// // Copyright (C) Pixar. All rights reserved. // // This license governs use of the accompanying software. If you // use the software, you accept this license. If you do not accept // the license, do not use the software. // // 1. Definitions // The terms "reproduce," "reproduction," "derivative works," and // "distribution" have the same meaning here as under U.S. // copyright law. A "contribution" is the original software, or // any additions or changes to the software. // A "contributor" is any person or entity that distributes its // contribution under this license. // "Licensed patents" are a contributor's patent claims that read // directly on its contribution. // // 2. Grant of Rights // (A) Copyright Grant- Subject to the terms of this license, // including the license conditions and limitations in section 3, // each contributor grants you a non-exclusive, worldwide, // royalty-free copyright license to reproduce its contribution, // prepare derivative works of its contribution, and distribute // its contribution or any derivative works that you create. // (B) Patent Grant- Subject to the terms of this license, // including the license conditions and limitations in section 3, // each contributor grants you a non-exclusive, worldwide, // royalty-free license under its licensed patents to make, have // made, use, sell, offer for sale, import, and/or otherwise // dispose of its contribution in the software or derivative works // of the contribution in the software. // // 3. Conditions and Limitations // (A) No Trademark License- This license does not grant you // rights to use any contributor's name, logo, or trademarks. // (B) If you bring a patent claim against any contributor over // patents that you claim are infringed by the software, your // patent license from such contributor to the software ends // automatically. // (C) If you distribute any portion of the software, you must // retain all copyright, patent, trademark, and attribution // notices that are present in the software. // (D) If you distribute any portion of the software in source // code form, you may do so only under this license by including a // complete copy of this license with your distribution. If you // distribute any portion of the software in compiled or object // code form, you may only do so under a license that complies // with this license. // (E) The software is licensed "as-is." You bear the risk of // using it. The contributors give no express warranties, // guarantees or conditions. You may have additional consumer // rights under your local laws which this license cannot change. // To the extent permitted under your local laws, the contributors // exclude the implied warranties of merchantability, fitness for // a particular purpose and non-infringement. // #ifndef FAR_LOOP_SUBDIVISION_TABLES_H #define FAR_LOOP_SUBDIVISION_TABLES_H #include "../version.h" #include "../far/subdivisionTables.h" #include #include #include namespace OpenSubdiv { namespace OPENSUBDIV_VERSION { /// \brief Loop subdivision scheme tables. /// /// Loop tables store the indexing tables required in order to compute /// the refined positions of a mesh without the help of a hierarchical data /// structure. The advantage of this representation is its ability to be executed /// in a massively parallel environment without data dependencies. /// template class FarLoopSubdivisionTables : public FarSubdivisionTables { public: private: template friend class FarLoopSubdivisionTablesFactory; template friend class FarMultiMeshFactory; template friend class FarComputeController; FarLoopSubdivisionTables( FarMesh * mesh, int maxlevel ); // Compute-kernel applied to vertices resulting from the refinement of an edge. void computeEdgePoints(int offset, int level, int start, int end, void * clientdata) const; // Compute-kernel applied to vertices resulting from the refinement of a vertex // Kernel "A" Handles the k_Smooth and k_Dart rules void computeVertexPointsA(int offset, bool pass, int