mirror of
https://github.com/PixarAnimationStudios/OpenSubdiv
synced 2025-01-09 00:00:18 +00:00
5e8e123d73
- new PatchTableBuilder class now implements PatchTableFactory::Create() - population of tables now independent of scheme or patch type - nested LocalPointHelper handles local point sharing and stencils - new PatchBuilder class encapsulates patch queries and conversions: - provides patch types associated with schemes and client options - handles all topological queries about patches in the base class - subclasses for the three subdivision schemes to support conversions - conversions encapsulated in new SparseMatrix class for re-use - removed Far end-cap factory classes and Far::GregoryBasis - extended adaptive refinement to support Bilinear scheme (not enabled) - extended Vtr::StackBuffer to avoid compiler inefficiencies
1142 lines
43 KiB
C++
1142 lines
43 KiB
C++
//
|
|
// Copyright 2018 DreamWorks Animation LLC.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "Apache License")
|
|
// with the following modification; you may not use this file except in
|
|
// compliance with the Apache License and the following modification to it:
|
|
// Section 6. Trademarks. is deleted and replaced with:
|
|
//
|
|
// 6. Trademarks. This License does not grant permission to use the trade
|
|
// names, trademarks, service marks, or product names of the Licensor
|
|
// and its affiliates, except as required to comply with Section 4(c) of
|
|
// the License and to reproduce the content of the NOTICE file.
|
|
//
|
|
// You may obtain a copy of the Apache License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the Apache License with the above modification is
|
|
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the Apache License for the specific
|
|
// language governing permissions and limitations under the Apache License.
|
|
//
|
|
|
|
#include "../far/patchBuilder.h"
|
|
#include "../far/catmarkPatchBuilder.h"
|
|
#include "../far/loopPatchBuilder.h"
|
|
#include "../far/bilinearPatchBuilder.h"
|
|
#include "../vtr/level.h"
|
|
#include "../vtr/fvarLevel.h"
|
|
#include "../vtr/refinement.h"
|
|
#include "../vtr/stackBuffer.h"
|
|
|
|
#include <cassert>
|
|
#include <cstdio>
|
|
|
|
namespace OpenSubdiv {
|
|
namespace OPENSUBDIV_VERSION {
|
|
|
|
using Vtr::Array;
|
|
using Vtr::ConstArray;
|
|
using Vtr::internal::Level;
|
|
using Vtr::internal::FVarLevel;
|
|
using Vtr::internal::Refinement;
|
|
using Vtr::internal::StackBuffer;
|
|
|
|
namespace Far {
|
|
|
|
//
|
|
// Local helper functions for topology queries:
|
|
//
|
|
namespace {
|
|
//
|
|
// Local helper functions for identifying the subset of a ring around a
|
|
// corner that contributes to a patch -- parameterized by a mask that
|
|
// indicates what kind of edge is to delimit the span.
|
|
//
|
|
// Note that the two main methods need both face-verts and face-edges
|
|
// for each corner, and that we don't really need the face-index once
|
|
// we have them -- consider passing the fVerts and fEdges as arguments
|
|
// as they will otherwise be retrieved repeatedly for each corner.
|
|
//
|
|
// (As these mature it is likely they will be moved to Vtr, as a method
|
|
// to identify a VSpan would complement the existing method to gather
|
|
// the vertex/values associated with it. The manifold vs non-manifold
|
|
// choice would then also be encapsulated -- provided both remain free
|
|
// of PatchTable-specific logic.)
