// // Copyright 2013 Pixar // // Licensed under the Apache License, Version 2.0 (the "Apache License") // with the following modification; you may not use this file except in // compliance with the Apache License and the following modification to it: // Section 6. Trademarks. is deleted and replaced with: // // 6. Trademarks. This License does not grant permission to use the trade // names, trademarks, service marks, or product names of the Licensor // and its affiliates, except as required to comply with Section 4(c) of // the License and to reproduce the content of the NOTICE file. // // You may obtain a copy of the Apache License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the Apache License with the above modification is // distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the Apache License for the specific // language governing permissions and limitations under the Apache License. // #include "../osd/cpuEvalLimitController.h" #include "../osd/cpuEvalLimitKernel.h" #include "../far/patchTables.h" namespace OpenSubdiv { namespace OPENSUBDIV_VERSION { OsdCpuEvalLimitController::OsdCpuEvalLimitController() { } OsdCpuEvalLimitController::~OsdCpuEvalLimitController() { } // normalize & rotate (u,v) to the sub-patch inline void computeSubPatchCoords( OsdCpuEvalLimitContext * context, unsigned int patchIdx, float & u, float & v ) { FarPatchParam::BitField bits = context->GetPatchBitFields()[ patchIdx ]; bits.Normalize( u, v ); bits.Rotate( u, v ); } // Vertex interpolation of a sample at the limit int OsdCpuEvalLimitController::EvalLimitSample( OpenSubdiv::OsdEvalCoords const & coord, OsdCpuEvalLimitContext * context, OsdVertexBufferDescriptor const & outDesc, float * outQ, float * outDQU, float * outDQV ) const { float u=coord.u, v=coord.v; FarPatchMap::Handle const * handle = context->GetPatchMap().FindPatch( coord.face, u, v ); // the map may not be able to return a handle if there is a hole or the face // index is incorrect if (not handle) return 0; computeSubPatchCoords(context, handle->patchIdx, u, v); FarPatchTables::PatchArray const & parray = context->GetPatchArrayVector()[ handle->patchArrayIdx ]; unsigned int const * cvs = &context->GetControlVertices()[ parray.GetVertIndex() + handle->vertexOffset ]; VertexData const & vertexData = _currentBindState.vertexData; if (vertexData.in) { float * out = outQ ? outQ + outDesc.offset : 0, * outDu = outDQU ? outDQU + outDesc.offset : 0, * outDv = outDQV ? outDQV + outDesc.offset : 0; switch( parray.GetDescriptor().GetType() ) { case FarPatchTables::REGULAR : evalBSpline( v, u, cvs, vertexData.inDesc, vertexData.in, outDesc, out, outDu, outDv ); break; case FarPatchTables::BOUNDARY : evalBoundary( v, u, cvs, vertexData.inDesc, vertexData.in, outDesc, out, outDu, outDv ); break; case FarPatchTables::CORNER : evalCorner( v, u, cvs, vertexData.inDesc, vertexData.in, outDesc, out, outDu, outDv ); break; case FarPatchTables::GREGORY : evalGregory( v, u, cvs, &context->GetVertexValenceTable()[0], &context->GetQuadOffsetTable()[ parray.GetQuadOffsetIndex() + handle->vertexOffset ], context->GetMaxValence(), vertexData.inDesc, vertexData.in, outDesc, out, outDu, outDv ); break; case FarPatchTables::GREGORY_BOUNDARY : evalGregoryBoundary( v, u, cvs, &context->GetVertexValenceTable()[0], &context->GetQuadOffsetTable()[ parray.GetQuadOffsetIndex() + handle->vertexOffset ], context->GetMaxValence(), vertexData.inDesc, vertexData.in, outDesc, out, outDu, outDv ); break; default: assert(0); } } return 1; } // Vertex interpolation of samples