// // Copyright 2013 Pixar // // Licensed under the Apache License, Version 2.0 (the "Apache License") // with the following modification; you may not use this file except in // compliance with the Apache License and the following modification to it: // Section 6. Trademarks. is deleted and replaced with: // // 6. Trademarks. This License does not grant permission to use the trade // names, trademarks, service marks, or product names of the Licensor // and its affiliates, except as required to comply with Section 4(c) of // the License and to reproduce the content of the NOTICE file. // // You may obtain a copy of the Apache License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the Apache License with the above modification is // distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY // KIND, either express or implied. See the Apache License for the specific // language governing permissions and limitations under the Apache License. // //---------------------------------------------------------- // Patches.TessVertexBSpline //---------------------------------------------------------- #ifdef OSD_PATCH_VERTEX_BSPLINE_SHADER layout(location = 0) in vec4 position; OSD_USER_VARYING_ATTRIBUTE_DECLARE out block { ControlVertex v; OSD_USER_VARYING_DECLARE } outpt; void main() { outpt.v.position = ModelViewMatrix * position; OSD_PATCH_CULL_COMPUTE_CLIPFLAGS(position); OSD_USER_VARYING_PER_VERTEX(); } #endif //---------------------------------------------------------- // Patches.TessControlBSpline //---------------------------------------------------------- #ifdef OSD_PATCH_TESS_CONTROL_BSPLINE_SHADER // Regular uniform mat4 Q = mat4( 1.f/6.f, 4.f/6.f, 1.f/6.f, 0.f, 0.f, 4.f/6.f, 2.f/6.f, 0.f, 0.f, 2.f/6.f, 4.f/6.f, 0.f, 0.f, 1.f/6.f, 4.f/6.f, 1.f/6.f ); // Boundary / Corner uniform mat4x3 B = mat4x3( 1.f, 0.f, 0.f, 4.f/6.f, 2.f/6.f, 0.f, 2.f/6.f, 4.f/6.f, 0.f, 1.f/6.f, 4.f/6.f, 1.f/6.f ); layout(vertices = 16) out; in block { ControlVertex v; OSD_USER_VARYING_DECLARE } inpt[]; out block { ControlVertex v; OSD_USER_VARYING_DECLARE } outpt[]; #define ID gl_InvocationID void main() { int i = ID%4; int j = ID/4; #if defined OSD_PATCH_BOUNDARY vec3 H[3]; for (int l=0; l<3; ++l) { H[l] = vec3(0,0,0); for (int k=0; k<4; ++k) { H[l] += Q[i][k] * inpt[l*4 + k].v.position.xyz; } } vec3 pos = vec3(0,0,0); for (int k=0; k<3; ++k) { pos += B[j][k]*H[k]; } #elif defined OSD_PATCH_CORNER vec3 H[3]; for (int l=0; l<3; ++l) { H[l] = vec3(0,0,0); for (int k=0; k<3; ++k) { H[l] += B[3-i][2-k] * inpt[l*3 + k].v.position.xyz; } } vec3 pos = vec3(0,0,0); for (int k=0; k<3; ++k) { pos += B[j][k]*H[k]; } #else // not OSD_PATCH_BOUNDARY, not OSD_PATCH_CORNER vec3 H[4]; for (int l=0; l<4; ++l) { H[l] = vec3(0,0,0); for (int k=0; k<4; ++k) { H[l] += Q[i][k] * inpt[l*4 + k].v.position.xyz; } } vec3 pos = vec3(0,0,0); for (int k=0; k<4; ++k) { pos += Q[j][k]*H[k]; } #endif outpt[ID].v.position = vec4(pos, 1.0); #if defined OSD_PATCH_BOUNDARY