|
|
//
|
|
inline Level::ETag
|
|
getSingularEdgeMask(bool includeAllInfSharpEdges = false) {
|
|
|
|
Level::ETag eTagMask;
|
|
eTagMask.clear();
|
|
eTagMask._boundary = true;
|
|
eTagMask._nonManifold = true;
|
|
eTagMask._infSharp = includeAllInfSharpEdges;
|
|
return eTagMask;
|
|
}
|
|
|
|
inline bool
|
|
isEdgeSingular(Level const & level, FVarLevel const * fvarLevel,
|
|
Index eIndex, Level::ETag eTagMask)
|
|
{
|
|
Level::ETag eTag = level.getEdgeTag(eIndex);
|
|
if (fvarLevel) {
|
|
eTag = fvarLevel->getEdgeTag(eIndex).combineWithLevelETag(eTag);
|
|
}
|
|
|
|
Level::ETag::ETagSize * iTag =
|
|
reinterpret_cast<Level::ETag::ETagSize*>(&eTag);
|
|
Level::ETag::ETagSize * iMask =
|
|
reinterpret_cast<Level::ETag::ETagSize*>(&eTagMask);
|
|
|
|
return (*iTag & *iMask) > 0;
|
|
}
|
|
|
|
void
|
|
identifyManifoldCornerSpan(Level const & level, Index fIndex,
|
|
int fCorner, Level::ETag eTagMask,
|
|
Level::VSpan & vSpan, int fvc = -1)
|
|
{
|
|
FVarLevel const * fvarLevel = (fvc < 0) ? 0 : &level.getFVarLevel(fvc);
|
|
|
|
ConstIndexArray fVerts = level.getFaceVertices(fIndex);
|
|
ConstIndexArray fEdges = level.getFaceEdges(fIndex);
|
|
|
|
ConstIndexArray vEdges = level.getVertexEdges(fVerts[fCorner]);
|
|
int nEdges = vEdges.size();
|
|
|
|
int iLeadingStart = vEdges.FindIndex(fEdges[fCorner]);
|
|
int iTrailingStart = (iLeadingStart + 1) % nEdges;
|
|
|
|
vSpan.clear();
|
|
vSpan._numFaces = 1;
|
|
|
|
int iLeading = iLeadingStart;
|
|
while (! isEdgeSingular(level, fvarLevel, vEdges[iLeading], eTagMask)) {
|
|
++vSpan._numFaces;
|
|
iLeading = (iLeading + nEdges - 1) % nEdges;
|
|
if (iLeading == iTrailingStart) break;
|
|
}
|
|
|
|
int iTrailing = iTrailingStart;
|
|
while (!isEdgeSingular(level, fvarLevel, vEdges[iTrailing], eTagMask)) {
|
|
++vSpan._numFaces;
|
|
iTrailing = (iTrailing + 1) % nEdges;
|
|
if (iTrailing == iLeadingStart) break;
|
|
}
|
|
vSpan._startFace = (LocalIndex) iLeading;
|
|
}
|
|
|
|
void
|
|
identifyNonManifoldCornerSpan(Level const & level, Index fIndex,
|
|
int fCorner, Level::ETag /* eTagMask */,
|
|
Level::VSpan & vSpan, int /* fvc */ = -1)
|
|
{
|
|
// For now, non-manifold patches revert to regular patches -- just
|
|
// identify the single face now for a sharp corner patch.
|
|
//
|
|
// Remember that the face may be incident the vertex multiple times
|
|
// when non-manifold, so make sure the local index of the corner
|
|
// vertex in the face identified additionally matches the corner.
|
|
//
|
|
//FVarLevel * fvarLevel = (fvc < 0) ? 0 : &level.getFVarChannel(fvc);
|
|
|
|
Index vIndex = level.getFaceVertices(fIndex)[fCorner];
|
|
|
|
ConstIndexArray vFaces = level.getVertexFaces(vIndex);
|
|
ConstLocalIndexArray vInFace = level.getVertexFaceLocalIndices(vIndex);
|
|
|
|
vSpan.clear();
|
|
for (int i = 0; i < vFaces.size(); ++i) {
|
|
if ((vFaces[i] == fIndex) && ((int)vInFace[i] == fCorner)) {
|
|
vSpan._startFace = (LocalIndex) i;
|
|
vSpan._numFaces = 1;
|
|
vSpan._sharp = true;
|
|
break;
|
|
}
|
|
}
|
|
assert(vSpan._numFaces == 1);
|
|
}
|
|
} // namespace anon
|
|
|
|
|
|
//
|
|
// Factory method and constructor:
|
|
//
|
|
PatchBuilder*
|
|
PatchBuilder::Create(TopologyRefiner const& refiner, Options const& options) {
|
|
|
|
switch (refiner.GetSchemeType()) {
|
|
case Sdc::SCHEME_BILINEAR:
|
|
return new BilinearPatchBuilder(refiner, options);
|
|
case Sdc::SCHEME_CATMARK:
|
|
return new CatmarkPatchBuilder(refiner, options);
|
|
case Sdc::SCHEME_LOOP:
|
|
return new LoopPatchBuilder(refiner, options);
|
|
}
|
|
assert("Unrecognized Sdc::SchemeType for PatchBuilder construction" == 0);
|
|
return 0;
|
|
}
|
|
|
|
PatchBuilder::PatchBuilder(
|
|
TopologyRefiner const& refiner, Options const& options) :
|
|
_refiner(refiner), _options(options) {
|
|
|
|
//
|
|
// Initialize members with properties of the subdivision scheme and patch
|
|
// choices for quick retrieval:
|
|
//
|
|
_schemeType = refiner.GetSchemeType();
|
|
_schemeRegFaceSize = Sdc::SchemeTypeTraits::GetRegularFaceSize(_schemeType);
|
|
_schemeNeighborhood = Sdc::SchemeTypeTraits::GetLocalNeighborhoodSize(_schemeType);
|
|
|
|
// Initialization of members involving patch types is deferred to the
|
|
// subclass for the scheme
|
|
}
|
|
|
|
PatchBuilder::~PatchBuilder() {
|
|
}
|
|
|
|
//
|
|
// This inline assertion is invoked in code that is intended to support
|
|
// triangular patches, but has not yet been fully validated as doing so --
|
|
// typically the public methods used by clients.