at the limit int OsdCpuEvalLimitController::_EvalLimitSample( OpenSubdiv::OsdEvalCoords const & coords, OsdCpuEvalLimitContext * context, unsigned int index ) const { float u=coords.u, v=coords.v; FarPatchMap::Handle const * handle = context->GetPatchMap().FindPatch( coords.face, u, v ); // the map may not be able to return a handle if there is a hole or the face // index is incorrect if (not handle) return 0; computeSubPatchCoords(context, handle->patchIdx, u, v); FarPatchTables::PatchArray const & parray = context->GetPatchArrayVector()[ handle->patchArrayIdx ]; unsigned int const * cvs = &context->GetControlVertices()[ parray.GetVertIndex() + handle->vertexOffset ]; VertexData const & vertexData = _currentBindState.vertexData; if (vertexData.in) { int offset = vertexData.outDesc.stride * index; if (vertexData.out) { float * out = vertexData.out+offset, * outDu = vertexData.outDu ? vertexData.outDu+offset : 0, * outDv = vertexData.outDv ? vertexData.outDv+offset : 0; // Based on patch type - go execute interpolation switch( parray.GetDescriptor().GetType() ) { case FarPatchTables::REGULAR : evalBSpline( v, u, cvs, vertexData.inDesc, vertexData.in, vertexData.outDesc, out, outDu, outDv ); break; case FarPatchTables::BOUNDARY : evalBoundary( v, u, cvs, vertexData.inDesc, vertexData.in, vertexData.outDesc, out, outDu, outDv ); break; case FarPatchTables::CORNER : evalCorner( v, u, cvs, vertexData.inDesc, vertexData.in, vertexData.outDesc, out, outDu, outDv ); break; case FarPatchTables::GREGORY : evalGregory( v, u, cvs, &context->GetVertexValenceTable()[0], &context->GetQuadOffsetTable()[ parray.GetQuadOffsetIndex() + handle->vertexOffset ], context->GetMaxValence(), vertexData.inDesc, vertexData.in, vertexData.outDesc, out, outDu, outDv ); break; case FarPatchTables::GREGORY_BOUNDARY : evalGregoryBoundary( v, u, cvs, &context->GetVertexValenceTable()[0], &context->GetQuadOffsetTable()[ parray.GetQuadOffsetIndex() + handle->vertexOffset ], context->GetMaxValence(), vertexData.inDesc, vertexData.in, vertexData.outDesc, out, outDu, outDv ); break; default: assert(0); } } } VaryingData const & varyingData = _currentBindState.varyingData; if (varyingData.in and varyingData.out) { static int indices[5][4] = { {5, 6,10, 9}, // regular {1, 2, 6, 5}, // boundary {1, 2, 5, 4}, // corner {0, 1, 2, 3}, // gregory {0, 1, 2, 3} };// gregory boundary int type = (int)(parray.GetDescriptor().GetType() - FarPatchTables::REGULAR); int offset = varyingData.outDesc.stride * index; unsigned int zeroRing[4] = { cvs[indices[type][0]], cvs[indices[type][1]], cvs[indices[type][2]], cvs[indices[type][3]] }; evalBilinear( v, u, zeroRing, varyingData.inDesc, varyingData.in, varyingData.outDesc, varyingData.out+offset); } // Note : currently we only support bilinear boundary interpolation rules // for face-varying data. Although Hbr supports 3 additional smooth rule // sets, the feature-adaptive patch interpolation code currently does not // support them, and neither does this EvalContext. FacevaryingData const & facevaryingData = _currentBindState.facevaryingData; if (facevaryingData.out) { std::vector const & fvarData = context->GetFVarData(); if (not fvarData.empty()) { int offset = facevaryingData.outDesc.stride * index; static unsigned int zeroRing[4] = {0,1,2,3}; evalBilinear( v, u, zeroRing, facevaryingData.inDesc, &fvarData[ handle->patchIdx * 4 * context->GetFVarWidth() ], facevaryingData.outDesc, facevaryingData.out+offset); } } return 1; } } // end namespace OPENSUBDIV_VERSION } // end namespace OpenSubdiv