// // Copyright (C) Pixar. All rights reserved. // // This license governs use of the accompanying software. If you // use the software, you accept this license. If you do not accept // the license, do not use the software. // // 1. Definitions // The terms "reproduce," "reproduction," "derivative works," and // "distribution" have the same meaning here as under U.S. // copyright law. A "contribution" is the original software, or // any additions or changes to the software. // A "contributor" is any person or entity that distributes its // contribution under this license. // "Licensed patents" are a contributor's patent claims that read // directly on its contribution. // // 2. Grant of Rights // (A) Copyright Grant- Subject to the terms of this license, // including the license conditions and limitations in section 3, // each contributor grants you a non-exclusive, worldwide, // royalty-free copyright license to reproduce its contribution, // prepare derivative works of its contribution, and distribute // its contribution or any derivative works that you create. // (B) Patent Grant- Subject to the terms of this license, // including the license conditions and limitations in section 3, // each contributor grants you a non-exclusive, worldwide, // royalty-free license under its licensed patents to make, have // made, use, sell, offer for sale, import, and/or otherwise // dispose of its contribution in the software or derivative works // of the contribution in the software. // // 3. Conditions and Limitations // (A) No Trademark License- This license does not grant you // rights to use any contributor's name, logo, or trademarks. // (B) If you bring a patent claim against any contributor over // patents that you claim are infringed by the software, your // patent license from such contributor to the software ends // automatically. // (C) If you distribute any portion of the software, you must // retain all copyright, patent, trademark, and attribution // notices that are present in the software. // (D) If you distribute any portion of the software in source // code form, you may do so only under this license by including a // complete copy of this license with your distribution. If you // distribute any portion of the software in compiled or object // code form, you may only do so under a license that complies // with this license. // (E) The software is licensed "as-is." You bear the risk of // using it. The contributors give no express warranties, // guarantees or conditions. You may have additional consumer // rights under your local laws which this license cannot change. // To the extent permitted under your local laws, the contributors // exclude the implied warranties of merchantability, fitness for // a particular purpose and non-infringement. // #line 57 //-------------------------------------------------------------- // Common //-------------------------------------------------------------- uniform int nonAdaptiveLevel; uniform float displacementScale = 1.0; uniform float bumpScale = 1.0; vec4 GeneratePatchCoord(vec2 localUV) // for non-adpative { ivec2 ptexIndex = texelFetchBuffer(g_ptexIndicesBuffer, gl_PrimitiveID).xy; int faceID = ptexIndex.x; int lv = 1 << (ptexIndex.y & 0xf); int u = (ptexIndex.y >> 17) & 0x3ff; int v = (ptexIndex.y >> 7) & 0x3ff; vec2 uv = localUV; uv = (uv * vec2(1.0)/lv) + vec2(u, v)/lv; return vec4(uv.x, uv.y, lv+0.5, faceID+0.5); } vec4 PTexLookup(vec4 patchCoord, sampler2DArray data, samplerBuffer packings, isamplerBuffer pages) { vec2 uv = patchCoord.xy; int faceID = int(patchCoord.w); int page = texelFetch(pages, faceID).x; vec4 packing = texelFetch(packings, faceID); vec3 coords = vec3( packing.x + uv.x * packing.z, packing.y + uv.y * packing.w, page); return texture(data, coords); } #ifdef USE_PTEX_DISPLACEMENT #define OSD_DISPLACEMENT_CALLBACK \ output.v.position = \ displacement(output.v.position, \ output.v.normal, \ output.v.patchCoord); uniform sampler2DArray textureDisplace_Data; uniform samplerBuffer