// // Copyright 2013 Pixar // // Licensed under the Apache License, Version 2.0 (the "Apache License") // with the following modification; you may not use this file except in // compliance with the Apache License and the following modification to it: // Section 6. Trademarks. is deleted and replaced with: // // 6. Trademarks. This License does not grant permission to use the trade // names, trademarks, service marks, or product names of the Licensor // and its affiliates, except as required to comply with Section 4(c) of // the License and to reproduce the content of the NOTICE file. // // You may obtain a copy of the Apache License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the Apache License with the above modification is // distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the Apache License for the specific // language governing permissions and limitations under the Apache License. // #include "../far/patchBasis.h" #include #include namespace OpenSubdiv { namespace OPENSUBDIV_VERSION { namespace Far { namespace internal { enum SplineBasis { BASIS_BILINEAR, BASIS_BEZIER, BASIS_BSPLINE, BASIS_BOX_SPLINE }; template class Spline { public: // curve weights static void GetWeights(float t, float point[], float deriv[]); // box-spline weights static void GetWeights(float v, float w, float point[]); // patch weights static void GetPatchWeights(PatchParam::BitField bits, float s, float t, float point[], float deriv1[], float deriv2[]); // adjust patch weights for boundary (and corner) edges static void AdjustBoundaryWeights(PatchParam::BitField bits, float sWeights[4], float tWeights[4]); }; template <> inline void Spline::GetWeights( float t, float point[4], float deriv[4]) { // The four uniform cubic Bezier basis functions (in terms of t and its // complement tC) evaluated at t: float t2 = t*t; float tC = 1.0f - t; float tC2 = tC * tC; assert(point); point[0] = tC2 * tC; point[1] = tC2 * t * 3.0f; point[2] = t2 * tC * 3.0f; point[3] = t2 * t; // Derivatives of the above four basis functions at t: if (deriv) { deriv[0] = -3.0f * tC2; deriv[1] = 9.0f * t2 - 12.0f * t + 3.0f; deriv[2] = -9.0f * t2 + 6.0f * t; deriv[3] = 3.0f * t2; } } template <> inline void Spline::GetWeights( float t, float point[4], float deriv[4]) { // The four uniform cubic B-Spline basis functions evaluated at t: float const one6th = 1.0f / 6.0f; float t2 = t * t; float t3 = t * t2; assert(point); point[0] = one6th * (1.0f - 3.0f*(t - t2) - t3); point[1] = one6th * (4.0f - 6.0f*t2 + 3.0f*t3); point[2] = one6th * (1.0f + 3.0f*(t + t2 - t3)); point[3] = one6th * ( t3); // Derivatives of the above four basis functions at t: if (deriv) { deriv[0] = -0.5f*t2 + t - 0.5f; deriv[1] = 1.5f*t2 - 2.0f*t; deriv[2] = -1.5f*t2 + t + 0.5f; deriv[3] = 0.5f*t2; } } template <> inline void Spline::GetWeights( float v, float w, float point[12]) { float u = 1.0f - v - w; // // The 12 basis functions of the quartic box spline (unscaled by their common // factor of 1/12 until later, and formatted to make it easy to spot any // typing errors): // // 15 terms for the 3 points above the triangle corners // 9 terms for the 3 points on faces opposite the triangle edges // 2 terms for the 6 points