level, int start, int end, void * clientdata) const; // Compute-kernel applied to vertices resulting from the refinement of a vertex // Kernel "B" Handles the k_Crease and k_Corner rules void computeVertexPointsB(int offset,int level, int start, int end, void * clientdata) const; }; template FarLoopSubdivisionTables::FarLoopSubdivisionTables( FarMesh * mesh, int maxlevel ) : FarSubdivisionTables(mesh, maxlevel) { } // // Edge-vertices compute Kernel - completely re-entrant // template void FarLoopSubdivisionTables::computeEdgePoints( int offset, int tableOffset, int start, int end, void * clientdata ) const { assert(this->_mesh); U * vsrc = &this->_mesh->GetVertices().at(0), * vdst = vsrc + offset + start; for (int i=start+tableOffset; iClear(clientdata); int eidx0 = this->_E_IT[4*i+0], eidx1 = this->_E_IT[4*i+1], eidx2 = this->_E_IT[4*i+2], eidx3 = this->_E_IT[4*i+3]; float endPtWeight = this->_E_W[i*2+0]; // Fully sharp edge : endPtWeight = 0.5f vdst->AddWithWeight( vsrc[eidx0], endPtWeight, clientdata ); vdst->AddWithWeight( vsrc[eidx1], endPtWeight, clientdata ); if (eidx2!=-1) { // Apply fractional sharpness float oppPtWeight = this->_E_W[i*2+1]; vdst->AddWithWeight( vsrc[eidx2], oppPtWeight, clientdata ); vdst->AddWithWeight( vsrc[eidx3], oppPtWeight, clientdata ); } vdst->AddVaryingWithWeight( vsrc[eidx0], 0.5f, clientdata ); vdst->AddVaryingWithWeight( vsrc[eidx1], 0.5f, clientdata ); } } // // Vertex-vertices compute Kernels "A" and "B" - completely re-entrant // // multi-pass kernel handling k_Crease and k_Corner rules template void FarLoopSubdivisionTables::computeVertexPointsA( int offset, bool pass, int tableOffset, int start, int end, void * clientdata ) const { assert(this->_mesh); U * vsrc = &this->_mesh->GetVertices().at(0), * vdst = vsrc + offset + start; for (int i=start+tableOffset; iClear(clientdata); int n=this->_V_ITa[5*i+1], // number of vertices in the _VO_IT array (valence) p=this->_V_ITa[5*i+2], // index of the parent vertex eidx0=this->_V_ITa[5*i+3], // index of the first crease rule edge eidx1=this->_V_ITa[5*i+4]; // index of the second crease rule edge float weight = pass ? this->_V_W[i] : 1.0f - this->_V_W[i]; // In the case of fractional weight, the weight must be inverted since // the value is shared with the k_Smooth kernel (statistically the // k_Smooth kernel runs much more often than this one) if (weight>0.0f and weight<1.0f and n>0) weight=1.0f-weight; // In the case of a k_Corner / k_Crease combination, the edge indices // won't be null, so we use a -1 valence to detect that particular case if (eidx0==-1 or (pass==false and (n==-1)) ) { // k_Corner case vdst->AddWithWeight( vsrc[p], weight, clientdata ); } else { // k_Crease case vdst->AddWithWeight( vsrc[p], weight * 0.75f, clientdata ); vdst->AddWithWeight( vsrc[eidx0], weight * 0.125f, clientdata ); vdst->AddWithWeight( vsrc[eidx1], weight * 0.125f, clientdata ); } vdst->AddVaryingWithWeight( vsrc[p], 1.0f, clientdata ); } } // multi-pass kernel handling k_Dart and k_Smooth rules template void FarLoopSubdivisionTables::computeVertexPointsB( int offset, int tableOffset, int start, int end, void * clientdata ) const { assert(this->_mesh); U * vsrc = &this->_mesh->GetVertices().at(0), * vdst = vsrc + offset + start; for (int i=start+tableOffset; iClear(clientdata); int h = this->_V_ITa[5*i ], // offset of the vertices in the _V0_IT array n = this->_V_ITa[5*i+1], // number of vertices in the _VO_IT array (valence) p = this->_V_ITa[5*i+2]; // index of the parent vertex float weight = this->_V_W[i], wp = 1.0f/n, beta = 0.25f * cosf((float)M_PI * 2.0f * wp) + 0.375f; beta = beta*beta; beta = (0.625f-beta)*wp; vdst->AddWithWeight( vsrc[p], weight * (1.0f-(beta*n)), clientdata); for (int j=0; jAddWithWeight( vsrc[this->_V_IT[h+j]], weight * beta ); vdst->AddVaryingWithWeight( vsrc[p], 1.0f, clientdata ); } } } // end namespace OPENSUBDIV_VERSION using namespace OPENSUBDIV_VERSION; } // end namespace OpenSubdiv #endif /* FAR_LOOP_SUBDIVISION_TABLES_H */