// // Copyright 2013 Pixar // // Licensed under the Apache License, Version 2.0 (the "Apache License") // with the following modification; you may not use this file except in // compliance with the Apache License and the following modification to it: // Section 6. Trademarks. is deleted and replaced with: // // 6. Trademarks. This License does not grant permission to use the trade // names, trademarks, service marks, or product names of the Licensor // and its affiliates, except as required to comply with Section 4(c) of // the License and to reproduce the content of the NOTICE file. // // You may obtain a copy of the Apache License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the Apache License with the above modification is // distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the Apache License for the specific // language governing permissions and limitations under the Apache License. // #include "../osd/cpuKernel.h" #include "../osd/vertexDescriptor.h" namespace OpenSubdiv { namespace OPENSUBDIV_VERSION { void OsdCpuComputeFace( OsdVertexDescriptor const &vdesc, float * vertex, float * varying, const int *F_IT, const int *F_ITa, int vertexOffset, int tableOffset, int start, int end) { if(vdesc.numVertexElements == 4 && varying == NULL) { ComputeFaceKernel<4> (vertex, F_IT, F_ITa, vertexOffset, tableOffset, start, end); } else if(vdesc.numVertexElements == 8 && varying == NULL) { ComputeFaceKernel<8> (vertex, F_IT, F_ITa, vertexOffset, tableOffset, start, end); } else { for (int i = start + tableOffset; i < end + tableOffset; i++) { int h = F_ITa[2*i]; int n = F_ITa[2*i+1]; float weight = 1.0f/n; // XXX: should use local vertex struct variable instead of // accumulating directly into global memory. int dstIndex = i + vertexOffset - tableOffset; vdesc.Clear(vertex, varying, dstIndex); for (int j = 0; j < n; ++j) { int index = F_IT[h+j]; vdesc.AddWithWeight(vertex, dstIndex, index, weight); vdesc.AddVaryingWithWeight(varying, dstIndex, index, weight); } } } } void OsdCpuComputeEdge( OsdVertexDescriptor const &vdesc, float *vertex, float *varying, const int *E_IT, const float *E_W, int vertexOffset, int tableOffset, int start, int end) { if(vdesc.numVertexElements == 4 && varying == NULL) { ComputeEdgeKernel<4>(vertex, E_IT, E_W, vertexOffset, tableOffset, start, end); } else if(vdesc.numVertexElements == 8 && varying == NULL) { ComputeEdgeKernel<8>(vertex, E_IT, E_W, vertexOffset, tableOffset, start, end); } else { for (int i = start + tableOffset; i < end + tableOffset; i++) { int eidx0 = E_IT[4*i+0]; int eidx1 = E_IT[4*i+1]; int eidx2 = E_IT[4*i+2]; int eidx3 = E_IT[4*i+3]; float vertWeight = E_W[i*2+0]; int dstIndex = i + vertexOffset - tableOffset; vdesc.Clear(vertex, varying, dstIndex); vdesc.AddWithWeight(vertex, dstIndex, eidx0, vertWeight); vdesc.AddWithWeight(vertex, dstIndex, eidx1, vertWeight); if (eidx2 != -1) { float faceWeight = E_W[i*2+1]; vdesc.AddWithWeight(vertex, dstIndex, eidx2, faceWeight); vdesc.AddWithWeight(vertex, dstIndex, eidx3, faceWeight); } vdesc.AddVaryingWithWeight(varying, dstIndex, eidx0, 0.5f); vdesc.AddVaryingWithWeight(varying, dstIndex, eidx1, 0.5f); } } } void OsdCpuComputeVertexA( OsdVertexDescriptor const &vdesc, float *vertex, float *varying, const int *V_ITa, const float *V_W, int vertexOffset, int tableOffset, int start, int end, int pass) { if(vdesc.numVertexElements == 4 && varying == NULL) { ComputeVertexAKernel<4>(vertex, V_ITa, V_W, vertexOffset, tableOffset, start, end, pass); } else if (vdesc.numVertexElements == 8 && varying == NULL) { ComputeVertexAKernel<8>(vertex, V_ITa, V_W, vertexOffset, tableOffset, start, end, pass); } else { for (int i = start + tableOffset; i < end + tableOffset; i++) { int n = V_ITa[5*i+1]; int p = V_ITa[5*i+2]; int eidx0 = V_ITa[5*i+3]; int eidx1 = V_ITa[5*i+4]; float weight = (pass == 1) ? V_W[i] : 1.0f - V_W[i]; // In the case of fractional weight, the weight must be inverted since // the value is shared with the k_Smooth kernel (statistically the // k_Smooth kernel runs much more often than this one) if (weight > 0.0f && weight < 1.0f && n > 0) weight = 1.0f - weight; int dstIndex = i + vertexOffset - tableOffset; if (not pass) vdesc.Clear(vertex, varying, dstIndex); if (eidx0 == -1 || (pass == 0 && (n == -1))) { vdesc.AddWithWeight(vertex, dstIndex, p, weight); } else { vdesc.AddWithWeight(vertex, dstIndex, p, weight * 0.75f); vdesc.AddWithWeight(vertex, dstIndex, eidx0, weight * 0.125f); vdesc.AddWithWeight(vertex, dstIndex, eidx1, weight * 0.125f); } if (not pass) vdesc.AddVaryingWithWeight(varying, dstIndex, p, 1.0f); } } } void OsdCpuComputeVertexB( OsdVertexDescriptor const &vdesc, float *vertex, float *varying, const int *V_ITa, const int *V_IT, const float *V_W, int vertexOffset, int tableOffset, int start, int end) { if(vdesc.numVertexElements == 4 && varying == NULL) { ComputeVertexBKernel<4>(vertex, V_ITa, V_IT, V_W, vertexOffset, tableOffset, start, end); } else if(vdesc.numVertexElements == 8 && varying == NULL) { ComputeVertexBKernel<8>(vertex, V_ITa, V_IT, V_W, vertexOffset, tableOffset, start, end); } else { for (int i = start + tableOffset; i < end + tableOffset; i++) { int h = V_ITa[5*i]; int n = V_ITa[5*i+1]; int p = V_ITa[5*i+2]; float weight = V_W[i]; float wp = 1.0f/static_cast(n*n); float wv = (n-2.0f) * n * wp; int dstIndex = i + vertexOffset - tableOffset; vdesc.Clear(vertex, varying, dstIndex); vdesc.AddWithWeight(vertex, dstIndex, p, weight * wv); for (int j = 0; j < n; ++j) { vdesc.AddWithWeight(vertex, dstIndex, V_IT[h+j*2], weight * wp); vdesc.AddWithWeight(vertex, dstIndex, V_IT[h+j*2+1], weight * wp); } vdesc.AddVaryingWithWeight(varying, dstIndex, p, 1.0f); } } } void OsdCpuComputeLoopVertexB( OsdVertexDescriptor const &vdesc, float *vertex, float *varying, const int *V_ITa, const int *V_IT, const float *V_W, int vertexOffset, int tableOffset, int start, int end) { if(vdesc.numVertexElements == 4 && varying == NULL) { ComputeLoopVertexBKernel<4>(vertex, V_ITa, V_IT, V_W, vertexOffset, tableOffset, start, end); } else if(vdesc.numVertexElements == 8 && varying == NULL) { ComputeLoopVertexBKernel<8>(vertex, V_ITa, V_IT, V_W, vertexOffset, tableOffset, start, end); } else { for (int i = start + tableOffset; i < end + tableOffset; i++) { int h = V_ITa[5*i]; int n = V_ITa[5*i+1]; int p = V_ITa[5*i+2]; float weight = V_W[i]; float wp = 1.0f/static_cast(n); float beta = 0.25f * cosf(static_cast(M_PI) * 2.0f * wp) + 0.375f; beta = beta * beta; beta = (0.625f - beta) * wp; int dstIndex = i + vertexOffset - tableOffset; vdesc.Clear(vertex, varying, dstIndex); vdesc.AddWithWeight(vertex, dstIndex, p, weight * (1.0f - (beta * n))); for (int j = 0; j < n; ++j) vdesc.AddWithWeight(vertex, dstIndex, V_IT[h+j], weight * beta); vdesc.AddVaryingWithWeight(varying, dstIndex, p, 1.0f); } } } void OsdCpuComputeBilinearEdge( OsdVertexDescriptor const &vdesc, float *vertex, float *varying, const int *E_IT, int vertexOffset, int tableOffset, int start, int end) { if(vdesc.numVertexElements == 4 && varying == NULL) { ComputeBilinearEdgeKernel<4>(vertex, E_IT, vertexOffset, tableOffset, start, end); } else if(vdesc.numVertexElements == 8 && varying == NULL) { ComputeBilinearEdgeKernel<8>(vertex, E_IT, vertexOffset, tableOffset, start, end); } else { for (int i = start + tableOffset; i < end + tableOffset; i++) { int eidx0 = E_IT[2*i+0]; int eidx1 = E_IT[2*i+1]; int dstIndex = i + vertexOffset - tableOffset; vdesc.Clear(vertex, varying, dstIndex); vdesc.AddWithWeight(vertex, dstIndex, eidx0, 0.5f); vdesc.AddWithWeight(vertex, dstIndex, eidx1, 0.5f); vdesc.AddVaryingWithWeight(varying, dstIndex, eidx0, 0.5f); vdesc.AddVaryingWithWeight(varying, dstIndex, eidx1, 0.5f); } } } void OsdCpuComputeBilinearVertex( OsdVertexDescriptor const &vdesc, float *vertex, float *varying, const int *V_ITa, int vertexOffset, int tableOffset, int start, int end) { int numVertexElements = vdesc.numVertexElements; int numVaryingElements = vdesc.numVaryingElements; float *src, *des; for (int i = start + tableOffset; i < end + tableOffset; i++) { int p = V_ITa[i]; int dstIndex = i + vertexOffset - tableOffset; src = vertex + p * numVertexElements; des = vertex + dstIndex * numVertexElements; memcpy(des, src, sizeof(float)*numVertexElements); if(varying) { src = varying + p * numVaryingElements; des = varying + dstIndex * numVaryingElements; memcpy(des, src, sizeof(float)*numVaryingElements); } } } void OsdCpuEditVertexAdd( OsdVertexDescriptor const &vdesc, float *vertex, int primVarOffset, int primVarWidth, int vertexOffset, int tableOffset, int start, int end, const unsigned int *editIndices, const float *editValues) { for (int i = start+tableOffset; i < end+tableOffset; i++) { vdesc.ApplyVertexEditAdd(vertex, primVarOffset, primVarWidth, editIndices[i] + vertexOffset, &editValues[i*primVarWidth]); } } void OsdCpuEditVertexSet( OsdVertexDescriptor const &vdesc, float *vertex, int primVarOffset, int primVarWidth, int vertexOffset, int tableOffset, int start, int end, const unsigned int *editIndices, const float *editValues) { for (int i = start+tableOffset; i < end+tableOffset; i++) { vdesc.ApplyVertexEditSet(vertex, primVarOffset, primVarWidth, editIndices[i] + vertexOffset, &editValues[i*primVarWidth]); } } } // end namespace OPENSUBDIV_VERSION } // end namespace OpenSubdiv