// // Copyright 2013-2018 Pixar // // Licensed under the Apache License, Version 2.0 (the "Apache License") // with the following modification; you may not use this file except in // compliance with the Apache License and the following modification to it: // Section 6. Trademarks. is deleted and replaced with: // // 6. Trademarks. This License does not grant permission to use the trade // names, trademarks, service marks, or product names of the Licensor // and its affiliates, except as required to comply with Section 4(c) of // the License and to reproduce the content of the NOTICE file. // // You may obtain a copy of the Apache License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the Apache License with the above modification is // distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the Apache License for the specific // language governing permissions and limitations under the Apache License. // // ---------------------------------------------------------------------------- // Legacy Gregory // ---------------------------------------------------------------------------- #if defined(OSD_PATCH_GREGORY) || defined(OSD_PATCH_GREGORY_BOUNDARY) #define M_PI 3.14159265359f // precomputed catmark coefficient table up to valence 29 uniform float OsdCatmarkCoefficient[30] = float[]( 0, 0, 0, 0.812816, 0.500000, 0.363644, 0.287514, 0.238688, 0.204544, 0.179229, 0.159657, 0.144042, 0.131276, 0.120632, 0.111614, 0.103872, 0.09715, 0.0912559, 0.0860444, 0.0814022, 0.0772401, 0.0734867, 0.0700842, 0.0669851, 0.0641504, 0.0615475, 0.0591488, 0.0569311, 0.0548745, 0.0529621 ); float OsdComputeCatmarkCoefficient(int valence) { #if OSD_MAX_VALENCE < 30 return OsdCatmarkCoefficient[valence]; #else if (valence < 30) { return OsdCatmarkCoefficient[valence]; } else { float t = 2.0f * float(M_PI) / float(valence); return 1.0f / (valence * (cos(t) + 5.0f + sqrt((cos(t) + 9) * (cos(t) + 1)))/16.0f); } #endif } float cosfn(int n, int j) { return cos((2.0f * M_PI * j)/float(n)); } float sinfn(int n, int j) { return sin((2.0f * M_PI * j)/float(n)); } #if !defined OSD_MAX_VALENCE || OSD_MAX_VALENCE < 1 #undef OSD_MAX_VALENCE #define OSD_MAX_VALENCE 4 #endif struct OsdPerVertexGregory { vec3 P; ivec3 clipFlag; int valence; vec3 e0; vec3 e1; #ifdef OSD_PATCH_GREGORY_BOUNDARY int zerothNeighbor; vec3 org; #endif vec3 r[OSD_MAX_VALENCE]; }; struct OsdPerPatchVertexGregory { ivec3 patchParam; vec3 P; vec3 Ep; vec3 Em; vec3 Fp; vec3 Fm; }; #ifndef OSD_NUM_ELEMENTS #define OSD_NUM_ELEMENTS 3 #endif uniform samplerBuffer OsdVertexBuffer; uniform isamplerBuffer OsdValenceBuffer; vec3 OsdReadVertex(int vertexIndex) { int index = int(OSD_NUM_ELEMENTS * (vertexIndex + OsdBaseVertex())); return vec3(texelFetch(OsdVertexBuffer, index).x, texelFetch(OsdVertexBuffer, index+1).x, texelFetch(OsdVertexBuffer, index+2).x); } int OsdReadVertexValence(int vertexID) { int index = int(vertexID * (2 * OSD_MAX_VALENCE + 1)); return texelFetch(OsdValenceBuffer, index).x; } int OsdReadVertexIndex(int vertexID, int