on faces opposite the triangle corners // // Powers of each variable for notational convenience: float u2 = u*u; float u3 = u*u2; float u4 = u*u3; float v2 = v*v; float v3 = v*v2; float v4 = v*v3; float w2 = w*w; float w3 = w*w2; float w4 = w*w3; // And now the basis functions: point[ 0] = u4 + 2.0f*u3*v; point[ 1] = u4 + 2.0f*u3*w; point[ 8] = w4 + 2.0f*w3*u; point[11] = w4 + 2.0f*w3*v; point[ 9] = v4 + 2.0f*v3*w; point[ 5] = v4 + 2.0f*v3*u; point[ 2] = u4 + 2.0f*u3*w + 6.0f*u3*v + 6.0f*u2*v*w + 12.0f*u2*v2 + v4 + 2.0f*v3*w + 6.0f*v3*u + 6.0f*v2*u*w; point[ 4] = w4 + 2.0f*w3*v + 6.0f*w3*u + 6.0f*w2*u*v + 12.0f*w2*u2 + u4 + 2.0f*u3*v + 6.0f*u3*w + 6.0f*u2*v*w; point[10] = v4 + 2.0f*v3*u + 6.0f*v3*w + 6.0f*v2*w*u + 12.0f*v2*w2 + w4 + 2.0f*w3*u + 6.0f*w3*v + 6.0f*w3*u*v; point[ 3] = v4 + 6*v3*w + 8*v3*u + 36*v2*w*u + 24*v2*u2 + 24*v*u3 + w4 + 6*w3*v + 8*w3*u + 36*w2*v*u + 24*w2*u2 + 24*w*u3 + 6*u4 + 60*u2*v*w + 12*v2*w2; point[ 6] = w4 + 6*w3*u + 8*w3*v + 36*w2*u*v + 24*w2*v2 + 24*w*v3 + u4 + 6*u3*w + 8*u3*v + 36*u2*v*w + 24*u2*v2 + 24*u*v3 + 6*v4 + 60*v2*w*u + 12*w2*u2; point[ 7] = u4 + 6*u3*v + 8*u3*w + 36*u2*v*w + 24*u2*w2 + 24*u*w3 + v4 + 6*v3*u + 8*v3*w + 36*v2*u*w + 24*v2*w2 + 24*v*w3 + 6*w4 + 60*w2*u*v + 12*u2*v2; for (int i = 0; i < 12; ++i) { point[i] *= 1.0f / 12.0f; } } template <> inline void Spline::GetPatchWeights(PatchParam::BitField bits, float s, float t, float point[4], float deriv1[4], float deriv2[4]) { bits.Normalize(s,t); float os = 1.0f - s, ot = 1.0f - t; if (point) { point[0] = os*ot; point[1] = s*ot; point[2] = s*t; point[3] = os*t; } if (deriv1 and deriv2) { deriv1[0] = t-1.0f; deriv1[1] = ot; deriv1[2] = t; deriv1[3] = -t; deriv2[0] = s-1.0f; deriv2[1] = -s; deriv2[2] = s; deriv2[3] = os; } } template void Spline::AdjustBoundaryWeights(PatchParam::BitField bits, float sWeights[4], float tWeights[4]) { int boundary = bits.GetBoundary(); if (boundary & 1) { tWeights[2] -= tWeights[0]; tWeights[1] += 2*tWeights[0]; tWeights[0] = 0; } if (boundary & 2) { sWeights[1] -= sWeights[3]; sWeights[2] += 2*sWeights[3]; sWeights[3] = 0; } if (boundary & 4) { tWeights[1] -= tWeights[3]; tWeights[2] += 2*tWeights[3]; tWeights[3] = 0; } if (boundary & 8) { sWeights[2] -= sWeights[0]; sWeights[1] += 2*sWeights[0]; sWeights[0] = 0; } } template void Spline::GetPatchWeights(PatchParam::BitField bits, float s, float t, float point[16], float derivS[16], float derivT[16]) { float sWeights[4], tWeights[4], dsWeights[4], dtWeights[4]; bits.Normalize(s,t); Spline::GetWeights(s, point ? sWeights : 0, derivS ? dsWeights : 0); Spline::GetWeights(t, point ? tWeights : 0, derivT ? dtWeights : 0); if (point) { // Compute the tensor product weight of the (s,t) basis function // corresponding to each control vertex: AdjustBoundaryWeights(bits, sWeights, tWeights); for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { point[4*i+j] = sWeights[j] * tWeights[i]; } } } if (derivS and derivT) { // Compute the tensor product weight of the differentiated (s,t) basis // function corresponding to each control vertex (scaled accordingly): float dScale = (float)(1 << bits.GetDepth()); AdjustBoundaryWeights(bits, dsWeights, dtWeights); for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { derivS[4*i+j] = dsWeights[j] * tWeights[i] * dScale; derivT[4*i+j] = sWeights[j] * dtWeights[i] * dScale; } } } } void GetBilinearWeights(PatchParam::BitField bits, float s, float t, float point[4], float deriv1[4], float deriv2[4]) { Spline::GetPatchWeights(bits, s, t, point, deriv1, deriv2); } void GetBezierWeights(PatchParam::BitField bits, float s, float t, float point[16], float deriv1[16], float deriv2[16]) { Spline::GetPatchWeights(bits, s, t, point, deriv1, deriv2); } void GetBSplineWeights(PatchParam::BitField bits, float s, float t, float point[16], float deriv1[16], float deriv2[16]) { Spline::GetPatchWeights(bits, s, t, point, deriv1, deriv2); } void GetGregoryWeights(PatchParam::BitField bits, float s, float t, float point[20], float deriv1[20], float deriv2[20]) { // // P3 e3- e2+ P2 // 15------17-------11--------10 // | | | | // | | | | // | | f3- | f2+ | // | 19 13 | // e3+ 16-----18 14-----12 e2- // | f3+ f2- | // | | // | | // | f0- f1+ | // e0- 2------4 8------6 e1+ // | 3 9 | // | | f0+ | f1- | // | | | | // | | | | // O--------1--------7--------5 // P0 e0+ e1- P1 // // Indices of boundary and interior points and their corresponding Bezier points // (this can be reduced with more direct indexing and unrolling of loops): // static int const boundaryGregory[12] = { 0, 1, 7, 5, 2, 6, 16, 12, 15, 17, 11, 10 }; static int const boundaryBezSCol[12] = { 0, 1, 2, 3, 0, 3, 0, 3, 0, 1, 2, 3 }; static int const boundaryBezTRow[12] = { 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3, 3 }; static int const interiorGregory[8] = { 3, 4, 8, 9, 13, 14, 18, 19 }; static int const interiorBezSCol[8] = { 1, 1, 2, 2, 2, 2, 1, 1 }; static int const interiorBezTRow[8] = { 1, 1, 1, 1, 2, 2, 2, 2 }; // // Bezier basis functions are denoted with B while the rational multipliers for the // interior points will be denoted G -- so we have B(s), B(t) and G(s,t): // // Directional Bezier basis functions B at s and t: float Bs[4], Bds[4]; float Bt[4], Bdt[4]; bits.Normalize(s,t); Spline::GetWeights(s, Bs, deriv1 ? Bds : 0); Spline::GetWeights(t, Bt, deriv2 ? Bdt : 0); // Rational multipliers G at s and t: float sC = 1.0f - s; float tC = 1.0f - t; // Use <= here to avoid compiler warnings -- the sums should always be non-negative: float df0 = s + t; df0 = (df0 <= 0.0f) ? 1.0f : (1.0f / df0); float df1 = sC + t; df1 = (df1 <= 0.0f) ? 1.0f : (1.0f / df1); float df2 = sC + tC; df2 = (df2 <= 0.0f) ? 1.0f : (1.0f / df2); float df3 = s + tC; df3 = (df3 <= 0.0f) ? 1.0f : (1.0f / df3); float G[8] = { s*df0, t*df0, t*df1, sC*df1, sC*df2, tC*df2, tC*df3, s*df3 }; // Combined weights for boundary and interior points: for (int i = 0; i < 12; ++i) { point[boundaryGregory[i]] = Bs[boundaryBezSCol[i]] * Bt[boundaryBezTRow[i]]; } for (int i = 0; i < 8; ++i) { point[interiorGregory[i]] = Bs[interiorBezSCol[i]] * Bt[interiorBezTRow[i]] * G[i]; } // // For derivatives, the basis functions for the interior points are rational and ideally // require appropriate differentiation, i.e. product rule for the combination of B and G // and the quotient rule for the rational G itself. As initially proposed by Loop et al // though, the approximation using