// // Copyright 2013 Pixar // // Licensed under the Apache License, Version 2.0 (the "Apache License") // with the following modification; you may not use this file except in // compliance with the Apache License and the following modification to it: // Section 6. Trademarks. is deleted and replaced with: // // 6. Trademarks. This License does not grant permission to use the trade // names, trademarks, service marks, or product names of the Licensor // and its affiliates, except as required to comply with Section 4(c) of // the License and to reproduce the content of the NOTICE file. // // You may obtain a copy of the Apache License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the Apache License with the above modification is // distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the Apache License for the specific // language governing permissions and limitations under the Apache License. // #ifndef FAR_DISPATCHER_H #define FAR_DISPATCHER_H #include "../version.h" #include "../far/mesh.h" #include "../far/bilinearSubdivisionTables.h" #include "../far/catmarkSubdivisionTables.h" #include "../far/loopSubdivisionTables.h" #include "../far/vertexEditTables.h" #include "../far/kernelBatch.h" namespace OpenSubdiv { namespace OPENSUBDIV_VERSION { /// \brief Subdivision process encapsulation layer. /// /// The Compute dispatcher allows client code to customize parts or the entire /// computation process. This pattern aims at hiding the logic specific to /// the subdivision algorithms and expose a simplified access to minimalistic /// compute kernels. By default, meshes revert to a default dispatcher that /// implements single-threaded CPU kernels. /// /// - derive a dispatcher class from this one /// - override the virtual functions /// - pass the derived dispatcher to the factory (one instance can be shared by many meshes) /// - call the FarMesh::Subdivide() to trigger computations /// /// Note : the caller is responsible for deleting a custom dispatcher /// class FarDispatcher { public: /// \brief Launches the processing of a vector of kernel batches /// /// @param controller refinement controller implementation /// /// @param batches batches of kernels that need to be processed /// /// @param maxlevel process vertex batches up to this level /// /// @param clientdata custom client data passed to the controller /// template static void Refine(CONTROLLER const *controller, FarKernelBatchVector const & batches, int maxlevel, void * clientdata=0); }; template void FarDispatcher::Refine(CONTROLLER const *controller, FarKernelBatchVector const & batches, int maxlevel, void * clientdata) { for (int i = 0; i < (int)batches.size(); ++i) { const FarKernelBatch &batch = batches[i]; if (maxlevel >= 0 && batch.GetLevel() >= maxlevel) continue; switch(batch.GetKernelType()) { case FarKernelBatch::CATMARK_FACE_VERTEX: controller->ApplyCatmarkFaceVerticesKernel(batch, clientdata); break; case FarKernelBatch::CATMARK_EDGE_VERTEX: controller->ApplyCatmarkEdgeVerticesKernel(batch, clientdata); break; case FarKernelBatch::CATMARK_VERT_VERTEX_B: controller->ApplyCatmarkVertexVerticesKernelB(batch, clientdata); break; case FarKernelBatch::CATMARK_VERT_VERTEX_A1: controller->ApplyCatmarkVertexVerticesKernelA1(batch, clientdata); break; case FarKernelBatch::CATMARK_VERT_VERTEX_A2: controller->ApplyCatmarkVertexVerticesKernelA2(batch, clientdata); break; case FarKernelBatch::LOOP_EDGE_VERTEX: controller->ApplyLoopEdgeVerticesKernel(batch, clientdata); break; case FarKernelBatch::LOOP_VERT_VERTEX_B: controller->ApplyLoopVertexVerticesKernelB(batch, clientdata); break; case FarKernelBatch::LOOP_VERT_VERTEX_A1: controller->ApplyLoopVertexVerticesKernelA1(batch, clientdata); break; case FarKernelBatch::LOOP_VERT_VERTEX_A2: controller->ApplyLoopVertexVerticesKernelA2(batch, clientdata); break; case FarKernelBatch::BILINEAR_FACE_VERTEX: controller->ApplyBilinearFaceVerticesKernel(batch, clientdata); break; case FarKernelBatch::BILINEAR_EDGE_VERTEX: controller->ApplyBilinearEdgeVerticesKernel(batch, clientdata); break; case FarKernelBatch::BILINEAR_VERT_VERTEX: controller->ApplyBilinearVertexVerticesKernel(batch, clientdata); break; case FarKernelBatch::HIERARCHICAL_EDIT: controller->ApplyVertexEdits(batch, clientdata); break; } } } // ----------------------------------------------------------------------------- /// \brief Far default controller implementation /// /// This is Far's default implementation of a kernal batch controller. /// template class FarComputeController { public: void Refine(FarMesh * mesh, int maxlevel=-1) const; void ApplyBilinearFaceVerticesKernel(FarKernelBatch const &batch, void * clientdata) const; void ApplyBilinearEdgeVerticesKernel(FarKernelBatch const &batch, void * clientdata) const; void ApplyBilinearVertexVerticesKernel(FarKernelBatch const &batch, void * clientdata) const; void ApplyCatmarkFaceVerticesKernel(FarKernelBatch const &batch, void * clientdata) const; void ApplyCatmarkEdgeVerticesKernel(FarKernelBatch const &batch, void * clientdata) const; void ApplyCatmarkVertexVerticesKernelB(FarKernelBatch const &batch, void * clientdata) const; void ApplyCatmarkVertexVerticesKernelA1(FarKernelBatch const &batch, void * clientdata) const; void ApplyCatmarkVertexVerticesKernelA2(FarKernelBatch const &batch, void * clientdata) const; void ApplyLoopEdgeVerticesKernel(FarKernelBatch const &batch, void * clientdata) const; void ApplyLoopVertexVerticesKernelB(FarKernelBatch const &batch, void * clientdata) const; void ApplyLoopVertexVerticesKernelA1(FarKernelBatch const &batch, void * clientdata) const; void ApplyLoopVertexVerticesKernelA2(FarKernelBatch const &batch, void * clientdata) const; void ApplyVertexEdits(FarKernelBatch const &batch, void * clientdata) const; static FarComputeController _DefaultController; private: }; template FarComputeController FarComputeController::_DefaultController; template void FarComputeController::Refine(FarMesh *mesh, int maxlevel) const { FarDispatcher::Refine(this, mesh->GetKernelBatches(), maxlevel, mesh); } template void FarComputeController::ApplyBilinearFaceVerticesKernel(FarKernelBatch const &batch, void * clientdata) const { FarMesh * mesh = static_cast *>(clientdata); FarBilinearSubdivisionTables const * subdivision = reinterpret_cast const *>(mesh->GetSubdivisionTables()); assert(subdivision); subdivision->computeFacePoints( batch.GetVertexOffset(), batch.GetTableOffset(), batch.GetStart(), batch.GetEnd(), clientdata ); } template void FarComputeController::ApplyBilinearEdgeVerticesKernel(FarKernelBatch const &batch, void * clientdata) const { FarMesh * mesh = static_cast *>(clientdata); FarBilinearSubdivisionTables const * subdivision = reinterpret_cast const *>(mesh->GetSubdivisionTables()); assert(subdivision); subdivision->computeEdgePoints( batch.GetVertexOffset(), batch.GetTableOffset(), batch.GetStart(), batch.GetEnd(), clientdata ); } template void FarComputeController::ApplyBilinearVertexVerticesKernel(FarKernelBatch const &batch, void * clientdata) const { FarMesh * mesh = static_cast *>(clientdata); FarBilinearSubdivisionTables const * subdivision = reinterpret_cast const *>(mesh->GetSubdivisionTables()); assert(subdivision); subdivision->computeVertexPoints( batch.GetVertexOffset(), batch.GetTableOffset(), batch.GetStart(), batch.GetEnd(), clientdata ); } template void FarComputeController::ApplyCatmarkFaceVerticesKernel(FarKernelBatch const &batch, void * clientdata) const { FarMesh * mesh = static_cast *>(clientdata); FarCatmarkSubdivisionTables const * subdivision = reinterpret_cast const *>(mesh->GetSubdivisionTables()); assert(subdivision); subdivision->computeFacePoints( batch.GetVertexOffset(), batch.GetTableOffset(), batch.GetStart(), batch.GetEnd(), clientdata ); } template void FarComputeController::ApplyCatmarkEdgeVerticesKernel(FarKernelBatch