// // Copyright 2013 Pixar // // Licensed under the Apache License, Version 2.0 (the "Apache License") // with the following modification; you may not use this file except in // compliance with the Apache License and the following modification to it: // Section 6. Trademarks. is deleted and replaced with: // // 6. Trademarks. This License does not grant permission to use the trade // names, trademarks, service marks, or product names of the Licensor // and its affiliates, except as required to comply with Section 4(c) of // the License and to reproduce the content of the NOTICE file. // // You may obtain a copy of the Apache License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the Apache License with the above modification is // distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the Apache License for the specific // language governing permissions and limitations under the Apache License. // #include #include #include #include #include #include #include #include #include #include OpenSubdiv::OsdCpuComputeController * g_cpuComputeController = NULL; #ifdef OPENSUBDIV_HAS_OPENMP #include OpenSubdiv::OsdOmpComputeController * g_ompComputeController = NULL; #endif #undef OPENSUBDIV_HAS_OPENCL // XXX: dyu OpenCL D3D11 interop needs work... #ifdef OPENSUBDIV_HAS_OPENCL #include #include #include #include "../common/clInit.h" cl_context g_clContext; cl_command_queue g_clQueue; OpenSubdiv::OsdCLComputeController * g_clComputeController = NULL; #endif #ifdef OPENSUBDIV_HAS_CUDA #include #include #include #include #include bool g_cudaInitialized = false; OpenSubdiv::OsdCudaComputeController * g_cudaComputeController = NULL; #endif #include #include #include OpenSubdiv::OsdD3D11ComputeController * g_d3d11ComputeController = NULL; #include OpenSubdiv::OsdD3D11MeshInterface *g_mesh; #include "Ptexture.h" #include "PtexUtils.h" #include "../common/stopwatch.h" #include "../common/simple_math.h" #include "../common/d3d11_hud.h" #include "../../regression/common/shape_utils.h" static const char *g_shaderSource = #include "shader.inc" ; #include #include #include #include #include #include #define SAFE_RELEASE(p) { if(p) { (p)->Release(); (p)=NULL; } } typedef OpenSubdiv::HbrMesh OsdHbrMesh; typedef OpenSubdiv::HbrVertex OsdHbrVertex; typedef OpenSubdiv::HbrFace OsdHbrFace; typedef OpenSubdiv::HbrHalfedge OsdHbrHalfedge; enum KernelType { kCPU = 0, kOPENMP = 1, kCUDA = 2, kCL = 3, kDirectCompute = 4 }; enum HudCheckBox { HUD_CB_ADAPTIVE, HUD_CB_DISPLAY_OCCLUSION, HUD_CB_DISPLAY_NORMALMAP, HUD_CB_DISPLAY_SPECULAR, HUD_CB_ANIMATE_VERTICES, HUD_CB_VIEW_LOD, HUD_CB_FRACTIONAL_SPACING, HUD_CB_PATCH_CULL, HUD_CB_IBL, HUD_CB_BLOOM, HUD_CB_SEAMLESS_MIPMAP, HUD_CB_FREEZE }; enum HudRadioGroup { HUD_RB_KERNEL, HUD_RB_LEVEL, HUD_RB_SCHEME, HUD_RB_WIRE, HUD_RB_COLOR, HUD_RB_DISPLACEMENT, HUD_RB_NORMAL }; enum DisplayType { DISPLAY_WIRE, DISPLAY_SHADED, DISPLAY_WIRE_ON_SHADED }; enum ColorType { COLOR_NONE, COLOR_PTEX_NEAREST, COLOR_PTEX_HW_BILINEAR, COLOR_PTEX_BILINEAR, COLOR_PTEX_BIQUADRATIC, COLOR_PATCHTYPE, COLOR_PATCHCOORD, COLOR_NORMAL }; enum DisplacementType { DISPLACEMENT_NONE, DISPLACEMENT_HW_BILINEAR, DISPLACEMENT_BILINEAR, DISPLACEMENT_BIQUADRATIC }; enum NormalType { NORMAL_SURFACE, NORMAL_FACET, NORMAL_HW_SCREENSPACE, NORMAL_SCREENSPACE, NORMAL_BIQUADRATIC, NORMAL_BIQUADRATIC_WG }; //----------------------------------------------------------------------------- int g_frame = 0, g_repeatCount = 0; // GUI variables int g_fullscreen = 0, g_wire = DISPLAY_SHADED, g_drawNormals = 0, g_mbutton[3] = {0, 0, 0}, g_level = 2, g_tessLevel = 2, g_kernel = kCPU, g_scheme = 0, g_running = 1, g_maxMipmapLevels = 10, g_color = COLOR_PTEX_BILINEAR, g_displacement = DISPLACEMENT_NONE, g_normal = NORMAL_SURFACE; float g_moveScale = 0.0f, g_displacementScale = 1.0f, g_mipmapBias = 0.0; bool g_adaptive = true, g_yup = false, g_patchCull = true, g_screenSpaceTess = true, g_fractionalSpacing = true, g_ibl = false, g_bloom = false, g_freeze = false; // ptex switch bool g_occlusion = false, g_specular = false; bool g_seamless = true; // camera float g_rotate[2] = {0, 0}, g_prev_x = 0, g_prev_y = 0, g_dolly = 5, g_pan[2] = {0, 0}, g_center[3] = {0, 0, 0}, g_size = 0; // viewport int g_width = 1024, g_height = 1024; D3D11hud *g_hud = NULL; // performance float g_cpuTime = 0; float g_gpuTime = 0; #define NUM_FPS_TIME_SAMPLES 6 float g_fpsTimeSamples[NUM_FPS_TIME_SAMPLES] = {0, 0, 0, 0, 0, 0}; int g_currentFpsTimeSample = 0; Stopwatch g_fpsTimer; float g_animTime = 0; // geometry std::vector g_positions, g_normals; OpenSubdiv::OsdD3D11PtexMipmapTexture * g_osdPTexImage = 0; OpenSubdiv::OsdD3D11PtexMipmapTexture * g_osdPTexDisplacement = 0; OpenSubdiv::OsdD3D11PtexMipmapTexture * g_osdPTexOcclusion = 0; OpenSubdiv::OsdD3D11PtexMipmapTexture * g_osdPTexSpecular = 0; const char * g_ptexColorFilename; ID3D11Device * g_pd3dDevice = NULL; ID3D11DeviceContext * g_pd3dDeviceContext = NULL; IDXGISwapChain * g_pSwapChain = NULL; ID3D11RenderTargetView * g_pSwapChainRTV = NULL; ID3D11RasterizerState* g_pRasterizerState = NULL; ID3D11InputLayout* g_pInputLayout = NULL; ID3D11DepthStencilState* g_pDepthStencilState = NULL; ID3D11Texture2D * g_pDepthStencilBuffer = NULL; ID3D11Buffer* g_pcbPerFrame = NULL; ID3D11Buffer* g_pcbTessellation = NULL; ID3D11Buffer* g_pcbLighting = NULL; ID3D11Buffer* g_pcbConfig = NULL; ID3D11DepthStencilView* g_pDepthStencilView = NULL; bool g_bDone = false; //------------------------------------------------------------------------------ static void calcNormals(OsdHbrMesh * mesh, std::vector const & pos, std::vector & result ) { // calc normal vectors int nverts = (int)pos.size()/3; int nfaces = mesh->GetNumCoarseFaces(); for (int i = 0; i < nfaces; ++i) { OsdHbrFace * f = mesh->GetFace(i); float const * p0 = &pos[f->GetVertex(0)->GetID()*3], * p1 = &pos[f->GetVertex(1)->GetID()*3], * p2 = &pos[f->GetVertex(2)->GetID()*3]; float n[3]; cross(n, p0, p1, p2); for (int j = 0; j < f->GetNumVertices(); j++) { int idx = f->GetVertex(j)->GetID() * 3; result[idx ] += n[0]; result[idx+1] += n[1]; result[idx+2] += n[2]; } } for (int i = 0; i < nverts; ++i) normalize(&result[i*3]); } //------------------------------------------------------------------------------ static void updateGeom() { int nverts = (int)g_positions.size() / 3; std::vector vertex; vertex.reserve(nverts*6); const float *p = &g_positions[0]; const float *n = &g_normals[0]; for (int i = 0; i < nverts; ++i) { float move = g_size*0.005f*cosf(p[0]*100/g_size+g_frame*0.01f); vertex.push_back(p[0]); vertex.push_back(p[1]+g_moveScale*move); vertex.push_back(p[2]); p += 3; // if (g_adaptive == false) { vertex.push_back(n[0]); vertex.push_back(n[1]); vertex.push_back(n[2]); n += 3; } } g_mesh->UpdateVertexBuffer(&vertex[0], 0, nverts); Stopwatch s; s.Start(); g_mesh->Refine(); s.Stop(); g_cpuTime = float(s.GetElapsed() * 1000.0f); s.Start(); g_mesh->Synchronize(); s.Stop(); g_gpuTime = float(s.GetElapsed() * 1000.0f); } //------------------------------------------------------------------------------- static void fitFrame() { g_pan[0] = g_pan[1] = 0; g_dolly = g_size; } //------------------------------------------------------------------------------- template OpenSubdiv::HbrMesh * createPTexGeo(PtexTexture * r) { PtexMetaData* meta = r->getMetaData(); if (meta->numKeys() < 3) return NULL; const float* vp; const int *vi, *vc; int nvp, nvi, nvc; meta->getValue("PtexFaceVertCounts", vc, nvc); if (nvc == 0) return NULL; meta->getValue("PtexVertPositions", vp, nvp); if (nvp == 0) return NULL; meta->getValue("PtexFaceVertIndices", vi, nvi); if (nvi == 0) return NULL; static OpenSubdiv::HbrCatmarkSubdivision _catmark; static OpenSubdiv::HbrBilinearSubdivision _bilinear; OpenSubdiv::HbrMesh * mesh; if (g_scheme == 0) mesh = new OpenSubdiv::HbrMesh(&_catmark); else mesh = new OpenSubdiv::HbrMesh(&_bilinear); g_positions.clear(); g_positions.reserve(nvp); // compute model bounding float min[3] = {vp[0], vp[1], vp[2]}; float max[3] = {vp[0], vp[1], vp[2]}; for (int i = 0; i < nvp/3; ++i) { for (int j = 0; j < 3; ++j) { float v = vp[i*3+j]; g_positions.push_back(v); min[j] = std::min(min[j], v); max[j] = std::max(max[j], v); } mesh->NewVertex(i, T()); } for (int j = 0; j < 3; ++j) { g_center[j] = (min[j] + max[j]) * 0.5f; g_size += (max[j]-min[j])*(max[j]-min[j]); } g_size = sqrtf(g_size); const int *fv = vi; for (int i = 0, ptxidx = 0; i < nvc; ++i) { int nv = vc[i]; OpenSubdiv::HbrFace * face = mesh->NewFace(nv, (int *)fv, 0); face->SetPtexIndex(ptxidx); if (nv != 4) ptxidx += nv; else ptxidx++; fv += nv; } mesh->SetInterpolateBoundaryMethod(OpenSubdiv::HbrMesh::k_InterpolateBoundaryEdgeOnly); // set creases here // applyTags( mesh, sh ); mesh->Finish(); return mesh; } //------------------------------------------------------------------------------ static const char * getKernelName(int kernel) { if (kernel == kCPU) return "CPU"; else if (kernel == kOPENMP) return "OpenMP"; else if (kernel == kCUDA) return "Cuda"; else if (kernel == kCL) return "OpenCL"; else if (kernel == kDirectCompute) return "DirectCompute"; return "Unknown"; } //------------------------------------------------------------------------------ union Effect { struct { unsigned int wire:2; unsigned int color:3; unsigned int displacement:2; unsigned int normal:3; int occlusion:1; int specular:1; int patchCull:1; int screenSpaceTess:1; int fractionalSpacing:1; int ibl:1; int seamless:1; }; int value; bool operator < (const Effect &e) const { return value < e.value; } }; typedef std::pair EffectDesc; class EffectDrawRegistry : public OpenSubdiv::OsdD3D11DrawRegistry { protected: virtual ConfigType * _CreateDrawConfig(DescType const & desc, SourceConfigType const * sconfig, ID3D11Device * pd3dDevice, ID3D11InputLayout ** ppInputLayout, D3D11_INPUT_ELEMENT_DESC const * pInputElementDescs, int numInputElements); virtual SourceConfigType * _CreateDrawSourceConfig(DescType const & desc, ID3D11Device * pd3dDevice); }; EffectDrawRegistry::SourceConfigType * EffectDrawRegistry::_CreateDrawSourceConfig(DescType const & desc, ID3D11Device *pd3dDevice) { Effect effect = desc.second; SetPtexEnabled(true); SourceConfigType * sconfig = BaseRegistry::_CreateDrawSourceConfig(desc.first, pd3dDevice); assert(sconfig); if (effect.patchCull) sconfig->commonShader.AddDefine("OSD_ENABLE_PATCH_CULL"); if (effect.screenSpaceTess) sconfig->commonShader.AddDefine("OSD_ENABLE_SCREENSPACE_TESSELLATION"); if (effect.fractionalSpacing) sconfig->commonShader.AddDefine("OSD_FRACTIONAL_ODD_SPACING"); bool quad = true; if (desc.first.GetType() == OpenSubdiv::FarPatchTables::QUADS || desc.first.GetType() == OpenSubdiv::FarPatchTables::TRIANGLES) { sconfig->vertexShader.source = g_shaderSource; sconfig->vertexShader.target = "vs_5_0"; sconfig->vertexShader.entry = "vs_main"; if (effect.displacement) { sconfig->geometryShader.AddDefine("FLAT_NORMALS"); } } else { quad = false; sconfig->vertexShader.source = g_shaderSource + sconfig->vertexShader.source; sconfig->domainShader.source = g_shaderSource + sconfig->domainShader.source; sconfig->hullShader.source = g_shaderSource + sconfig->hullShader.source; if (effect.displacement and (not effect.normal)) sconfig->geometryShader.AddDefine("FLAT_NORMALS"); } sconfig->geometryShader.source = g_shaderSource; sconfig->geometryShader.target = "gs_5_0"; sconfig->geometryShader.entry = "gs_main"; sconfig->pixelShader.source = g_shaderSource; sconfig->pixelShader.target = "ps_5_0"; sconfig->pixelShader.entry = "ps_main"; switch (effect.color) { case COLOR_NONE: break; case COLOR_PTEX_NEAREST: sconfig->pixelShader.AddDefine("COLOR_PTEX_NEAREST"); break; case COLOR_PTEX_HW_BILINEAR: sconfig->pixelShader.AddDefine("COLOR_PTEX_HW_BILINEAR"); break; case COLOR_PTEX_BILINEAR: sconfig->pixelShader.AddDefine("COLOR_PTEX_BILINEAR"); break; case COLOR_PTEX_BIQUADRATIC: sconfig->pixelShader.AddDefine("COLOR_PTEX_BIQUADRATIC"); break; case COLOR_PATCHTYPE: sconfig->pixelShader.AddDefine("COLOR_PATCHTYPE"); break; case COLOR_PATCHCOORD: sconfig->pixelShader.AddDefine("COLOR_PATCHCOORD"); break; case COLOR_NORMAL: sconfig->pixelShader.AddDefine("COLOR_NORMAL"); break; } switch (effect.displacement) { case DISPLACEMENT_NONE: break; case DISPLACEMENT_HW_BILINEAR: sconfig->commonShader.AddDefine("DISPLACEMENT_HW_BILINEAR"); break; case DISPLACEMENT_BILINEAR: sconfig->commonShader.AddDefine("DISPLACEMENT_BILINEAR"); break; case DISPLACEMENT_BIQUADRATIC: sconfig->commonShader.AddDefine("DISPLACEMENT_BIQUADRATIC"); break; } switch (effect.normal) { case NORMAL_FACET: sconfig->commonShader.AddDefine("NORMAL_FACET"); break; case NORMAL_HW_SCREENSPACE: sconfig->commonShader.AddDefine("NORMAL_HW_SCREENSPACE"); break; case NORMAL_SCREENSPACE: sconfig->commonShader.AddDefine("NORMAL_SCREENSPACE"); break; case NORMAL_BIQUADRATIC: sconfig->commonShader.AddDefine("NORMAL_BIQUADRATIC"); break; case NORMAL_BIQUADRATIC_WG: sconfig->commonShader.AddDefine("OSD_COMPUTE_NORMAL_DERIVATIVES"); sconfig->commonShader.AddDefine("NORMAL_BIQUADRATIC_WG"); break; } if (effect.occlusion) sconfig->pixelShader.AddDefine("USE_PTEX_OCCLUSION"); if (effect.specular) sconfig->pixelShader.AddDefine("USE_PTEX_SPECULAR"); if (effect.ibl) sconfig->pixelShader.AddDefine("USE_IBL"); if (quad) { sconfig->geometryShader.AddDefine("PRIM_QUAD"); sconfig->pixelShader.AddDefine("PRIM_QUAD"); } else { sconfig->geometryShader.AddDefine("PRIM_TRI"); sconfig->pixelShader.AddDefine("PRIM_TRI"); } if (effect.seamless) { sconfig->commonShader.AddDefine("SEAMLESS_MIPMAP"); } if (effect.wire == 0) { sconfig->geometryShader.AddDefine("GEOMETRY_OUT_WIRE"); sconfig->pixelShader.AddDefine("GEOMETRY_OUT_WIRE"); } else if (effect.wire == 1) { sconfig->geometryShader.AddDefine("GEOMETRY_OUT_FILL"); sconfig->pixelShader.AddDefine("GEOMETRY_OUT_FILL"); } else if (effect.wire == 2) { sconfig->geometryShader.AddDefine("GEOMETRY_OUT_LINE"); sconfig->pixelShader.AddDefine("GEOMETRY_OUT_LINE"); } return sconfig; } EffectDrawRegistry::ConfigType * EffectDrawRegistry::_CreateDrawConfig( DescType const & desc, SourceConfigType const * sconfig, ID3D11Device * pd3dDevice, ID3D11InputLayout ** ppInputLayout, D3D11_INPUT_ELEMENT_DESC const * pInputElementDescs, int numInputElements) { ConfigType * config = BaseRegistry::_CreateDrawConfig(desc.first, sconfig, pd3dDevice, ppInputLayout, pInputElementDescs, numInputElements); assert(config); return config; } EffectDrawRegistry effectRegistry; //------------------------------------------------------------------------------ OpenSubdiv::OsdD3D11PtexMipmapTexture * createPtex(const char *filename) { Ptex::String ptexError; printf("Loading ptex : %s\n", filename); #define USE_PTEX_CACHE #define PTEX_CACHE_SIZE (512*1024*1024) #ifdef USE_PTEX_CACHE PtexCache *cache = PtexCache::create(1, PTEX_CACHE_SIZE); PtexTexture *ptex = cache->get(filename, ptexError); #else PtexTexture *ptex = PtexTexture::open(filename, ptexError, true); #endif if (ptex == NULL) { printf("Error in reading %s\n", filename); exit(1); } OpenSubdiv::OsdD3D11PtexMipmapTexture *osdPtex = OpenSubdiv::OsdD3D11PtexMipmapTexture::Create(g_pd3dDeviceContext, ptex, g_maxMipmapLevels); ptex->release(); #ifdef USE_PTEX_CACHE cache->release(); #endif return osdPtex; } void createOsdMesh(int level, int kernel) { Ptex::String ptexError; PtexTexture *ptexColor = PtexTexture::open(g_ptexColorFilename, ptexError, true); if (ptexColor == NULL) { printf("Error in reading %s\n", g_ptexColorFilename); exit(1); } // generate Hbr representation from ptex OsdHbrMesh * hmesh = createPTexGeo(ptexColor); if (hmesh == NULL) return; g_normals.resize(g_positions.size(), 0.0f); calcNormals(hmesh, g_positions, g_normals); delete g_mesh; g_mesh = NULL; // Adaptive refinement currently supported only for catmull-clark scheme bool doAdaptive = (g_adaptive != 0 and g_scheme == 0); OpenSubdiv::OsdMeshBitset bits; bits.set(OpenSubdiv::MeshAdaptive, doAdaptive); bits.set(OpenSubdiv::MeshPtexData, true); int numVertexElements = 6; //g_adaptive ? 3 : 6; int numVaryingElements = 0; if (kernel == kCPU) { if (not g_cpuComputeController) { g_cpuComputeController = new OpenSubdiv::OsdCpuComputeController(); } g_mesh = new OpenSubdiv::OsdMesh( g_cpuComputeController, hmesh, numVertexElements, numVaryingElements, level, bits, g_pd3dDeviceContext); #ifdef OPENSUBDIV_HAS_OPENMP } else if (kernel == kOPENMP) { if (not g_ompComputeController) { g_ompComputeController = new OpenSubdiv::OsdOmpComputeController(); } g_mesh = new OpenSubdiv::OsdMesh( g_ompComputeController, hmesh, numVertexElements, numVaryingElements, level, bits, g_pd3dDeviceContext); #endif #ifdef OPENSUBDIV_HAS_OPENCL } else if (kernel == kCL) { if (not g_clComputeController) { g_clComputeController = new OpenSubdiv::OsdCLComputeController(g_clContext, g_clQueue); } g_mesh = new OpenSubdiv::OsdMesh( g_clComputeController, hmesh, numVertexElements, numVaryingElements, level, bits, g_pd3dDeviceContext); #endif #ifdef OPENSUBDIV_HAS_CUDA } else if (kernel == kCUDA) { if (not g_cudaComputeController) { g_cudaComputeController = new OpenSubdiv::OsdCudaComputeController(); } g_mesh = new OpenSubdiv::OsdMesh( g_cudaComputeController, hmesh, numVertexElements, numVaryingElements, level, bits, g_pd3dDeviceContext); #endif } else if (g_kernel == kDirectCompute) { if (not g_d3d11ComputeController) { g_d3d11ComputeController = new OpenSubdiv::OsdD3D11ComputeController(g_pd3dDeviceContext); } g_mesh = new OpenSubdiv::OsdMesh( g_d3d11ComputeController, hmesh, numVertexElements, numVaryingElements, level, bits, g_pd3dDeviceContext); } else { printf("Unsupported kernel %s\n", getKernelName(kernel)); } // Hbr mesh can be deleted delete hmesh; updateGeom(); } //------------------------------------------------------------------------------ static void bindProgram(Effect effect, OpenSubdiv::OsdDrawContext::PatchArray const & patch) { EffectDesc effectDesc(patch.GetDescriptor(), effect); // input layout const D3D11_INPUT_ELEMENT_DESC hInElementDesc[] = { { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 }, { "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 4*3, D3D11_INPUT_PER_VERTEX_DATA, 0 } }; EffectDrawRegistry::ConfigType * config = effectRegistry.GetDrawConfig( effectDesc, g_pd3dDevice, &g_pInputLayout, hInElementDesc, ARRAYSIZE(hInElementDesc)); assert(g_pInputLayout); // Update transform state { __declspec(align(16)) struct CB_PER_FRAME_CONSTANTS { float ModelViewMatrix[16]; float ProjectionMatrix[16]; float ModelViewProjectionMatrix[16]; }; if (! g_pcbPerFrame) { D3D11_BUFFER_DESC cbDesc; ZeroMemory(&cbDesc, sizeof(cbDesc)); cbDesc.Usage = D3D11_USAGE_DYNAMIC; cbDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER; cbDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; cbDesc.MiscFlags = 0; cbDesc.ByteWidth = sizeof(CB_PER_FRAME_CONSTANTS); g_pd3dDevice->CreateBuffer(&cbDesc, NULL, &g_pcbPerFrame); } assert(g_pcbPerFrame); D3D11_MAPPED_SUBRESOURCE MappedResource; g_pd3dDeviceContext->Map(g_pcbPerFrame, 0, D3D11_MAP_WRITE_DISCARD, 0, &MappedResource); CB_PER_FRAME_CONSTANTS* pData = ( CB_PER_FRAME_CONSTANTS* )MappedResource.pData; float aspect = (g_height > 0) ? (float)g_width / g_height : 1.0f; identity(pData->ModelViewMatrix); translate(pData->ModelViewMatrix, -g_pan[0], -g_pan[1], -g_dolly); rotate(pData->ModelViewMatrix, g_rotate[1], 1, 0, 0); rotate(pData->ModelViewMatrix, g_rotate[0], 0, 1, 0); translate(pData->ModelViewMatrix, -g_center[0], -g_center[1], -g_center[2]); identity(pData->ProjectionMatrix); perspective(pData->ProjectionMatrix, 45.0, aspect, 0.01f, 500.0); multMatrix(pData->ModelViewProjectionMatrix, pData->ModelViewMatrix, pData->ProjectionMatrix); g_pd3dDeviceContext->Unmap( g_pcbPerFrame, 0 ); } // Update tessellation state { __declspec(align(16)) struct Tessellation { float TessLevel; int GregoryQuadOffsetBase; int PrimitiveIdBase; }; if (! g_pcbTessellation) { D3D11_BUFFER_DESC cbDesc; ZeroMemory(&cbDesc, sizeof(cbDesc)); cbDesc.Usage = D3D11_USAGE_DYNAMIC; cbDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER; cbDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; cbDesc.MiscFlags = 0; cbDesc.ByteWidth = sizeof(Tessellation); g_pd3dDevice->CreateBuffer(&cbDesc, NULL, &g_pcbTessellation); } assert(g_pcbTessellation); D3D11_MAPPED_SUBRESOURCE MappedResource; g_pd3dDeviceContext->Map(g_pcbTessellation, 0, D3D11_MAP_WRITE_DISCARD, 0, &MappedResource); Tessellation * pData = ( Tessellation* )MappedResource.pData; pData->TessLevel = static_cast(1 << g_tessLevel); pData->GregoryQuadOffsetBase = patch.GetQuadOffsetIndex(); pData->PrimitiveIdBase = patch.GetPatchIndex(); g_pd3dDeviceContext->Unmap( g_pcbTessellation, 0 ); } // Update config state { __declspec(align(16)) struct Config { float displacementScale; float mipmapBias; }; if (! g_pcbConfig) { D3D11_BUFFER_DESC cbDesc; ZeroMemory(&cbDesc, sizeof(cbDesc)); cbDesc.Usage = D3D11_USAGE_DYNAMIC; cbDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER; cbDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; cbDesc.MiscFlags = 0; cbDesc.ByteWidth = sizeof(Config); g_pd3dDevice->CreateBuffer(&cbDesc, NULL, &g_pcbConfig); } assert(g_pcbConfig); D3D11_MAPPED_SUBRESOURCE MappedResource; g_pd3dDeviceContext->Map(g_pcbConfig, 0, D3D11_MAP_WRITE_DISCARD, 0, &MappedResource); Config * pData = ( Config* )MappedResource.pData; pData->displacementScale = g_displacementScale; pData->mipmapBias = g_mipmapBias; g_pd3dDeviceContext->Unmap( g_pcbConfig, 0 ); } g_pd3dDeviceContext->IASetInputLayout(g_pInputLayout); g_pd3dDeviceContext->VSSetShader(config->vertexShader, NULL, 0); g_pd3dDeviceContext->VSSetConstantBuffers(0, 1, &g_pcbPerFrame); g_pd3dDeviceContext->HSSetShader(config->hullShader, NULL, 0); g_pd3dDeviceContext->HSSetConstantBuffers(0, 1, &g_pcbPerFrame); g_pd3dDeviceContext->HSSetConstantBuffers(1, 1, &g_pcbTessellation); g_pd3dDeviceContext->DSSetShader(config->domainShader, NULL, 0); g_pd3dDeviceContext->DSSetConstantBuffers(0, 1, &g_pcbPerFrame); g_pd3dDeviceContext->DSSetConstantBuffers(3, 1, &g_pcbConfig); g_pd3dDeviceContext->GSSetShader(config->geometryShader, NULL, 0); g_pd3dDeviceContext->GSSetConstantBuffers(0, 1, &g_pcbPerFrame); g_pd3dDeviceContext->PSSetShader(config->pixelShader, NULL, 0); g_pd3dDeviceContext->PSSetConstantBuffers(0, 1, &g_pcbPerFrame); g_pd3dDeviceContext->PSSetConstantBuffers(2, 1, &g_pcbLighting); g_pd3dDeviceContext->PSSetConstantBuffers(3, 1, &g_pcbConfig); if (g_mesh->GetDrawContext()->vertexBufferSRV) { g_pd3dDeviceContext->VSSetShaderResources(0, 1, &g_mesh->GetDrawContext()->vertexBufferSRV); } if (g_mesh->GetDrawContext()->vertexValenceBufferSRV) { g_pd3dDeviceContext->VSSetShaderResources(1, 1, &g_mesh->GetDrawContext()->vertexValenceBufferSRV); } if (g_mesh->GetDrawContext()->quadOffsetBufferSRV) { g_pd3dDeviceContext->HSSetShaderResources(2, 1, &g_mesh->GetDrawContext()->quadOffsetBufferSRV); } if (g_mesh->GetDrawContext()->ptexCoordinateBufferSRV) { g_pd3dDeviceContext->HSSetShaderResources(3, 1, &g_mesh->GetDrawContext()->ptexCoordinateBufferSRV); g_pd3dDeviceContext->DSSetShaderResources(3, 1, &g_mesh->GetDrawContext()->ptexCoordinateBufferSRV); g_pd3dDeviceContext->GSSetShaderResources(3, 1, &g_mesh->GetDrawContext()->ptexCoordinateBufferSRV); } g_pd3dDeviceContext->PSSetShaderResources(4, 1, g_osdPTexImage->GetTexelsSRV()); g_pd3dDeviceContext->PSSetShaderResources(5, 1, g_osdPTexImage->GetLayoutSRV()); if (g_osdPTexDisplacement) { g_pd3dDeviceContext->DSSetShaderResources(6, 1, g_osdPTexDisplacement->GetTexelsSRV()); g_pd3dDeviceContext->DSSetShaderResources(7, 1, g_osdPTexDisplacement->GetLayoutSRV()); g_pd3dDeviceContext->PSSetShaderResources(6, 1, g_osdPTexDisplacement->GetTexelsSRV()); g_pd3dDeviceContext->PSSetShaderResources(7, 1, g_osdPTexDisplacement->GetLayoutSRV()); } if (g_osdPTexOcclusion) { g_pd3dDeviceContext->PSSetShaderResources(8, 1, g_osdPTexOcclusion->GetTexelsSRV()); g_pd3dDeviceContext->PSSetShaderResources(9, 1, g_osdPTexOcclusion->GetLayoutSRV()); } if (g_osdPTexSpecular) { g_pd3dDeviceContext->PSSetShaderResources(10, 1, g_osdPTexSpecular->GetTexelsSRV()); g_pd3dDeviceContext->PSSetShaderResources(11, 1, g_osdPTexSpecular->GetLayoutSRV()); } } static void drawModel() { ID3D11Buffer *buffer = g_mesh->BindVertexBuffer(); assert(buffer); UINT hStrides = 6*sizeof(float); UINT hOffsets = 0; g_pd3dDeviceContext->IASetVertexBuffers(0, 1, &buffer, &hStrides, &hOffsets); OpenSubdiv::OsdDrawContext::PatchArrayVector const & patches = g_mesh->GetDrawContext()->patchArrays; g_pd3dDeviceContext->IASetIndexBuffer(g_mesh->GetDrawContext()->patchIndexBuffer, DXGI_FORMAT_R32_UINT, 0); // patch drawing for (int i = 0; i < (int)patches.size(); ++i) { OpenSubdiv::OsdDrawContext::PatchArray const & patch = patches[i]; D3D11_PRIMITIVE_TOPOLOGY topology; // if (patch.GetDescriptor().GetType() != OpenSubdiv::FarPatchTables::REGULAR) continue; if (g_mesh->GetDrawContext()->IsAdaptive()) { switch (patch.GetDescriptor().GetNumControlVertices()) { case 4: topology = D3D11_PRIMITIVE_TOPOLOGY_4_CONTROL_POINT_PATCHLIST; break; case 9: topology = D3D11_PRIMITIVE_TOPOLOGY_9_CONTROL_POINT_PATCHLIST; break; case 12: topology = D3D11_PRIMITIVE_TOPOLOGY_12_CONTROL_POINT_PATCHLIST; break; case 16: topology = D3D11_PRIMITIVE_TOPOLOGY_16_CONTROL_POINT_PATCHLIST; break; default: assert(false); break; } } else { if (g_scheme == kLoop) { topology = D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST; } else { topology = D3D11_PRIMITIVE_TOPOLOGY_LINELIST_ADJ; } } Effect effect; effect.value = 0; effect.color = g_color; effect.displacement = g_displacement; effect.occlusion = g_occlusion; effect.normal = g_normal; effect.specular = g_specular; effect.patchCull = g_patchCull; effect.screenSpaceTess = g_screenSpaceTess; effect.fractionalSpacing = g_fractionalSpacing; effect.ibl = g_ibl; effect.wire = g_wire; effect.seamless = g_seamless; bindProgram(effect, patch); g_pd3dDeviceContext->IASetPrimitiveTopology(topology); g_pd3dDeviceContext->DrawIndexed(patch.GetNumIndices(), patch.GetVertIndex(), 0); } } //------------------------------------------------------------------------------ static void display() { float color[4] = {0.006f, 0.006f, 0.006f, 1.0f}; g_pd3dDeviceContext->ClearRenderTargetView(g_pSwapChainRTV, color); // Clear the depth buffer. g_pd3dDeviceContext->ClearDepthStencilView(g_pDepthStencilView, D3D11_CLEAR_DEPTH, 1.0f, 0); g_pd3dDeviceContext->OMSetDepthStencilState(g_pDepthStencilState, 1); g_pd3dDeviceContext->RSSetState(g_pRasterizerState); drawModel(); if (g_hud->IsVisible()) { g_fpsTimer.Stop(); double fps = 1.0/g_fpsTimer.GetElapsed(); g_fpsTimer.Start(); g_hud->DrawString(10, -100, "# of Vertices = %d", g_mesh->GetNumVertices()); g_hud->DrawString(10, -60, "GPU TIME = %.3f ms", g_gpuTime); g_hud->DrawString(10, -40, "CPU TIME = %.3f ms", g_cpuTime); g_hud->DrawString(10, -20, "FPS = %3.1f", fps); } g_hud->Flush(); g_pSwapChain->Present(0, 0); } //------------------------------------------------------------------------------ static void mouse(int button, int state, int x, int y) { if (state == 0) g_hud->MouseRelease(); if (button == 0 && state == 1 && g_hud->MouseClick(x, y)) return; if (button < 3) { g_prev_x = float(x); g_prev_y = float(y); g_mbutton[button] = state; } } //------------------------------------------------------------------------------ static void motion(int x, int y) { if (g_hud->MouseCapture()) { // check gui g_hud->MouseMotion(x, y); } else if (g_mbutton[0] && !g_mbutton[1] && !g_mbutton[2]) { // orbit g_rotate[0] += x - g_prev_x; g_rotate[1] += y - g_prev_y; } else if (!g_mbutton[0] && g_mbutton[1] && !g_mbutton[2]) { // pan g_pan[0] -= g_dolly*(x - g_prev_x)/g_width; g_pan[1] += g_dolly*(y - g_prev_y)/g_height; } else if ((g_mbutton[0] && g_mbutton[1] && !g_mbutton[2]) or (!g_mbutton[0] && !g_mbutton[1] && g_mbutton[2])) { // dolly g_dolly -= g_dolly*0.01f*(x - g_prev_x); if(g_dolly <= 0.01) g_dolly = 0.01f; } g_prev_x = float(x); g_prev_y = float(y); } //----------------------------------------------------------------------------- static void quit() { g_bDone = true; if (g_osdPTexImage) delete g_osdPTexImage; if (g_osdPTexDisplacement) delete g_osdPTexDisplacement; if (g_osdPTexOcclusion) delete g_osdPTexOcclusion; if (g_osdPTexSpecular) delete g_osdPTexSpecular; if (g_mesh) delete g_mesh; if (g_hud) delete g_hud; SAFE_RELEASE(g_pRasterizerState); SAFE_RELEASE(g_pInputLayout); SAFE_RELEASE(g_pDepthStencilState); SAFE_RELEASE(g_pcbPerFrame); SAFE_RELEASE(g_pcbTessellation); SAFE_RELEASE(g_pcbLighting); SAFE_RELEASE(g_pcbConfig); SAFE_RELEASE(g_pDepthStencilView); SAFE_RELEASE(g_pSwapChainRTV); SAFE_RELEASE(g_pSwapChain); SAFE_RELEASE(g_pd3dDeviceContext); SAFE_RELEASE(g_pd3dDevice); delete g_cpuComputeController; #ifdef OPENSUBDIV_HAS_OPENMP delete g_ompComputeController; #endif #ifdef OPENSUBDIV_HAS_OPENCL delete g_clComputeController; uninitCL(g_clContext, g_clQueue); #endif #ifdef OPENSUBDIV_HAS_CUDA delete g_cudaComputeController; cudaDeviceReset(); #endif delete g_d3d11ComputeController; PostQuitMessage(0); exit(0); } //------------------------------------------------------------------------------ static void keyboard(char key) { if (g_hud->KeyDown((int)tolower(key))) return; switch (key) { case 'Q': quit(); case 