5*i+2] = remap[ pv->GetID() ]; V_ITa[5*i+3] = -1; V_ITa[5*i+4] = -1; for (int p=0; p::k_Smooth : case HbrVertex::k_Dart : { HbrHalfedge *e = pv->GetIncidentEdge(), *start = e; while (e) { V_ITa[5*i+1]++; V_IT[V_IT_offset++] = remap[ e->GetDestVertex()->GetID() ]; e = e->GetPrev()->GetOpposite(); if (e==start) break; } break; } case HbrVertex::k_Crease : { class GatherCreaseEdgesOperator : public HbrHalfedgeOperator { public: HbrVertex * vertex; int eidx[2]; int count; bool next; GatherCreaseEdgesOperator(HbrVertex * v, bool n) : vertex(v), count(0), next(n) { eidx[0]=-1; eidx[1]=-1; } virtual void operator() (HbrHalfedge &e) { if (e.IsSharp(next) and count < 2) { HbrVertex * a = e.GetDestVertex(); if (a==vertex) a = e.GetOrgVertex(); eidx[count++]=a->GetID(); } } }; GatherCreaseEdgesOperator op( pv, p==1 ); pv->ApplyOperatorSurroundingEdges( op ); assert(V_ITa[5*i+3]==-1 and V_ITa[5*i+4]==-1); assert(op.eidx[0]!=-1 and op.eidx[1]!=-1); V_ITa[5*i+3] = remap[op.eidx[0]]; V_ITa[5*i+4] = remap[op.eidx[1]]; break; } case HbrVertex::k_Corner : // in the case of a k_Crease / k_Corner pass combination, we // need to set the valence to -1 to tell the "B" Kernel to // switch to k_Corner rule (as edge indices won't be -1) if (V_ITa[5*i+1]==0) V_ITa[5*i+1] = -1; default : break; } if (rank>7) // the k_Corner and k_Crease single-pass cases apply a weight of 1.0 // but this value is inverted in the kernel V_W[i] = 0.0; else V_W[i] = weights[0]; batchFactory.AddVertex( i, rank ); } V_ITa += nVertVertices*5; V_W += nVertVertices; batchFactory.AppendLoopBatches(level, vertTableOffset, vertexOffset, batches); vertexOffset += nVertVertices; vertTableOffset += nVertVertices; } result->_vertsOffsets[maxlevel+1] = vertexOffset; return result; } } // end namespace OPENSUBDIV_VERSION using namespace OPENSUBDIV_VERSION; } // end namespace OpenSubdiv #endif /* FAR_LOOP_SUBDIVISION_TABLES_FACTORY_H */