const &batch, void * clientdata) const { FarMesh * mesh = static_cast *>(clientdata); FarCatmarkSubdivisionTables const * subdivision = reinterpret_cast const *>(mesh->GetSubdivisionTables()); assert(subdivision); subdivision->computeEdgePoints( batch.GetVertexOffset(), batch.GetTableOffset(), batch.GetStart(), batch.GetEnd(), clientdata ); } template void FarComputeController::ApplyCatmarkVertexVerticesKernelB(FarKernelBatch const &batch, void * clientdata) const { FarMesh * mesh = static_cast *>(clientdata); FarCatmarkSubdivisionTables const * subdivision = reinterpret_cast const *>(mesh->GetSubdivisionTables()); assert(subdivision); subdivision->computeVertexPointsB( batch.GetVertexOffset(), batch.GetTableOffset(), batch.GetStart(), batch.GetEnd(), clientdata ); } template void FarComputeController::ApplyCatmarkVertexVerticesKernelA1(FarKernelBatch const &batch, void * clientdata) const { FarMesh * mesh = static_cast *>(clientdata); FarCatmarkSubdivisionTables const * subdivision = reinterpret_cast const *>(mesh->GetSubdivisionTables()); assert(subdivision); subdivision->computeVertexPointsA( batch.GetVertexOffset(), false, batch.GetTableOffset(), batch.GetStart(), batch.GetEnd(), clientdata ); } template void FarComputeController::ApplyCatmarkVertexVerticesKernelA2(FarKernelBatch const &batch, void * clientdata) const { FarMesh * mesh = static_cast *>(clientdata); FarCatmarkSubdivisionTables const * subdivision = reinterpret_cast const *>(mesh->GetSubdivisionTables()); assert(subdivision); subdivision->computeVertexPointsA( batch.GetVertexOffset(), true, batch.GetTableOffset(), batch.GetStart(), batch.GetEnd(), clientdata ); } template void FarComputeController::ApplyLoopEdgeVerticesKernel(FarKernelBatch const &batch, void * clientdata) const { FarMesh * mesh = static_cast *>(clientdata); FarLoopSubdivisionTables const * subdivision = reinterpret_cast const *>(mesh->GetSubdivisionTables()); assert(subdivision); subdivision->computeEdgePoints( batch.GetVertexOffset(), batch.GetTableOffset(), batch.GetStart(), batch.GetEnd(), clientdata ); } template void FarComputeController::ApplyLoopVertexVerticesKernelB(FarKernelBatch const &batch, void * clientdata) const { FarMesh * mesh = static_cast *>(clientdata); FarLoopSubdivisionTables const * subdivision = reinterpret_cast const *>(mesh->GetSubdivisionTables()); assert(subdivision); subdivision->computeVertexPointsB( batch.GetVertexOffset(), batch.GetTableOffset(), batch.GetStart(), batch.GetEnd(), clientdata ); } template void FarComputeController::ApplyLoopVertexVerticesKernelA1(FarKernelBatch const &batch, void * clientdata) const { FarMesh * mesh = static_cast *>(clientdata); FarLoopSubdivisionTables const * subdivision = reinterpret_cast const *>(mesh->GetSubdivisionTables()); assert(subdivision); subdivision->computeVertexPointsA( batch.GetVertexOffset(), false, batch.GetTableOffset(), batch.GetStart(), batch.GetEnd(), clientdata ); } template void FarComputeController::ApplyLoopVertexVerticesKernelA2(FarKernelBatch const &batch, void * clientdata) const { FarMesh * mesh = static_cast *>(clientdata); FarLoopSubdivisionTables const * subdivision = reinterpret_cast const *>(mesh->GetSubdivisionTables()); assert(subdivision); subdivision->computeVertexPointsA( batch.GetVertexOffset(), true, batch.GetTableOffset(), batch.GetStart(), batch.GetEnd(), clientdata); } template void FarComputeController::ApplyVertexEdits(FarKernelBatch const &batch, void * clientdata) const { FarMesh * mesh = static_cast *>(clientdata); FarVertexEditTables const * vertEdit = mesh->GetVertexEdit(); if (vertEdit) vertEdit->computeVertexEdits( batch.GetTableIndex(), batch.GetVertexOffset(), batch.GetTableOffset(), batch.GetStart(), batch.GetEnd(), clientdata ); } } // end namespace OPENSUBDIV_VERSION using namespace OPENSUBDIV_VERSION; } // end namespace OpenSubdiv #endif /* FAR_DISPATCHER_H */