|
|
//
|
|
// This is in contrast to code that is never intended to support triangles,
|
|
// i.e. code for which a test for quads is a pre-condition, where the
|
|
// explicit assertion should be used instead of this method (as it will be
|
|
// completely removed once planned support for triangular patches is done).
|
|
//
|
|
inline void
|
|
PatchBuilder::assertTriangularPatchesNotYetSupportedHere() const {
|
|
|
|
assert(_schemeRegFaceSize == 4);
|
|
}
|
|
|
|
//
|
|
// Topology inspections methods for a particular face in the hierarchy:
|
|
//
|
|
bool
|
|
PatchBuilder::IsFaceAPatch(int levelIndex, Index faceIndex) const {
|
|
|
|
Level const & level = _refiner.getLevel(levelIndex);
|
|
ConstIndexArray fVerts = level.getFaceVertices(faceIndex);
|
|
|
|
// Fail if the face is a hole (i.e. no limit surface)
|
|
if (level.isFaceHole(faceIndex)) return false;
|
|
|
|
// Fail if the face is irregular
|
|
if (fVerts.size() != _schemeRegFaceSize) return false;
|
|
|
|
// Fail if the face lacks its complete neighborhood of support
|
|
if (level.getFaceCompositeVTag(fVerts)._incomplete) return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
PatchBuilder::IsFaceALeaf(int levelIndex, Index faceIndex) const {
|
|
|
|
// All faces in the last level are leaves
|
|
if (levelIndex < _refiner.GetMaxLevel()) {
|
|
// Faces selected for further refinement are not leaves
|
|
if (_refiner.getRefinement(levelIndex).
|
|
getParentFaceSparseTag(faceIndex)._selected) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
PatchBuilder::IsPatchRegular(int levelIndex, Index faceIndex,
|
|
int fvarChannel) const {
|
|
|
|
assertTriangularPatchesNotYetSupportedHere();
|
|
|
|
if (_schemeNeighborhood == 0) {
|
|
// The previous face-is-a-patch test precludes an irregular patch
|
|
return true;
|
|
}
|
|
|
|
Level const & level = _refiner.getLevel(levelIndex);
|
|
|
|
// Retrieve the composite VTag for the four corners:
|
|
Level::VTag fCompVTag = level.getFaceCompositeVTag(faceIndex, fvarChannel);
|
|
|
|
// All patches around non-manifold features are currently regular:
|
|
bool isRegular = ! fCompVTag._xordinary || fCompVTag._nonManifold;
|
|
|
|
// Reconsider when using inf-sharp patches at inf-sharp features:
|
|
if (!_options.approxInfSharpWithSmooth &&
|
|
(fCompVTag._infSharp || fCompVTag._infSharpEdges)) {
|
|
|
|
if (fCompVTag._nonManifold || !fCompVTag._infIrregular) {
|
|
isRegular = true;
|
|
} else if (!fCompVTag._infSharpEdges) {
|
|
isRegular = false;
|
|
} else {
|
|
//
|
|
// This is unfortunately a relatively complex case to determine...
|
|
// if a corner vertex has been tagged has having an inf-sharp
|
|
// irregularity about it, the neighborhood of the corner is
|
|
// partitioned into both regular and irregular regions and the
|
|
// face must be more closely inspected to determine in which it
|
|
// lies.