'F': fitFrame(); break; case '+': case '=': g_tessLevel++; break; case '-': g_tessLevel = std::max(1, g_tessLevel-1); break; case 0x1b: g_hud->SetVisible(!g_hud->IsVisible()); break; } } //------------------------------------------------------------------------------ static void callbackWireframe(int b) { g_wire = b; } static void callbackKernel(int k) { g_kernel = k; #ifdef OPENSUBDIV_HAS_OPENCL if (g_kernel == kCL and g_clContext == NULL) { if (initCL(&g_clContext, &g_clQueue) == false) { printf("Error in initializing OpenCL\n"); exit(1); } } #endif #ifdef OPENSUBDIV_HAS_CUDA if (g_kernel == kCUDA and g_cudaInitialized == false) { g_cudaInitialized = true; cudaD3D11SetDirect3DDevice( g_pd3dDevice ); } #endif createOsdMesh(g_level, g_kernel); } static void callbackScheme(int s) { g_scheme = s; createOsdMesh(g_level, g_kernel); } static void callbackLevel(int l) { g_level = l; createOsdMesh(g_level, g_kernel); } static void callbackColor(int c) { g_color = c; } static void callbackDisplacement(int d) { g_displacement = d; } static void callbackNormal(int n) { g_normal = n; } static void callbackCheckBox(bool checked, int button) { bool rebuild = false; switch (button) { case HUD_CB_ADAPTIVE: g_adaptive = checked; rebuild = true; break; case HUD_CB_DISPLAY_OCCLUSION: g_occlusion = checked; break; case HUD_CB_DISPLAY_SPECULAR: g_specular = checked; break; case HUD_CB_ANIMATE_VERTICES: g_moveScale = checked ? 1.0f : 0.0f; g_animTime = 0; break; case HUD_CB_VIEW_LOD: g_screenSpaceTess = checked; break; case HUD_CB_FRACTIONAL_SPACING: g_fractionalSpacing = checked; break; case HUD_CB_PATCH_CULL: g_patchCull = checked; break; case HUD_CB_IBL: g_ibl = checked; break; case HUD_CB_SEAMLESS_MIPMAP: g_seamless = checked; break; case HUD_CB_FREEZE: g_freeze = checked; break; } if (rebuild) createOsdMesh(g_level, g_kernel); } static void callbackSlider(float value, int data) { switch (data) { case 0: g_mipmapBias = value; break; case 1: g_displacementScale = value; break; } } static void initHUD() { g_hud = new D3D11hud(g_pd3dDeviceContext); g_hud->Init(g_width, g_height); g_hud->AddRadioButton(0, "CPU (K)", true, 10, 10, callbackKernel, kCPU, 'K'); #ifdef OPENSUBDIV_HAS_OPENMP g_hud->AddRadioButton(0, "OPENMP", false, 10, 30, callbackKernel, kOPENMP, 'K'); #endif #ifdef OPENSUBDIV_HAS_CUDA g_hud->AddRadioButton(0, "CUDA", false, 10, 50, callbackKernel, kCUDA, 'K'); #endif #ifdef OPENSUBDIV_HAS_OPENCL g_hud->AddRadioButton(0, "OPENCL", false, 10, 70, callbackKernel, kCL, 'K'); #endif g_hud->AddRadioButton(0, "DirectCompute", false, 10, 90, callbackKernel, kDirectCompute, 'K'); g_hud->AddCheckBox("Adaptive (`)", g_adaptive, 10, 150, callbackCheckBox, HUD_CB_ADAPTIVE, '`'); g_hud->AddRadioButton(HUD_RB_SCHEME, "CATMARK", true, 10, 190, callbackScheme, 0, 's'); g_hud->AddRadioButton(HUD_RB_SCHEME, "BILINEAR", false, 10, 210, callbackScheme, 1, 's'); for (int i = 1; i < 8; ++i) { char level[16]; sprintf(level, "Lv. %d", i); g_hud->AddRadioButton(HUD_RB_LEVEL, level, i == g_level, 10, 220+i*20, callbackLevel, i, '0'+i); } g_hud->AddRadioButton(HUD_RB_WIRE, "Wire (W)", (g_wire == DISPLAY_WIRE), 100, 10, callbackWireframe, 0, 'w'); g_hud->AddRadioButton(HUD_RB_WIRE, "Shaded", (g_wire == DISPLAY_SHADED), 100, 30, callbackWireframe, 1, 'w'); g_hud->AddRadioButton(HUD_RB_WIRE, "Wire on Shaded", (g_wire == DISPLAY_WIRE_ON_SHADED), 100, 50, callbackWireframe, 2, 'w'); g_hud->AddLabel("Color (C)", -200, 10); g_hud->AddRadioButton(HUD_RB_COLOR, "None", (g_color == COLOR_NONE), -200, 30, callbackColor, COLOR_NONE, 'c'); g_hud->AddRadioButton(HUD_RB_COLOR, "Ptex Nearest", (g_color == COLOR_PTEX_NEAREST), -200, 50, callbackColor, COLOR_PTEX_NEAREST, 'c'); g_hud->AddRadioButton(HUD_RB_COLOR, "Ptex HW bilinear", (g_color == COLOR_PTEX_HW_BILINEAR), -200, 70, callbackColor, COLOR_PTEX_HW_BILINEAR, 'c'); g_hud->AddRadioButton(HUD_RB_COLOR, "Ptex bilinear", (g_color == COLOR_PTEX_BILINEAR), -200, 90, callbackColor, COLOR_PTEX_BILINEAR, 'c'); g_hud->AddRadioButton(HUD_RB_COLOR, "Ptex biquadratic", (g_color == COLOR_PTEX_BIQUADRATIC), -200, 110, callbackColor, COLOR_PTEX_BIQUADRATIC, 'c'); g_hud->AddRadioButton(HUD_RB_COLOR, "Patch type", (g_color == COLOR_PATCHTYPE), -200, 130, callbackColor, COLOR_PATCHTYPE, 'c'); g_hud->AddRadioButton(HUD_RB_COLOR, "Patch coord", (g_color == COLOR_PATCHCOORD), -200, 150, callbackColor, COLOR_PATCHCOORD, 'c'); g_hud->AddRadioButton(HUD_RB_COLOR, "Normal", (g_color == COLOR_NORMAL), -200, 170, callbackColor, COLOR_NORMAL, 'c'); if (g_osdPTexDisplacement != NULL) { g_hud->AddLabel("Displacement (D)", -200, 200); g_hud->AddRadioButton(HUD_RB_DISPLACEMENT, "None", (g_displacement == DISPLACEMENT_NONE), -200, 220, callbackDisplacement, DISPLACEMENT_NONE, 'd'); g_hud->AddRadioButton(HUD_RB_DISPLACEMENT, "HW bilinear", (g_displacement == DISPLACEMENT_HW_BILINEAR), -200, 240, callbackDisplacement, DISPLACEMENT_HW_BILINEAR, 'd'); g_hud->AddRadioButton(HUD_RB_DISPLACEMENT, "Bilinear", (g_displacement == DISPLACEMENT_BILINEAR), -200, 260, callbackDisplacement, DISPLACEMENT_BILINEAR, 'd'); g_hud->AddRadioButton(HUD_RB_DISPLACEMENT, "Biquadratic", (g_displacement == DISPLACEMENT_BIQUADRATIC), -200, 280, callbackDisplacement, DISPLACEMENT_BIQUADRATIC, 'd'); g_hud->AddLabel("Normal (N)", -200, 310); g_hud->AddRadioButton(HUD_RB_NORMAL, "Surface", (g_normal == NORMAL_SURFACE), -200, 330, callbackNormal, NORMAL_SURFACE, 'n'); g_hud->AddRadioButton(HUD_RB_NORMAL, "Facet", (g_normal == NORMAL_FACET), -200, 350, callbackNormal, NORMAL_FACET, 'n'); g_hud->AddRadioButton(HUD_RB_NORMAL, "HW Screen space", (g_normal == NORMAL_HW_SCREENSPACE), -200, 370, callbackNormal, NORMAL_HW_SCREENSPACE, 'n'); g_hud->AddRadioButton(HUD_RB_NORMAL, "Screen space", (g_normal == NORMAL_SCREENSPACE), -200, 390, callbackNormal, NORMAL_SCREENSPACE, 'n'); g_hud->AddRadioButton(HUD_RB_NORMAL, "Biquadratic", (g_normal == NORMAL_BIQUADRATIC), -200, 410, callbackNormal, NORMAL_BIQUADRATIC, 'n'); g_hud->AddRadioButton(HUD_RB_NORMAL, "Biquadratic WG", (g_normal == NORMAL_BIQUADRATIC_WG), -200, 430, callbackNormal, NORMAL_BIQUADRATIC_WG, 'n'); } g_hud->AddSlider("Mipmap Bias", 0, 5, 0, -200, 450, 20, false, callbackSlider, 0); g_hud->AddSlider("Displacement", 0, 5, 1, -200, 490, 20, false, callbackSlider, 1); g_hud->AddCheckBox("Seamless Mipmap", g_seamless, -200, 530, callbackCheckBox, HUD_CB_SEAMLESS_MIPMAP, 'j'); if (g_osdPTexOcclusion != NULL) { g_hud->AddCheckBox("Ambient Occlusion (A)", g_occlusion, 250, 10, callbackCheckBox, HUD_CB_DISPLAY_OCCLUSION, 'a'); } if (g_osdPTexSpecular != NULL) g_hud->AddCheckBox("Specular (S)", g_specular, 250, 30, callbackCheckBox, HUD_CB_DISPLAY_SPECULAR, 's'); g_hud->AddCheckBox("Animate vertices (M)", g_moveScale != 0.0, 450, 10, callbackCheckBox, HUD_CB_ANIMATE_VERTICES, 'm'); g_hud->AddCheckBox("Screen space LOD (V)", g_screenSpaceTess, 450, 30, callbackCheckBox, HUD_CB_VIEW_LOD, 'v'); g_hud->AddCheckBox("Fractional spacing (T)", g_fractionalSpacing, 450, 50, callbackCheckBox, HUD_CB_FRACTIONAL_SPACING, 't'); g_hud->AddCheckBox("Frustum Patch Culling (B)", g_patchCull, 450, 70, callbackCheckBox, HUD_CB_PATCH_CULL, 'b'); g_hud->AddCheckBox("Freeze (spc)", g_freeze, 450, 90, callbackCheckBox, HUD_CB_FREEZE, ' '); } //------------------------------------------------------------------------------ static bool initD3D11(HWND hWnd) { D3D_DRIVER_TYPE driverTypes[] = { D3D_DRIVER_TYPE_HARDWARE, D3D_DRIVER_TYPE_WARP, D3D_DRIVER_TYPE_REFERENCE, }; UINT numDriverTypes = ARRAYSIZE(driverTypes); DXGI_SWAP_CHAIN_DESC hDXGISwapChainDesc; hDXGISwapChainDesc.BufferDesc.Width = g_width; hDXGISwapChainDesc.BufferDesc.Height = g_height; hDXGISwapChainDesc.BufferDesc.RefreshRate.Numerator = 0; hDXGISwapChainDesc.BufferDesc.RefreshRate.Denominator = 1; hDXGISwapChainDesc.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM_SRGB; hDXGISwapChainDesc.BufferDesc.ScanlineOrdering = DXGI_MODE_SCANLINE_ORDER_UNSPECIFIED; hDXGISwapChainDesc.BufferDesc.Scaling = DXGI_MODE_SCALING_UNSPECIFIED; hDXGISwapChainDesc.SampleDesc.Count = 1; hDXGISwapChainDesc.SampleDesc.Quality = 0; hDXGISwapChainDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT; hDXGISwapChainDesc.BufferCount = 1; hDXGISwapChainDesc.OutputWindow = hWnd; hDXGISwapChainDesc.Windowed = TRUE; hDXGISwapChainDesc.SwapEffect = DXGI_SWAP_EFFECT_DISCARD; hDXGISwapChainDesc.Flags = DXGI_SWAP_CHAIN_FLAG_ALLOW_MODE_SWITCH; // create device and swap chain HRESULT hr; D3D_DRIVER_TYPE hDriverType = D3D_DRIVER_TYPE_NULL; D3D_FEATURE_LEVEL hFeatureLevel = D3D_FEATURE_LEVEL_11_0; for(UINT driverTypeIndex=0; driverTypeIndex < numDriverTypes; driverTypeIndex++){ hDriverType = driverTypes[driverTypeIndex]; hr = D3D11CreateDeviceAndSwapChain(NULL, hDriverType, NULL, 0, NULL, 0, D3D11_SDK_VERSION, &hDXGISwapChainDesc, &g_pSwapChain, &g_pd3dDevice, &hFeatureLevel, &g_pd3dDeviceContext); if(SUCCEEDED(hr)){ break; } } if(FAILED(hr)){ MessageBoxW(hWnd, L"D3D11CreateDeviceAndSwapChain", L"Err", MB_ICONSTOP); return false; } // create rasterizer D3D11_RASTERIZER_DESC rasterDesc; ZeroMemory(&rasterDesc, sizeof(rasterDesc)); rasterDesc.AntialiasedLineEnable = false; rasterDesc.CullMode = D3D11_CULL_NONE; // XXX rasterDesc.DepthBias = 0; rasterDesc.DepthBiasClamp = 0.0f; rasterDesc.DepthClipEnable = true; rasterDesc.FillMode = D3D11_FILL_SOLID; rasterDesc.FrontCounterClockwise = true; rasterDesc.MultisampleEnable = false; rasterDesc.ScissorEnable = false; rasterDesc.SlopeScaledDepthBias = 0.0f; g_pd3dDevice->CreateRasterizerState(&rasterDesc, &g_pRasterizerState); assert(g_pRasterizerState); __declspec(align(16)) struct Lighting { struct Light { float position[4]; float ambient[4]; float diffuse[4]; float specular[4]; } lightSource[2]; } lightingData = { 0.5, 0.2f, 1.0f, 0.0f, 0.1f, 0.1f, 0.1f, 1.0f, 0.7f, 0.7f, 0.7f, 1.0f, 0.8f, 0.8f, 0.8f, 1.0f, -0.8f, 0.4f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.5f, 0.5f, 0.5f, 1.0f, 0.8f, 0.8f, 0.8f, 1.0f, }; D3D11_BUFFER_DESC cbDesc; ZeroMemory(&cbDesc, sizeof(cbDesc)); cbDesc.Usage = D3D11_USAGE_DYNAMIC; cbDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER; cbDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE; cbDesc.MiscFlags = 0; cbDesc.ByteWidth = sizeof(lightingData); D3D11_SUBRESOURCE_DATA initData; initData.pSysMem = &lightingData; g_pd3dDevice->CreateBuffer(&cbDesc, &initData, &g_pcbLighting); assert(g_pcbLighting); // create depth stencil state D3D11_DEPTH_STENCIL_DESC depthStencilDesc; ZeroMemory(&depthStencilDesc, sizeof(depthStencilDesc)); depthStencilDesc.DepthEnable = true; depthStencilDesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ALL; depthStencilDesc.DepthFunc = D3D11_COMPARISON_LESS_EQUAL; depthStencilDesc.StencilEnable = false; g_pd3dDevice->CreateDepthStencilState(&depthStencilDesc, &g_pDepthStencilState); assert(g_pDepthStencilState); return true; } static bool updateRenderTarget(HWND hWnd) { RECT rc; GetClientRect(hWnd, &rc); UINT width = rc.right - rc.left; UINT height = rc.bottom - rc.top; if (g_pSwapChainRTV && (g_width == width) && (g_height == height)) { return true; } g_width = width; g_height = height; g_hud->Rebuild(g_width, g_height); SAFE_RELEASE(g_pSwapChainRTV); g_pSwapChain->ResizeBuffers(0, g_width, g_height, DXGI_FORMAT_UNKNOWN, 0); // get backbuffer of swap chain ID3D11Texture2D* hpBackBuffer = NULL; if(FAILED(g_pSwapChain->GetBuffer(0, __uuidof(ID3D11Texture2D), (void**)&hpBackBuffer))){ MessageBoxW(hWnd, L"SwpChain GetBuffer", L"Err", MB_ICONSTOP); return false; } // create render target from the back buffer if(FAILED(g_pd3dDevice->CreateRenderTargetView(hpBackBuffer, NULL, &g_pSwapChainRTV))){ MessageBoxW(hWnd, L"CreateRenderTargetView", L"Err", MB_ICONSTOP); return false; } SAFE_RELEASE(hpBackBuffer); // create