valenceVertex) { int index = int(vertexID * (2 * OSD_MAX_VALENCE + 1) + 1 + valenceVertex); return texelFetch(OsdValenceBuffer, index).x; } uniform isamplerBuffer OsdQuadOffsetBuffer; int OsdReadQuadOffset(int primitiveID, int offsetVertex) { int index = int(4*primitiveID+OsdGregoryQuadOffsetBase() + offsetVertex); return texelFetch(OsdQuadOffsetBuffer, index).x; } void OsdComputePerVertexGregory(int vID, vec3 P, out OsdPerVertexGregory v) { v.clipFlag = ivec3(0); int ivalence = OsdReadVertexValence(vID); v.valence = ivalence; int valence = abs(ivalence); vec3 f[OSD_MAX_VALENCE]; vec3 pos = P; vec3 opos = vec3(0); #ifdef OSD_PATCH_GREGORY_BOUNDARY v.org = pos; int boundaryEdgeNeighbors[2]; int currNeighbor = 0; int ibefore = 0; int zerothNeighbor = 0; #endif for (int i=0; i 2) { v.P = (OsdReadVertex(boundaryEdgeNeighbors[0]) + OsdReadVertex(boundaryEdgeNeighbors[1]) + 4.0f * pos)/6.0f; } else { v.P = pos; } v.e0 = (OsdReadVertex(boundaryEdgeNeighbors[0]) - OsdReadVertex(boundaryEdgeNeighbors[1]))/6.0; float k = float(float(valence) - 1.0f); //k is the number of faces float c = cos(M_PI/k); float s = sin(M_PI/k); float gamma = -(4.0f*s)/(3.0f*k+c); float alpha_0k = -((1.0f+2.0f*c)*sqrt(1.0f+c))/((3.0f*k+c)*sqrt(1.0f-c)); float beta_0 = s/(3.0f*k + c); int idx_diagonal = OsdReadVertexIndex(vID, 2*zerothNeighbor + 1); vec3 diagonal = OsdReadVertex(idx_diagonal); v.e1 = gamma * pos + alpha_0k * OsdReadVertex(boundaryEdgeNeighbors[0]) + alpha_0k * OsdReadVertex(boundaryEdgeNeighbors[1]) + beta_0 * diagonal; for (int x=1; x> 8) & 0xff; int start_m = OsdReadQuadOffset(primitiveID, im) & 0xff; int prev_p = (OsdReadQuadOffset(primitiveID, ip) >> 8) & 0xff; int np = abs(v[ip].valence); int nm = abs(v[im].valence); // Control Vertices based on : // "Approximating Subdivision Surfaces with Gregory Patches // for Hardware Tessellation" // Loop, Schaefer, Ni, Castano (ACM ToG Siggraph Asia 2009) // // P3 e3- e2+ P2 // O--------O--------O--------O // | | | | // | | | | // | | f3- | f2+ | // | O O | // e3+ O------O O------O e2- // | f3+ f2- | // | | // | | // | f0- f1+ | // e0- O------O O------O e1+ // | O O | // | | f0+ | f1- | // | | | | // | | | | // O--------O--------O--------O // P0 e0+ e1- P1 // #ifdef OSD_PATCH_GREGORY_BOUNDARY vec3 Em_ip; if (v[ip].valence < -2) { int j = (np + prev_p - v[ip].zerothNeighbor) % np; Em_ip = v[ip].P + cos((M_PI*j)/float(np-1))*v[ip].e0 + sin((M_PI*j)/float(np-1))*v[ip].e1; } else { Em_ip = v[ip].P + v[ip].e0*cosfn(np, prev_p ) + v[ip].e1*sinfn(np, prev_p); } vec3 Ep_im; if (v[im].valence < -2) { int j = (nm + start_m - v[im].zerothNeighbor) % nm; Ep_im = v[im].P + cos((M_PI*j)/float(nm-1))*v[im].e0 + sin((M_PI*j)/float(nm-1))*v[im].e1; } else { Ep_im = v[im].P + v[im].e0*cosfn(nm, start_m) + v[im].e1*sinfn(nm, start_m); } if (v[i].valence < 0) { n = (n-1)*2; } if (v[im].valence < 0) { nm = (nm-1)*2; } if (v[ip].valence < 0) { np = (np-1)*2; } if (v[i].valence > 2) { result.Ep = v[i].P + v[i].e0*cosfn(n, start) + v[i].e1*sinfn(n, start); result.Em = v[i].P + v[i].e0*cosfn(n, prev ) + v[i].e1*sinfn(n, prev); float s1=3-2*cosfn(n,1)-cosfn(np,1); float s2=2*cosfn(n,1); result.Fp = (cosfn(np,1)*v[i].P + s1*result.Ep + s2*Em_ip + v[i].r[start])/3.0f; s1 = 3.0f-2.0f*cos(2.0f*M_PI/float(n))-cos(2.0f*M_PI/float(nm)); result.Fm = (cosfn(nm,1)*v[i].P + s1*result.Em + s2*Ep_im - v[i].r[prev])/3.0f; } else if (v[i].valence < -2) { int j = (valence + start - v[i].zerothNeighbor) % valence; result.Ep = v[i].P + cos((M_PI*j)/float(valence-1))*v[i].e0 + sin((M_PI*j)/float(valence-1))*v[i].e1; j = (valence + prev - v[i].zerothNeighbor) % valence; result.Em = v[i].P + cos((M_PI*j)/float(valence-1))*v[i].e0 + sin((M_PI*j)/float(valence-1))*v[i].e1; vec3 Rp = ((-2.0f * v[i].org - 1.0f * v[im].org) + (2.0f * v[ip].org + 1.0f * v[(i+2)%4].org))/3.0f; vec3 Rm = ((-2.0f * v[i].org - 1.0f * v[ip].org) + (2.0f * v[im].org + 1.0f * v[(i+2)%4].org))/3.0f; float s1 = 3-2*cosfn(n,1)-cosfn(np,1); float s2 = 2*cosfn(n,1); result.Fp = (cosfn(np,1)*v[i].P + s1*result.Ep + s2*Em_ip + v[i].r[start])/3.0f; s1 = 3.0f-2.0f*cos(2.0f*M_PI/float(n))-cos(2.0f*M_PI/float(nm)); result.Fm = (cosfn(nm,1)*v[i].P + s1*result.Em + s2*Ep_im - v[i].r[prev])/3.0f; if (v[im].valence < 0) { s1 = 3-2*cosfn(n,1)-cosfn(np,1); result.Fp = result.Fm = (cosfn(np,1)*v[i].P + s1*result.Ep + s2*Em_ip + v[i].r[start])/3.0f; } else if (v[ip].valence < 0) { s1 = 3.0f-2.0f*cos(2.0f*M_PI/n)-cos(2.0f*M_PI/nm); result.Fm = result.Fp = (cosfn(nm,1)*v[i].P + s1*result.Em + s2*Ep_im - v[i].r[prev])/3.0f; } } else if (v[i].valence == -2) { result.Ep = (2.0f * v[i].org + v[ip].org)/3.0f; result.Em = (2.0f * v[i].org + v[im].org)/3.0f; result.Fp = result.Fm = (4.0f * v[i].org + v[(i+2)%n].org + 2.0f * v[ip].org + 2.0f * v[im].org)/9.0f; } #else // not OSD_PATCH_GREGORY_BOUNDARY result.Ep = v[i].P + v[i].e0 * cosfn(n, start) + v[i].e1*sinfn(n, start); result.Em = v[i].P + v[i].e0 * cosfn(n, prev ) + v[i].e1*sinfn(n, prev); vec3 Em_ip = v[ip].P + v[ip].e0 * cosfn(np, prev_p ) + v[ip].e1*sinfn(np, prev_p); vec3 Ep_im = v[im].P + v[im].e0 * cosfn(nm, start_m) + v[im].e1*sinfn(nm, start_m); float s1 = 3-2*cosfn(n,1)-cosfn(np,1); float s2 = 2*cosfn(n,1); result.Fp = (cosfn(np,1)*v[i].P + s1*result.Ep + s2*Em_ip + v[i].r[start])/3.0f; s1 = 3.0f-2.0f*cos(2.0f*M_PI/float(n))-cos(2.0f*M_PI/float(nm)); result.Fm = (cosfn(nm,1)*v[i].P + s1*result.Em + s2*Ep_im - v[i].r[prev])/3.0f; #endif } #endif // OSD_PATCH_GREGORY || OSD_PATCH_GREGORY_BOUNDARY // ---------------------------------------------------------------------------- // Legacy Face-varying // ---------------------------------------------------------------------------- uniform samplerBuffer OsdFVarDataBuffer; #ifndef OSD_FVAR_WIDTH #define OSD_FVAR_WIDTH 0 #endif // ------ extract from quads (catmark, bilinear) --------- // XXX: only linear interpolation is supported #define OSD_COMPUTE_FACE_VARYING_1(result, fvarOffset, tessCoord) \ { \ float v[4]; \ int primOffset = OsdGetPatchIndex(gl_PrimitiveID) * 4; \ for (int i = 0; i < 4; ++i) { \ int index = (primOffset+i)*OSD_FVAR_WIDTH + fvarOffset; \ v[i] = texelFetch(OsdFVarDataBuffer, index).s \ } \ result = mix(mix(v[0], v[1], tessCoord.s), \ mix(v[3], v[2], tessCoord.s), \ tessCoord.t); \ } #define OSD_COMPUTE_FACE_VARYING_2(result, fvarOffset, tessCoord) \ { \ vec2 v[4]; \ int primOffset = OsdGetPatchIndex(gl_PrimitiveID) * 4; \ for (int i = 0; i < 4; ++i) { \ int index = (primOffset+i)*OSD_FVAR_WIDTH + fvarOffset; \ v[i] = vec2(texelFetch(OsdFVarDataBuffer, index).s, \ texelFetch(OsdFVarDataBuffer, index + 1).s); \ } \ result = mix(mix(v[0], v[1], tessCoord.s), \ mix(v[3], v[2], tessCoord.s), \ tessCoord.t); \ } #define OSD_COMPUTE_FACE_VARYING_3(result, fvarOffset, tessCoord) \ { \ vec3 v[4]; \ int primOffset = OsdGetPatchIndex(gl_PrimitiveID) * 4; \ for (int i = 0; i < 4; ++i) { \ int index = (primOffset+i)*OSD_FVAR_WIDTH + fvarOffset; \ v[i] = vec3(texelFetch(OsdFVarDataBuffer, index).s, \ texelFetch(OsdFVarDataBuffer, index + 1).s, \ texelFetch(OsdFVarDataBuffer, index + 2).s); \ } \ result = mix(mix(v[0], v[1], tessCoord.s), \ mix(v[3], v[2], tessCoord.s), \ tessCoord.t); \ } #define OSD_COMPUTE_FACE_VARYING_4(result, fvarOffset, tessCoord) \ { \ vec4 v[4]; \ int primOffset = OsdGetPatchIndex(gl_PrimitiveID) * 4; \ for (int i = 0; i < 4; ++i) { \ int index = (primOffset+i)*OSD_FVAR_WIDTH + fvarOffset; \ v[i] = vec4(texelFetch(OsdFVarDataBuffer, index).s, \ texelFetch(OsdFVarDataBuffer, index + 1).s, \ texelFetch(OsdFVarDataBuffer, index + 2).s, \ texelFetch(OsdFVarDataBuffer, index + 3).s); \ } \ result = mix(mix(v[0], v[1], tessCoord.s), \ mix(v[3], v[2], tessCoord.s), \ tessCoord.t); \ } // ------ extract from triangles barycentric (loop) --------- // XXX: no interpolation supported #define OSD_COMPUTE_FACE_VARYING_TRI_1(result, fvarOffset, triVert) \ { \ int primOffset = OsdGetPatchIndex(gl_PrimitiveID) * 3; \ int index = (primOffset+triVert)*OSD_FVAR_WIDTH + fvarOffset; \ result = texelFetch(OsdFVarDataBuffer, index).s; \ } #define OSD_COMPUTE_FACE_VARYING_TRI_2(result, fvarOffset, triVert) \ { \ int primOffset = OsdGetPatchIndex(gl_PrimitiveID) * 3; \ int index = (primOffset+triVert)*OSD_FVAR_WIDTH + fvarOffset; \ result = vec2(texelFetch(OsdFVarDataBuffer, index).s, \ texelFetch(OsdFVarDataBuffer, index + 1).s); \ } #define OSD_COMPUTE_FACE_VARYING_TRI_3(result, fvarOffset, triVert) \ { \ int primOffset = OsdGetPatchIndex(gl_PrimitiveID) * 3; \ int index = (primOffset+triVert)*OSD_FVAR_WIDTH + fvarOffset; \ result = vec3(texelFetch(OsdFVarDataBuffer, index).s, \ texelFetch(OsdFVarDataBuffer, index + 1).s, \ texelFetch(OsdFVarDataBuffer, index + 2).s); \ } #define OSD_COMPUTE_FACE_VARYING_TRI_4(result, fvarOffset, triVert) \ { \ int primOffset = OsdGetPatchIndex(gl_PrimitiveID) * 3; \ int index = (primOffset+triVert)*OSD_FVAR_WIDTH + fvarOffset; \ result = vec4(texelFetch(OsdFVarDataBuffer, index).s, \ texelFetch(OsdFVarDataBuffer, index + 1).s, \ texelFetch(OsdFVarDataBuffer, index + 2).s, \ texelFetch(OsdFVarDataBuffer, index + 3).s); \ }