|
|
//
|
|
// There could be a simpler test here to quickly accept/reject
|
|
// regularity given how local it is -- involving no more than
|
|
// one or two (in the case of Loop) adjacent faces -- but it will
|
|
// likely be messy and will need to inspect adjacent faces and/or
|
|
// edges. In the meantime, gathering and inspecting the subset
|
|
// of the neighborhood delimited by inf-sharp edges will suffice
|
|
// (and be comparable in all but cases of high valence)
|
|
//
|
|
Level::VTag vTags[4];
|
|
level.getFaceVTags(faceIndex, vTags, fvarChannel);
|
|
|
|
Level::VSpan vSpan;
|
|
Level::ETag eMask = getSingularEdgeMask(true);
|
|
|
|
isRegular = true;
|
|
for (int i = 0; i < 4; ++i) {
|
|
if (vTags[i]._infIrregular) {
|
|
identifyManifoldCornerSpan(
|
|
level, faceIndex, i, eMask, vSpan, fvarChannel);
|
|
|
|
isRegular = (vSpan._numFaces ==
|
|
(vTags[i]._infSharpCrease ? 2 : 1));
|
|
if (!isRegular) break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// When inf-sharp and extra-ordinary features are not isolated, need
|
|
// to inspect more closely -- any smooth extra-ordinary corner makes
|
|
// the patch irregular:
|
|
if (fCompVTag._xordinary && (levelIndex < 2)) {
|
|
Level::VTag vTags[4];
|
|
level.getFaceVTags(faceIndex, vTags, fvarChannel);
|
|
for (int i = 0; i < 4; ++i) {
|
|
if (vTags[i]._xordinary &&
|
|
(vTags[i]._rule == Sdc::Crease::RULE_SMOOTH)) {
|
|
isRegular = false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Legacy option -- reinterpret smooth corner as sharp if specified:
|
|
if (!isRegular && _options.approxSmoothCornerWithSharp) {
|
|
if (fCompVTag._xordinary && fCompVTag._boundary && !fCompVTag._nonManifold) {
|
|
isRegular = isPatchSmoothCorner(levelIndex, faceIndex, fvarChannel);
|
|
}
|
|
}
|
|
return isRegular;
|
|
}
|
|
|
|
bool
|
|
PatchBuilder::isPatchSmoothCorner(int levelIndex, Index faceIndex,
|
|
int fvarChannel) const {
|
|
|
|
Level const & level = _refiner.getLevel(levelIndex);
|
|
|
|
ConstIndexArray fVerts = level.getFaceVertices(faceIndex);
|
|
if (fVerts.size() != 4) return false;
|
|
|
|
Level::VTag vTags[4];
|
|
level.getFaceVTags(faceIndex, vTags, fvarChannel);
|
|
|
|
//
|
|
// Test the subdivision rules for the corners, rather than just the
|
|
// boundary/interior tags, to ensure that inf-sharp vertices or edges
|
|
// are properly accounted for (and the cases appropriately excluded)
|
|
// if inf-sharp patches are enabled:
|
|
//
|
|
int boundaryCount = 0;
|
|
if (!_options.approxInfSharpWithSmooth) {
|
|
boundaryCount =
|
|
(vTags[0]._infSharpEdges && (vTags[0]._rule == Sdc::Crease::RULE_CREASE)) +
|
|
(vTags[1]._infSharpEdges && (vTags[1]._rule == Sdc::Crease::RULE_CREASE)) +
|
|
(vTags[2]._infSharpEdges && (vTags[2]._rule == Sdc::Crease::RULE_CREASE)) +
|
|
(vTags[3]._infSharpEdges && (vTags[3]._rule == Sdc::Crease::RULE_CREASE));
|
|
} else {
|
|
boundaryCount =
|
|