depth buffer D3D11_TEXTURE2D_DESC depthBufferDesc; ZeroMemory(&depthBufferDesc, sizeof(depthBufferDesc)); depthBufferDesc.Width = g_width; depthBufferDesc.Height = g_height; depthBufferDesc.MipLevels = 1; depthBufferDesc.ArraySize = 1; depthBufferDesc.Format = DXGI_FORMAT_D24_UNORM_S8_UINT; depthBufferDesc.SampleDesc.Count = 1; depthBufferDesc.SampleDesc.Quality = 0; depthBufferDesc.Usage = D3D11_USAGE_DEFAULT; depthBufferDesc.BindFlags = D3D11_BIND_DEPTH_STENCIL; depthBufferDesc.CPUAccessFlags = 0; depthBufferDesc.MiscFlags = 0; g_pd3dDevice->CreateTexture2D(&depthBufferDesc, NULL, &g_pDepthStencilBuffer); assert(g_pDepthStencilBuffer); D3D11_DEPTH_STENCIL_VIEW_DESC depthStencilViewDesc; ZeroMemory(&depthStencilViewDesc, sizeof(depthStencilViewDesc)); depthStencilViewDesc.Format = DXGI_FORMAT_D24_UNORM_S8_UINT; depthStencilViewDesc.ViewDimension = D3D11_DSV_DIMENSION_TEXTURE2D; depthStencilViewDesc.Texture2D.MipSlice = 0; g_pd3dDevice->CreateDepthStencilView(g_pDepthStencilBuffer, &depthStencilViewDesc, &g_pDepthStencilView); assert(g_pDepthStencilView); // set device context to the render target g_pd3dDeviceContext->OMSetRenderTargets(1, &g_pSwapChainRTV, g_pDepthStencilView); // init viewport D3D11_VIEWPORT vp; vp.TopLeftX = 0; vp.TopLeftY = 0; vp.Width = (float)g_width; vp.Height = (float)g_height; vp.MinDepth = 0.0f; vp.MaxDepth = 1.0f; g_pd3dDeviceContext->RSSetViewports(1, &vp); return true; } //------------------------------------------------------------------------------ static void callbackError(OpenSubdiv::OsdErrorType err, const char *message) { std::ostringstream s; s << "OsdError: " << err << "\n"; s << message; OutputDebugString(s.str().c_str()); } //------------------------------------------------------------------------------ static LRESULT WINAPI msgProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam) { switch(msg) { case WM_KEYDOWN: keyboard(MapVirtualKey(UINT(wParam), MAPVK_VK_TO_CHAR)); break; case WM_DESTROY: quit(); return 0; case WM_MOUSEMOVE: motion(LOWORD(lParam), HIWORD(lParam)); return 0; case WM_LBUTTONDOWN: mouse(0, 1, LOWORD(lParam), HIWORD(lParam)); return 0; case WM_LBUTTONUP: mouse(0, 0, LOWORD(lParam), HIWORD(lParam)); return 0; case WM_MBUTTONDOWN: mouse(1, 1, LOWORD(lParam), HIWORD(lParam)); return 0; case WM_MBUTTONUP: mouse(1, 0, LOWORD(lParam), HIWORD(lParam)); return 0; case WM_RBUTTONDOWN: mouse(2, 1, LOWORD(lParam), HIWORD(lParam)); return 0; case WM_RBUTTONUP: mouse(2, 0, LOWORD(lParam), HIWORD(lParam)); return 0; case WM_PAINT: ValidateRect(hWnd, NULL); return 0; } return DefWindowProc(hWnd, msg, wParam, lParam); } static std::vector tokenize(std::string const & src) { std::vector result; std::stringstream input(src); std::copy(std::istream_iterator(input), std::istream_iterator(), std::back_inserter< std::vector >(result)); return result; } int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow) { // register window class TCHAR szWindowClass[] = "OPENSUBDIV_EXAMPLE"; WNDCLASS wcex; wcex.style = CS_HREDRAW | CS_VREDRAW; wcex.lpfnWndProc = msgProc; wcex.cbClsExtra = 0; wcex.cbWndExtra = 0; wcex.hInstance = hInstance; wcex.hIcon = NULL; wcex.hCursor = LoadCursor(NULL, IDC_ARROW); wcex.hbrBackground = (HBRUSH)(COLOR_WINDOW+1); wcex.lpszMenuName = NULL; wcex.lpszClassName = szWindowClass; RegisterClass(&wcex); // crete window RECT rect = { 0, 0, g_width, g_height }; AdjustWindowRect(&rect, WS_OVERLAPPEDWINDOW, FALSE); HWND hWnd = CreateWindow(szWindowClass, "OpenSubdiv DirectX Ptex Viewer", WS_OVERLAPPEDWINDOW | WS_VISIBLE, CW_USEDEFAULT, CW_USEDEFAULT, rect.right - rect.left, rect.bottom - rect.top, NULL, NULL, hInstance, NULL); std::vector argv = tokenize(lpCmdLine); std::vector animobjs; const char *diffuseEnvironmentMap = NULL, *specularEnvironmentMap = NULL; const char *colorFilename = NULL, *displacementFilename = NULL, *occlusionFilename = NULL, *specularFilename = NULL; for (int i = 0; i < (int)argv.size(); ++i) { if (strstr(argv[i].c_str(), ".obj")) animobjs.push_back(argv[i]); else if (argv[i] == "-l") g_level = atoi(argv[++i].c_str()); else if (argv[i] == "-c") g_repeatCount = atoi(argv[++i].c_str()); else if (argv[i] == "-d") diffuseEnvironmentMap = argv[++i].c_str(); else if (argv[i] == "-e") specularEnvironmentMap = argv[++i].c_str(); else if (argv[i] == "-y") g_yup = true; else if (argv[i] == "-m") g_maxMipmapLevels = atoi(argv[++i].c_str()); else if (argv[i] == "--disp") g_displacementScale = (float)atof(argv[++i].c_str()); else if (colorFilename == NULL) colorFilename = argv[i].c_str(); else if (displacementFilename == NULL) { displacementFilename = argv[i].c_str(); g_displacement = DISPLACEMENT_BILINEAR; g_normal = NORMAL_BIQUADRATIC; } else if (occlusionFilename == NULL) { occlusionFilename = argv[i].c_str(); g_occlusion = 1; } else if (specularFilename == NULL) { specularFilename = argv[i].c_str(); g_specular = 1; } } OsdSetErrorCallback(callbackError); g_ptexColorFilename = colorFilename; if (g_ptexColorFilename == NULL) { printf("Usage: \n"); return 1; } initD3D11(hWnd); createOsdMesh(g_level, g_kernel); // load ptex files g_osdPTexImage = createPtex(colorFilename); if (displacementFilename) g_osdPTexDisplacement = createPtex(displacementFilename); if (occlusionFilename) g_osdPTexOcclusion = createPtex(occlusionFilename); if (specularFilename) g_osdPTexSpecular = createPtex(specularFilename); initHUD(); fitFrame(); // main loop while (g_bDone == false) { MSG msg; ZeroMemory(&msg, sizeof(msg)); while (msg.message != WM_QUIT) { while (PeekMessage(&msg, NULL, 0U, 0U, PM_REMOVE)) { if (msg.message == WM_QUIT) goto end; TranslateMessage(&msg); DispatchMessage(&msg); } if (not g_freeze) g_frame++; updateGeom(); updateRenderTarget(hWnd); display(); } } end: quit(); return 0; } //------------------------------------------------------------------------------