const int p[16] = int[]( 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ); #elif defined OSD_PATCH_CORNER const int p[16] = int[]( 0, 1, 2, 2, 0, 1, 2, 2, 3, 4, 5, 5, 6, 7, 8, 8 ); #else const int p[16] = int[]( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 ); #endif #if OSD_TRANSITION_ROTATE == 0 const int r[16] = int[]( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 ); #elif OSD_TRANSITION_ROTATE == 1 const int r[16] = int[]( 12, 8, 4, 0, 13, 9, 5, 1, 14, 10, 6, 2, 15, 11, 7, 3 ); #elif OSD_TRANSITION_ROTATE == 2 const int r[16] = int[]( 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0 ); #elif OSD_TRANSITION_ROTATE == 3 const int r[16] = int[]( 3, 7, 11, 15, 2, 6, 10, 14, 1, 5, 9, 13, 0, 4, 8, 12 ); #endif OSD_USER_VARYING_PER_CONTROL_POINT(ID, p[r[ID]]); int patchLevel = GetPatchLevel(); // +0.5 to avoid interpolation error of integer value outpt[ID].v.patchCoord = vec4(0, 0, patchLevel+0.5, gl_PrimitiveID+OsdPrimitiveIdBase+0.5); OSD_COMPUTE_PTEX_COORD_TESSCONTROL_SHADER; if (ID == 0) { OSD_PATCH_CULL(OSD_PATCH_INPUT_SIZE); #ifdef OSD_PATCH_TRANSITION vec3 cp[OSD_PATCH_INPUT_SIZE]; for(int k = 0; k < OSD_PATCH_INPUT_SIZE; ++k) cp[k] = inpt[k].v.position.xyz; SetTransitionTessLevels(cp, patchLevel); #else #if defined OSD_PATCH_BOUNDARY const int p[4] = int[]( 1, 2, 5, 6 ); #elif defined OSD_PATCH_CORNER const int p[4] = int[]( 1, 2, 4, 5 ); #else const int p[4] = int[]( 5, 6, 9, 10 ); #endif #ifdef OSD_ENABLE_SCREENSPACE_TESSELLATION gl_TessLevelOuter[0] = TessAdaptive(inpt[p[0]].v.position.xyz, inpt[p[2]].v.position.xyz); gl_TessLevelOuter[1] = TessAdaptive(inpt[p[0]].v.position.xyz, inpt[p[1]].v.position.xyz); gl_TessLevelOuter[2] = TessAdaptive(inpt[p[1]].v.position.xyz, inpt[p[3]].v.position.xyz); gl_TessLevelOuter[3] = TessAdaptive(inpt[p[2]].v.position.xyz, inpt[p[3]].v.position.xyz); gl_TessLevelInner[0] = max(gl_TessLevelOuter[1], gl_TessLevelOuter[3]); gl_TessLevelInner[1] = max(gl_TessLevelOuter[0], gl_TessLevelOuter[2]); #else gl_TessLevelInner[0] = GetTessLevel(patchLevel); gl_TessLevelInner[1] = GetTessLevel(patchLevel); gl_TessLevelOuter[0] = GetTessLevel(patchLevel); gl_TessLevelOuter[1] = GetTessLevel(patchLevel); gl_TessLevelOuter[2] = GetTessLevel(patchLevel); gl_TessLevelOuter[3] = GetTessLevel(patchLevel); #endif #endif } } #endif //---------------------------------------------------------- // Patches.TessEvalBSpline //---------------------------------------------------------- #ifdef OSD_PATCH_TESS_EVAL_BSPLINE_SHADER #ifdef OSD_TRANSITION_TRIANGLE_SUBPATCH layout(triangles) in; #else layout(quads) in; #endif #if defined OSD_FRACTIONAL_ODD_SPACING layout(fractional_odd_spacing) in; #elif defined OSD_FRACTIONAL_EVEN_SPACING layout(fractional_even_spacing) in; #endif in block { ControlVertex v; OSD_USER_VARYING_DECLARE } inpt[]; out block { OutputVertex v; OSD_USER_VARYING_DECLARE } outpt; void main() { #ifdef OSD_PATCH_TRANSITION vec2 UV = GetTransitionSubpatchUV(); #else