(vTags[0]._boundary && (vTags[0]._rule == Sdc::Crease::RULE_CREASE)) +
|
|
(vTags[1]._boundary && (vTags[1]._rule == Sdc::Crease::RULE_CREASE)) +
|
|
(vTags[2]._boundary && (vTags[2]._rule == Sdc::Crease::RULE_CREASE)) +
|
|
(vTags[3]._boundary && (vTags[3]._rule == Sdc::Crease::RULE_CREASE));
|
|
}
|
|
int xordinaryCount = vTags[0]._xordinary
|
|
+ vTags[1]._xordinary
|
|
+ vTags[2]._xordinary
|
|
+ vTags[3]._xordinary;
|
|
|
|
if ((boundaryCount == 3) && (xordinaryCount == 1)) {
|
|
// This must be an isolated xordinary corner above level 1, otherwise
|
|
// we still need to assure the xordinary vertex is opposite a smooth
|
|
// interior vertex:
|
|
//
|
|
if (levelIndex > 1) return true;
|
|
|
|
if (vTags[0]._xordinary) return (vTags[2]._rule == Sdc::Crease::RULE_SMOOTH);
|
|
if (vTags[1]._xordinary) return (vTags[3]._rule == Sdc::Crease::RULE_SMOOTH);
|
|
if (vTags[2]._xordinary) return (vTags[0]._rule == Sdc::Crease::RULE_SMOOTH);
|
|
if (vTags[3]._xordinary) return (vTags[1]._rule == Sdc::Crease::RULE_SMOOTH);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
int
|
|
PatchBuilder::GetRegularPatchBoundaryMask(int levelIndex, Index faceIndex,
|
|
int fvarChannel) const {
|
|
|
|
assertTriangularPatchesNotYetSupportedHere();
|
|
|
|
if (_schemeNeighborhood == 0) {
|
|
// Boundaries for patches not dependent on the 1-ring are ignored
|
|
return 0;
|
|
}
|
|
|
|
Level const & level = _refiner.getLevel(levelIndex);
|
|
|
|
// Gather the VTags for the four corners. Regardless of the options
|
|
// for treating non-manifold or inf-sharp patches, for a regular patch
|
|
// we can infer all that we need need from tags for the corner vertices:
|
|
//
|
|
Level::VTag vTags[4];
|
|
level.getFaceVTags(faceIndex, vTags, fvarChannel);
|
|
|
|
Level::VTag fTag = Level::VTag::BitwiseOr(vTags);
|
|
|
|
//
|
|
// Identify vertex tags for inf-sharp edges and/or boundaries, depending
|
|
// on whether or not inf-sharp patches are in use:
|
|
//
|
|
int vBoundaryMask = 0;
|
|
if (fTag._infSharpEdges) {
|
|
if (!_options.approxInfSharpWithSmooth) {
|
|
vBoundaryMask |= (vTags[0]._infSharpEdges << 0) |
|
|
(vTags[1]._infSharpEdges << 1) |
|
|
(vTags[2]._infSharpEdges << 2) |
|
|
(vTags[3]._infSharpEdges << 3);
|
|
} else if (fTag._boundary) {
|
|
vBoundaryMask |= (vTags[0]._boundary << 0) |
|
|
(vTags[1]._boundary << 1) |
|
|
(vTags[2]._boundary << 2) |
|
|
(vTags[3]._boundary << 3);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Non-manifold patches have been historically represented as regular
|
|
// in all cases -- when a non-manifold vertex is sharp, it requires a
|
|
// regular corner patch, and so both of its neighboring corners need to
|
|
// be re-interpreted as boundaries.
|
|
//
|
|
// With the introduction of sharp irregular patches, we are now better
|
|
// off using irregular patches where appropriate, which will simplify
|
|
// the following when this patch was already determined to be regular.