textureDisplace_Packing; uniform isamplerBuffer textureDisplace_Pages; vec4 displacement(vec4 position, vec3 normal, vec4 patchCoord) { float disp = PTexLookup(patchCoord, textureDisplace_Data, textureDisplace_Packing, textureDisplace_Pages).x; return position + vec4(disp * normal, 0) * displacementScale; } #endif //-------------------------------------------------------------- // Vertex Shader //-------------------------------------------------------------- #ifdef VERTEX_SHADER layout (location=0) in vec4 position; layout (location=1) in vec3 normal; out block { OutputVertex v; } output; void main() { output.v.position = ModelViewMatrix * position; output.v.normal = (ModelViewMatrix * vec4(normal, 0)).xyz; } #endif //-------------------------------------------------------------- // Geometry Shader //-------------------------------------------------------------- #ifdef GEOMETRY_SHADER //uniform int nonAdaptiveLevel; #ifdef PRIM_QUAD layout(lines_adjacency) in; layout(triangle_strip, max_vertices = 4) out; #define EDGE_VERTS 4 in block { OutputVertex v; } input[4]; #endif // PRIM_QUAD #ifdef PRIM_TRI layout(triangles) in; layout(triangle_strip, max_vertices = 3) out; #define EDGE_VERTS 3 in block { OutputVertex v; } input[3]; #endif // PRIM_TRI out block { OutputVertex v; } output; // -------------------------------------- void emit(vec4 position, vec3 normal, vec4 patchCoord) { output.v.position = position; output.v.patchCoord = patchCoord; output.v.normal = normal; gl_Position = ProjectionMatrix * output.v.position; EmitVertex(); } const float VIEWPORT_SCALE = 1024.0; // XXXdyu float edgeDistance(vec4 p, vec4 p0, vec4 p1) { return VIEWPORT_SCALE * abs((p.x - p0.x) * (p1.y - p0.y) - (p.y - p0.y) * (p1.x - p0.x)) / length(p1.xy - p0.xy); } void emit(int index, vec4 position, vec3 normal, vec4 patchCoord, vec4 edgeVerts[EDGE_VERTS]) { output.v.edgeDistance[0] = edgeDistance(edgeVerts[index], edgeVerts[0], edgeVerts[1]); output.v.edgeDistance[1] = edgeDistance(edgeVerts[index], edgeVerts[1], edgeVerts[2]); #ifdef PRIM_TRI output.v.edgeDistance[2] = edgeDistance(edgeVerts[index], edgeVerts[2], edgeVerts[0]); #endif #ifdef PRIM_QUAD output.v.edgeDistance[2] = edgeDistance(edgeVerts[index], edgeVerts[2], edgeVerts[3]); output.v.edgeDistance[3] = edgeDistance(edgeVerts[index], edgeVerts[3], edgeVerts[0]); #endif emit(position, normal, patchCoord); } // -------------------------------------- void main() { gl_PrimitiveID = gl_PrimitiveIDIn; #ifdef PRIM_QUAD vec4 patchCoord[4]; vec4 position[4]; vec3 normal[4]; // need to generate patch coord for non-patch quads patchCoord[0] = GeneratePatchCoord(vec2(0, 0)); patchCoord[1] = GeneratePatchCoord(vec2(1, 0)); patchCoord[2] = GeneratePatchCoord(vec2(1, 1)); patchCoord[3] = GeneratePatchCoord(vec2(0, 1)); #ifdef USE_PTEX_DISPLACEMENT position[0] = displacement(input[0].v.position, input[0].v.normal, patchCoord[0]); position[1] = displacement(input[1].v.position, input[1].v.normal, patchCoord[1]); position[2] = displacement(input[2].v.position, input[2].v.normal, patchCoord[2]); position[3] = displacement(input[3].v.position, input[3].v.normal, patchCoord[3]); #else position[0] = input[0].v.position; position[1] = input[1].v.position; position[2] = input[2].v.position; position[3] = input[3].v.position; #endif #ifdef FLAT_NORMALS // XXX: need to use vec C to get triangle normal. vec3 A = (position[0] - position[1]).xyz; vec3 B = (position[3] - position[1]).xyz; vec3 C = (position[2] - position[1]).xyz; normal[0] = normalize(cross(B, A)); normal[1] = normal[0]; normal[2] = normal[0]; normal[3] = normal[0]; #else normal[0] = input[0].v.normal; normal[1] = input[1].v.normal; normal[2] = input[2].v.normal; normal[3] = input[3].v.normal; #endif #if defined(GEOMETRY_OUT_WIRE) || defined(GEOMETRY_OUT_LINE) vec4 edgeVerts[EDGE_VERTS]; edgeVerts[0] = ProjectionMatrix * input[0].v.position; edgeVerts[1] = ProjectionMatrix * input[1].v.position; edgeVerts[2] = ProjectionMatrix * input[2].v.position; edgeVerts[3] = ProjectionMatrix * input[3].v.position; edgeVerts[0].xy /= edgeVerts[0].w; edgeVerts[1].xy /= edgeVerts[1].w; edgeVerts[2].xy /= edgeVerts[2].w; edgeVerts[3].xy /= edgeVerts[3].w; emit(0, position[0], normal[0], patchCoord[0], edgeVerts); emit(1, position[1], normal[1], patchCoord[1], edgeVerts); emit(3, position[3], normal[3], patchCoord[3], edgeVerts); emit(2, position[2], normal[2], patchCoord[2], edgeVerts); #else emit(position[0], normal[0], patchCoord[0]); emit(position[1], normal[1], patchCoord[1]); emit(position[3], normal[3], patchCoord[3]); emit(position[2], normal[2], patchCoord[2]); #endif #endif // PRIM_QUAD #ifdef PRIM_TRI vec4 position[3]; vec4 patchCoord[3]; vec3 normal[3]; // patch coords are computed in tessellation shader patchCoord[0] = input[0].v.patchCoord; patchCoord[1] = input[1].v.patchCoord; patchCoord[2] = input[2].v.patchCoord; #ifdef USE_PTEX_DISPLACEMENT position[0] = displacement(input[0].v.position, input[0].v.normal, patchCoord[0]); position[1] = displacement(input[1].v.position, input[1].v.normal, patchCoord[1]); position[2] = displacement(input[2].v.position, input[2].v.normal, patchCoord[2]); #else position[0] = input[0].v.position; position[1] = input[1].v.position; position[2] = input[2].v.position; #endif #ifdef FLAT_NORMALS // emit flat normals for displaced surface vec3 A = (position[0] - position[1]).xyz; vec3 B = (position[2] - position[1]).xyz; normal[0] = normalize(cross(B, A)); normal[1] = normal[0]; normal[2] = normal[0]; #else normal[0] = input[0].v.normal; normal[1] = input[1].v.normal; normal[2] = input[2].v.normal; #endif #if defined(GEOMETRY_OUT_WIRE) || defined(GEOMETRY_OUT_LINE) vec4 edgeVerts[EDGE_VERTS]; edgeVerts[0] = ProjectionMatrix * input[0].v.position; edgeVerts[1] = ProjectionMatrix * input[1].v.position; edgeVerts[2] = ProjectionMatrix * input[2].v.position; edgeVerts[0].xy /= edgeVerts[0].w; edgeVerts[1].xy /= edgeVerts[1].w; edgeVerts[2].xy /= edgeVerts[2].w; emit(0, position[0], normal[0], patchCoord[0], edgeVerts); emit(1, position[1], normal[1], patchCoord[1], edgeVerts); emit(2, position[2], normal[2], patchCoord[2], edgeVerts); #else emit(position[0], normal[0], patchCoord[0]); emit(position[1], normal[1], patchCoord[1]); emit(position[2], normal[2], patchCoord[2]); #endif #endif // PRIM_TRI EndPrimitive(); } #endif //-------------------------------------------------------------- // Fragment Shader //-------------------------------------------------------------- #ifdef FRAGMENT_SHADER in block { OutputVertex v; } input; out vec4 outColor; uniform int ptexFaceOffset; #ifdef USE_PTEX_COLOR uniform sampler2DArray textureImage_Data; uniform samplerBuffer textureImage_Packing; uniform isamplerBuffer textureImage_Pages; #endif #ifdef USE_PTEX_OCCLUSION uniform sampler2DArray textureOcclusion_Data; uniform samplerBuffer textureOcclusion_Packing; uniform isamplerBuffer textureOcclusion_Pages; #endif #ifdef USE_PTEX_SPECULAR uniform sampler2DArray textureSpecular_Data; uniform samplerBuffer textureSpecular_Packing; uniform isamplerBuffer textureSpecular_Pages; #endif #define NUM_LIGHTS 2 struct LightSource { vec4 position; vec4 ambient; vec4 diffuse; vec4 specular; }; layout(std140) uniform Lighting { LightSource lightSource[NUM_LIGHTS]; }; uniform bool overrideColorEnable = false; uniform vec4 overrideColor; #if USE_PTEX_NORMAL uniform sampler2DArray textureDisplace_Data; uniform samplerBuffer textureDisplace_Packing; uniform isamplerBuffer textureDisplace_Pages; vec3 perturbNormalFromDisplacement(vec3 position, vec3 normal, vec4 patchCoord) { // by Morten S. Mikkelsen // http://jbit.net/~sparky/sfgrad_bump/mm_sfgrad_bump.pdf // slightly modified for ptex guttering vec3 vSigmaS = dFdx(position); vec3 vSigmaT = dFdy(position); vec3 vN = normal; vec3 vR1 = cross(vSigmaT, vN); vec3 vR2 = cross(vN, vSigmaS); float fDet = dot(vSigmaS, vR1); #if 0 // not work well with ptex float dBs = dFdx(disp); float dBt = dFdy(disp); #else vec2 texDx = dFdx(patchCoord.xy); vec2 texDy = dFdy(patchCoord.xy); // limit forward differencing to the width of ptex