vec2 UV = gl_TessCoord.xy; #endif #ifdef OSD_COMPUTE_NORMAL_DERIVATIVES float B[4], D[4], C[4]; vec3 BUCP[4], DUCP[4], CUCP[4]; Univar4x4(UV.x, B, D, C); #else float B[4], D[4]; vec3 BUCP[4], DUCP[4]; Univar4x4(UV.x, B, D); #endif for (int i=0; i<4; ++i) { BUCP[i] = vec3(0); DUCP[i] = vec3(0); #ifdef OSD_COMPUTE_NORMAL_DERIVATIVES CUCP[i] = vec3(0); #endif for (int j=0; j<4; ++j) { #if OSD_TRANSITION_ROTATE == 1 vec3 A = inpt[4*(3-j) + i].v.position.xyz; #elif OSD_TRANSITION_ROTATE == 2 vec3 A = inpt[4*(3-i) + (3-j)].v.position.xyz; #elif OSD_TRANSITION_ROTATE == 3 vec3 A = inpt[4*j + (3-i)].v.position.xyz; #else // OSD_TRANSITION_ROTATE == 0, or non-transition patch vec3 A = inpt[4*i + j].v.position.xyz; #endif BUCP[i] += A * B[j]; DUCP[i] += A * D[j]; #ifdef OSD_COMPUTE_NORMAL_DERIVATIVES CUCP[i] += A * C[j]; #endif } } vec3 WorldPos = vec3(0); vec3 Tangent = vec3(0); vec3 BiTangent = vec3(0); #ifdef OSD_COMPUTE_NORMAL_DERIVATIVES // used for weingarten term Univar4x4(UV.y, B, D, C); vec3 dUU = vec3(0); vec3 dVV = vec3(0); vec3 dUV = vec3(0); for (int k=0; k<4; ++k) { WorldPos += B[k] * BUCP[k]; Tangent += B[k] * DUCP[k]; BiTangent += D[k] * BUCP[k]; dUU += B[k] * CUCP[k]; dVV += C[k] * BUCP[k]; dUV += D[k] * DUCP[k]; } int level = int(inpt[0].v.ptexInfo.z); Tangent *= 3 * level; BiTangent *= 3 * level; dUU *= 6 * level; dVV *= 6 * level; dUV *= 9 * level; vec3 n = cross(Tangent, BiTangent); vec3 normal = normalize(n); float E = dot(Tangent, Tangent); float F = dot(Tangent, BiTangent); float G = dot(BiTangent, BiTangent); float e = dot(normal, dUU); float f = dot(normal, dUV); float g = dot(normal, dVV); vec3 Nu = (f*F-e*G)/(E*G-F*F) * Tangent + (e*F-f*E)/(E*G-F*F) * BiTangent; vec3 Nv = (g*F-f*G)/(E*G-F*F) * Tangent + (f*F-g*E)/(E*G-F*F) * BiTangent; Nu = Nu/length(n) - n * (dot(Nu,n)/pow(dot(n,n), 1.5)); Nv = Nv/length(n) - n * (dot(Nv,n)/pow(dot(n,n), 1.5)); OSD_COMPUTE_PTEX_COMPATIBLE_DERIVATIVES(OSD_TRANSITION_ROTATE); #else Univar4x4(UV.y, B, D); for (int k=0; k<4; ++k) { WorldPos += B[k] * BUCP[k]; Tangent += B[k] * DUCP[k]; BiTangent += D[k] * BUCP[k]; } int level = int(inpt[0].v.ptexInfo.z); Tangent *= 3 * level; BiTangent *= 3 * level; vec3 normal = normalize(cross(Tangent, BiTangent)); OSD_COMPUTE_PTEX_COMPATIBLE_TANGENT(OSD_TRANSITION_ROTATE); #endif outpt.v.position = vec4(WorldPos, 1.0f); outpt.v.normal = normal; OSD_USER_VARYING_PER_EVAL_POINT(UV, 5, 6, 9, 10); outpt.v.patchCoord = inpt[0].v.patchCoord; #if OSD_TRANSITION_ROTATE == 1 outpt.v.patchCoord.xy = vec2(UV.y, 1.0-UV.x); #elif OSD_TRANSITION_ROTATE == 2 outpt.v.patchCoord.xy = vec2(1.0-UV.x, 1.0-UV.y); #elif OSD_TRANSITION_ROTATE == 3 outpt.v.patchCoord.xy = vec2(1.0-UV.y, UV.x); #else // OSD_TRANNSITION_ROTATE == 0, or non-transition patch outpt.v.patchCoord.xy = vec2(UV.x, UV.y); #endif OSD_COMPUTE_PTEX_COORD_TESSEVAL_SHADER; OSD_DISPLACEMENT_CALLBACK; gl_Position = (ProjectionMatrix * vec4(WorldPos, 1.0f)); } #endif