|
|
//
|
|
if (fTag._nonManifold) {
|
|
if (vTags[0]._nonManifold)
|
|
vBoundaryMask |= (1 << 0) | (vTags[0]._infSharp ? 10 : 0);
|
|
if (vTags[1]._nonManifold)
|
|
vBoundaryMask |= (1 << 1) | (vTags[1]._infSharp ? 5 : 0);
|
|
if (vTags[2]._nonManifold)
|
|
vBoundaryMask |= (1 << 2) | (vTags[2]._infSharp ? 10 : 0);
|
|
if (vTags[3]._nonManifold)
|
|
vBoundaryMask |= (1 << 3) | (vTags[3]._infSharp ? 5 : 0);
|
|
|
|
// Force adjacent edges as boundaries if only one vertex in the
|
|
// resulting mask (which would be an irregular boundary for Catmark,
|
|
// but not Loop):
|
|
if ((vBoundaryMask == (1 << 0)) || (vBoundaryMask == (1 << 2))) {
|
|
vBoundaryMask |= 10;
|
|
} else if ((vBoundaryMask == (1 << 1)) || (vBoundaryMask == (1 << 3))) {
|
|
vBoundaryMask |= 5;
|
|
}
|
|
}
|
|
|
|
// Convert directly from a vertex- to edge-mask (no need to inspect edges):
|
|
int eBoundaryMask = 0;
|
|
if (vBoundaryMask) {
|
|
static int const vBoundaryMaskToEMask[16] =
|
|
{ 0, -1, -1, 1, -1, -1, 2, 3, -1, 8, -1, 9, 4, 12, 6, -1 };
|
|
eBoundaryMask = vBoundaryMaskToEMask[vBoundaryMask];
|
|
assert(eBoundaryMask != -1);
|
|
}
|
|
return eBoundaryMask;
|
|
}
|
|
|
|
void
|
|
PatchBuilder::GetIrregularPatchCornerSpans(int levelIndex, Index faceIndex,
|
|
Level::VSpan cornerSpans[4], int fvarChannel) const {
|
|
|
|
assertTriangularPatchesNotYetSupportedHere();
|
|
|
|
Level const & level = _refiner.getLevel(levelIndex);
|
|
|
|
// Retrieve tags and identify other information for the corner vertices:
|
|
Level::VTag vTags[4];
|
|
level.getFaceVTags(faceIndex, vTags, fvarChannel);
|
|
|
|
FVarLevel::ValueTag fvarTags[4];
|
|
if (fvarChannel >= 0) {
|
|
level.getFVarLevel(fvarChannel).getFaceValueTags(faceIndex, fvarTags);
|
|
}
|
|
|
|
//
|
|
// For each corner vertex, use the complete neighborhood when possible
|
|
// (which does not require a search, otherwise identify the span of
|
|
// interest around the vertex:
|
|
//
|
|
ConstIndexArray fVerts = level.getFaceVertices(faceIndex);
|
|
|
|
Level::ETag singularEdgeMask =
|
|
getSingularEdgeMask(!_options.approxInfSharpWithSmooth);
|
|
|
|
for (int i = 0; i < fVerts.size(); ++i) {
|
|
bool noFVarMisMatch = (fvarChannel < 0) || !fvarTags[i]._mismatch;
|
|
|
|
bool testInfSharp = !_options.approxInfSharpWithSmooth &&
|
|
vTags[i]._infSharpEdges &&
|
|
(vTags[i]._rule != Sdc::Crease::RULE_DART);
|
|
|
|
if (noFVarMisMatch && !testInfSharp) {
|
|
cornerSpans[i].clear();
|
|
} else {
|
|
if (!vTags[i]._nonManifold) {
|
|
identifyManifoldCornerSpan(level, faceIndex,
|
|
i, singularEdgeMask, cornerSpans[i], fvarChannel);
|
|
} else {
|
|
identifyNonManifoldCornerSpan(level, faceIndex,
|
|
i, singularEdgeMask, cornerSpans[i], fvarChannel);
|
|
}
|
|
}
|
|
if (vTags[i]._corner) {
|
|
cornerSpans[i]._sharp = true;
|
|
} else if (!_options.approxInfSharpWithSmooth) {
|
|
cornerSpans[i]._sharp = vTags[i]._infIrregular &&
|
|
(vTags[i]._rule == Sdc::Crease::RULE_CORNER);
|
|
}
|
|
|
|
// Legacy option -- reinterpret smooth corner as sharp if specified:
|
|
if (!cornerSpans[i]._sharp && _options.approxSmoothCornerWithSharp) {
|
|
if (vTags[i]._xordinary && vTags[i]._boundary && !vTags[i]._nonManifold) {
|
|
int nFaces = cornerSpans[i].isAssigned()
|
|
? cornerSpans[i]._numFaces
|
|
: level.getVertexFaces(fVerts[i]).size();
|
|
cornerSpans[i]._sharp = (nFaces == 1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