the 16 Bezier points arising from the G(s,t) has // proved adequate (and is what the GPU shaders use) so we continue to use that here. // // An implementation of the true derivatives is provided for future reference -- it is // unclear if the approximations will hold up under surface analysis involving higher // order differentiation. // if (deriv1 and deriv2) { // Remember to include derivative scaling in all assignments below: float dScale = (float)(1 << bits.GetDepth()); // Combined weights for boundary points -- simple (scaled) tensor products: for (int i = 0; i < 12; ++i) { int iDst = boundaryGregory[i]; int tRow = boundaryBezTRow[i]; int sCol = boundaryBezSCol[i]; deriv1[iDst] = Bds[sCol] * Bt[tRow] * dScale; deriv2[iDst] = Bdt[tRow] * Bs[sCol] * dScale; } #define _USE_BEZIER_PSEUDO_DERIVATIVES #ifdef _USE_BEZIER_PSEUDO_DERIVATIVES // Approximation to the true Gregory derivatives by differentiating the Bezier patch // unique to the given (s,t), i.e. having F = (g^+ * f^+) + (g^- * f^-) as its four // interior points: // // Combined weights for interior points -- (scaled) tensor products with G+ or G-: for (int i = 0; i < 8; ++i) { int iDst = interiorGregory[i]; int tRow = interiorBezTRow[i]; int sCol = interiorBezSCol[i]; deriv1[iDst] = Bds[sCol] * Bt[tRow] * G[i] * dScale; deriv2[iDst] = Bdt[tRow] * Bs[sCol] * G[i] * dScale; } #else // True Gregory derivatives using appropriate differentiation of composite functions: // // Note that for G(s,t) = N(s,t) / D(s,t), all N' and D' are trivial constants (which // simplifies things for higher order derivatives). And while each pair of functions // G (i.e. the G+ and G- corresponding to points f+ and f-) must sum to 1 to ensure // Bezier equivalence (when f+ = f-), the pairs of G' must similarly sum to 0. So we // can potentially compute only one of the pair and negate the result for the other // (and with 4 or 8 computations involving these constants, this is all very SIMD // friendly...) but for now we treat all 8 independently for simplicity. // //float N[8] = { s, t, t, sC, sC, tC, tC, s }; float D[8] = { df0, df0, df1, df1, df2, df2, df3, df3 }; static float const Nds[8] = { 1.0f, 0.0f, 0.0f, -1.0f, -1.0f, 0.0f, 0.0f, 1.0f }; static float const Ndt[8] = { 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, -1.0f, -1.0f, 0.0f }; static float const Dds[8] = { 1.0f, 1.0f, -1.0f, -1.0f, -1.0f, -1.0f, 1.0f, 1.0f }; static float const Ddt[8] = { 1.0f, 1.0f, 1.0f, 1.0f, -1.0f, -1.0f, -1.0f, -1.0f }; // Combined weights for interior points -- (scaled) combinations of B, B', G and G': for (int i = 0; i < 8; ++i) { int iDst = interiorGregory[i]; int tRow = interiorBezTRow[i]; int sCol = interiorBezSCol[i]; // Quotient rule for G' (re-expressed in terms of G to simplify (and D = 1/D)): float Gds = (Nds[i] - Dds[i] * G[i]) * D[i]; float Gdt = (Ndt[i] - Ddt[i] * G[i]) * D[i]; // Product rule combining B and B' with G and G' (and scaled): deriv1[iDst] = (Bds[sCol] * G[i] + Bs[sCol] * Gds) * Bt[tRow] * dScale; deriv2[iDst] = (Bdt[tRow] * G[i] + Bt[tRow] * Gdt) * Bs[sCol] * dScale; } #endif } } } // end namespace internal } // end namespace Far } // end namespace OPENSUBDIV_VERSION } // end namespace OpenSubdiv