gutter const float resolution = 128.0; float d = min(1, (0.5/resolution)/max(length(texDx), length(texDy))); vec4 STll = patchCoord; vec4 STlr = patchCoord + d * vec4(texDx.x, texDx.y, 0, 0); vec4 STul = patchCoord + d * vec4(texDy.x, texDy.y, 0, 0); float Hll = PTexLookup(STll, textureDisplace_Data, textureDisplace_Packing, textureDisplace_Pages).x * bumpScale; float Hlr = PTexLookup(STlr, textureDisplace_Data, textureDisplace_Packing, textureDisplace_Pages).x * bumpScale; float Hul = PTexLookup(STul, textureDisplace_Data, textureDisplace_Packing, textureDisplace_Pages).x * bumpScale; float dBs = (Hlr - Hll)/d; float dBt = (Hul - Hll)/d; #endif vec3 vSurfGrad = sign(fDet) * (dBs * vR1 + dBt * vR2); return normalize(abs(fDet) * vN - vSurfGrad); } #endif // USE_PTEX_NORMAL uniform sampler2D diffuseEnvironmentMap; uniform sampler2D specularEnvironmentMap; vec4 getEnvironmentHDR(sampler2D sampler, vec3 dir) { dir = (ModelViewInverseMatrix * vec4(dir, 0)).xyz; vec2 uv = vec2((atan(dir.x,dir.z)/3.1415926535897+1)*0.5, (1-dir.y)*0.5); vec4 tex = texture(sampler, uv); tex = vec4(pow(tex.xyz, vec3(0.4545)), 1); return tex; } vec4 lighting(vec4 texColor, vec3 Peye, vec3 Neye) { vec4 color = vec4(0); #ifdef USE_PTEX_OCCLUSION float occ = PTexLookup(input.v.patchCoord, textureOcclusion_Data, textureOcclusion_Packing, textureOcclusion_Pages).x; #else float occ = 0.0; #endif vec3 n = Neye; for (int i = 0; i < NUM_LIGHTS; ++i) { vec4 Plight = lightSource[i].position; vec3 l = (Plight.w == 0.0) ? normalize(Plight.xyz) : normalize(Plight.xyz - Peye); vec3 h = normalize(l + vec3(0,0,1)); // directional viewer float d = max(0.0, dot(n, l)); float s = pow(max(0.0, dot(n, h)), 64.0f); color += (1.0-occ) * ((lightSource[i].ambient + d * lightSource[i].diffuse) * texColor + s * lightSource[i].specular); } color.a = 1; return color; } vec4 edgeColor(vec4 Cfill, vec4 edgeDistance) { #if defined(GEOMETRY_OUT_WIRE) || defined(GEOMETRY_OUT_LINE) #ifdef PRIM_TRI float d = min(input.v.edgeDistance[0], min(input.v.edgeDistance[1], input.v.edgeDistance[2])); #endif #ifdef PRIM_QUAD float d = min(min(input.v.edgeDistance[0], input.v.edgeDistance[1]), min(input.v.edgeDistance[2], input.v.edgeDistance[3])); #endif vec4 Cedge = vec4(1.0, 1.0, 0.0, 1.0); float p = exp2(-2 * d * d); #if defined(GEOMETRY_OUT_WIRE) if (p < 0.25) discard; #endif Cfill.rgb = mix(Cfill.rgb, Cedge.rgb, p); #endif return Cfill; } void main() { #if USE_PTEX_COLOR vec4 texColor = PTexLookup(input.v.patchCoord, textureImage_Data, textureImage_Packing, textureImage_Pages); // texColor = vec4(pow(texColor.xyz, vec3(0.4545)), 1); #else vec4 texColor = vec4(1); #endif #if USE_PTEX_NORMAL vec3 normal = perturbNormalFromDisplacement(input.v.position.xyz, input.v.normal, input.v.patchCoord); #else vec3 normal = input.v.normal; #endif if (overrideColorEnable) { texColor = overrideColor; vec4 Cf = lighting(texColor, input.v.position.xyz, normal); outColor = edgeColor(Cf, input.v.edgeDistance); return; } #if USE_IBL #ifdef USE_PTEX_OCCLUSION float occ = PTexLookup(input.v.patchCoord, textureOcclusion_Data, textureOcclusion_Packing, textureOcclusion_Pages).x; #else float occ = 0.0; #endif #ifdef USE_PTEX_SPECULAR float specular = PTexLookup(input.v.patchCoord, textureSpecular_Data, textureSpecular_Packing, textureSpecular_Pages).x; #else float specular = 1.0; #endif vec4 a = vec4(0, 0, 0, 1); //ambientColor; vec4 d = getEnvironmentHDR(diffuseEnvironmentMap, normal) * 1.4; vec3 eye = normalize(input.v.position.xyz - vec3(0,0,0)); vec3 reflect = reflect(eye, normal); vec4 s = getEnvironmentHDR(specularEnvironmentMap, reflect); const float fresnelBias = 0; const float fresnelScale = 1.0; const float fresnelPower = 2.0; float fresnel = fresnelBias + fresnelScale * pow(1.0+dot(normal,eye), fresnelPower); a *= (1.0-occ); d *= (1.0-occ); s *= min(specular, (1.0-occ)) * fresnel; vec4 Cf = (a + d) * texColor + s * 0.5; #else vec4 Cf = lighting(texColor, input.v.position.xyz, normal); #endif outColor = edgeColor(Cf, input.v.edgeDistance); } #endif