PatchBuilder::getRegularFacePoints(int levelIndex, Index faceIndex,
|
|
Index patchPoints[], int fvarChannel) const {
|
|
|
|
Level const & level = _refiner.getLevel(levelIndex);
|
|
|
|
ConstIndexArray facePoints = (fvarChannel < 0)
|
|
? level.getFaceVertices(faceIndex)
|
|
: level.getFaceFVarValues(faceIndex, fvarChannel);
|
|
|
|
for (int i = 0; i < facePoints.size(); ++i) {
|
|
patchPoints[i] = facePoints[i];
|
|
}
|
|
return facePoints.size();
|
|
}
|
|
|
|
int
|
|
PatchBuilder::getQuadRegularPatchPoints(int levelIndex, Index faceIndex,
|
|
int regBoundaryMask, Index patchPoints[],
|
|
int fvarChannel) const {
|
|
|
|
if (regBoundaryMask < 0) {
|
|
regBoundaryMask = GetRegularPatchBoundaryMask(levelIndex, faceIndex);
|
|
}
|
|
|
|
int bType = 0;
|
|
int bIndex = 0;
|
|
if (regBoundaryMask) {
|
|
static int const boundaryEdgeMaskToType[16] =
|
|
{ 0, 1, 1, 2, 1, -1, 2, -1, 1, 2, -1, -1, 2, -1, -1, -1 };
|
|
static int const boundaryEdgeMaskToFeature[16] =
|
|
{ -1, 0, 1, 1, 2, -1, 2, -1, 3, 0, -1, -1, 3, -1, -1,-1 };
|
|
|
|
bType = boundaryEdgeMaskToType[regBoundaryMask];
|
|
bIndex = boundaryEdgeMaskToFeature[regBoundaryMask];
|
|
}
|
|
|
|
Level const & level = _refiner.getLevel(levelIndex);
|
|
|
|
Index sourcePoints[16];
|
|
|
|
int const * permutation = 0;
|
|
if (bType == 0) {
|
|
static int const permuteRegular[16] =
|
|
{ 5, 6, 7, 8, 4, 0, 1, 9, 15, 3, 2, 10, 14, 13, 12, 11 };
|
|
permutation = permuteRegular;
|
|
level.gatherQuadRegularInteriorPatchPoints(
|
|
faceIndex, sourcePoints, /*rotation=*/0, fvarChannel);
|
|
} else if (bType == 1) {
|
|
// Expand boundary patch vertices and rotate to
|
|
// restore correct orientation.
|
|
static int const permuteBoundary[4][16] = {
|
|
{ -1, -1, -1, -1, 11, 3, 0, 4, 10, 2, 1, 5, 9, 8, 7, 6 },
|
|
{ 9, 10, 11, -1, 8, 2, 3, -1, 7, 1, 0, -1, 6, 5, 4, -1 },
|
|
{ 6, 7, 8, 9, 5, 1, 2, 10, 4, 0, 3, 11, -1, -1, -1, -1 },
|
|
{ -1, 4, 5, 6, -1, 0, 1, 7, -1, 3, 2, 8, -1, 11, 10, 9 } };
|
|
permutation = permuteBoundary[bIndex];
|
|
level.gatherQuadRegularBoundaryPatchPoints(
|
|
faceIndex, sourcePoints, bIndex, fvarChannel);
|
|
} else if (bType == 2) {
|
|
// Expand corner patch vertices and rotate to
|
|
// restore correct orientation.
|
|
static int const permuteCorner[4][16] = {
|
|
{ -1, -1, -1, -1, -1, 0, 1, 4, -1, 3, 2, 5, -1, 8, 7, 6 },
|
|
{ -1, -1, -1, -1, 8, 3, 0, -1, 7, 2, 1, -1, 6, 5, 4, -1 },
|
|
{ 6, 7, 8, -1, 5, 2, 3, -1, 4, 1, 0, -1, -1, -1, -1, -1 },
|
|
{ -1, 4, 5, 6, -1, 1, 2, 7, -1, 0, 3, 8, -1, -1, -1, -1 } };
|
|
permutation = permuteCorner[bIndex];
|
|
level.gatherQuadRegularCornerPatchPoints(
|
|
faceIndex, sourcePoints, bIndex, fvarChannel);
|
|
}
|
|
assert(permutation != 0);
|
|
|
|
// Re-orient the points into a row-wise order and (optionally) fill in any
|
|
// missing boundary points with a known point (first of the source points)
|
|
if (regBoundaryMask == 0) {
|
|
for (int i = 0; i < 16; ++i) {
|
|
patchPoints[i] = sourcePoints[permutation[i]];
|
|
}
|
|
} else {
|
|
for (int i = 0; i < 16; ++i) {
|
|
if (permutation[i] >= 0) {
|
|
patchPoints[i] = sourcePoints[permutation[i]];
|
|
} else if (_options.fillMissingBoundaryPoints) {
|
|
patchPoints[i] = sourcePoints[0];
|
|
} else {
|
|
patchPoints[i] = INDEX_INVALID;
|
|
}
|
|
}
|
|
}
|
|
return 16;
|
|
}
|
|
|
|
int
|
|
PatchBuilder::GetRegularPatchPoints(int levelIndex, Index faceIndex,
|
|
int regBoundaryMask, Index patchPoints[],
|
|
int fvarChannel) const {
|
|
|
|
if (_schemeNeighborhood == 0) {
|
|
return getRegularFacePoints(
|
|
levelIndex, faceIndex, patchPoints, fvarChannel);
|
|
} else if (_schemeRegFaceSize == 4) {
|
|
return getQuadRegularPatchPoints(
|
|
levelIndex, faceIndex, regBoundaryMask, patchPoints, fvarChannel);
|
|
} else {
|
|
assertTriangularPatchesNotYetSupportedHere();
|
|
// return getTriRegularPatchPoints(
|
|
// levelIndex, faceIndex, regBoundaryMask, patchPoints, fvarChannel);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
PatchBuilder::assembleIrregularSourcePatch(
|
|
int levelIndex, Index faceIndex, Level::VSpan const cornerSpans[],
|
|
SourcePatch & sourcePatch) const {
|
|
|
|
//
|
|
// Initialize the four Patch corners and finalize the patch:
|
|
//
|
|
Level const & level = _refiner.getLevel(levelIndex);
|
|
|
|
ConstIndexArray fVerts = level.getFaceVertices(faceIndex);
|
|
|
|
for (int corner = 0; corner < 4; ++corner) {
|
|
ConstIndexArray vFaces = level.getVertexFaces(fVerts[corner]);
|
|
|
|
//
|
|
// Identify the face for the patch within the given ring or sub-ring.
|
|
//
|
|
// Note also that specifying a sub-ring in a VSpan currently implies
|
|
// it is a boundary or dart (if all faces present) -- we need a
|
|
// better way of specifying corner properties such as boundary, dart,
|
|
// sharp, etc. (possibly a VTag for each corner in addition to the
|
|
// VSpan)
|
|
//
|
|
Level::VTag vTag = level.getVertexTag(fVerts[corner]);
|
|
|
|
int numFaces = 0;
|
|
int firstFace = 0;
|
|
bool isBoundary = false;
|
|
|
|
if (cornerSpans[corner]._numFaces == 0) {
|
|
numFaces = vFaces.size();
|
|
firstFace = 0;
|
|
isBoundary = vTag._boundary;
|
|
} else {
|
|
numFaces = cornerSpans[corner]._numFaces;
|
|
firstFace = cornerSpans[corner]._startFace;
|
|
isBoundary = true;
|
|
}
|
|
|
|
int patchFace = 0;
|
|
for ( ; patchFace < numFaces; ++patchFace) {
|
|
int vFaceIndex = (firstFace + patchFace) % vFaces.size();
|
|
if (vFaces[vFaceIndex] == faceIndex) {
|
|
break;
|
|
}
|
|
}
|
|
assert(patchFace < numFaces);
|
|
|
|
sourcePatch._corners[corner]._boundary = isBoundary;
|
|
sourcePatch._corners[corner]._sharp = cornerSpans[corner]._sharp;
|
|
sourcePatch._corners[corner]._dart = (vTag._rule == Sdc::Crease::RULE_DART);
|
|
sourcePatch._corners[corner]._numFaces = numFaces;
|
|
sourcePatch._corners[corner]._patchFace = patchFace;
|
|
}
|
|
sourcePatch.Finalize();
|
|
return sourcePatch.GetNumSourcePoints();
|
|
}
|
|
|
|
|
|
//
|
|
// Gather patch points from around the face of a level given a previously
|
|
// initialized SourcePatch. This is historically specific to an irregular
|
|
// patch and still relies on the cornerSpans (which may or may not have been
|
|
// initialized when the SourcePatch was created) rather than inspecting the
|
|
// corners of the SourcePatch.
|
|
//
|
|
// We need temporary/local space for rings around each corner -- both for
|
|
// the Vtr::Level and the corresponding rings of the patch.
|
|
//
|
|
// Get the corresponding rings from the Vtr::Level and the patch descriptor:
|
|
// the values of the latter will be indices for points[] whose values will
|
|
// come from values of former, i.e. points[localRing[i]] = sourceRing[i].
|
|
// Points that overlap will be assigned multiple times, but messy logic to
|
|
// deal with overlap while determining the correspondence is avoided.
|
|
//
|
|
int
|
|
PatchBuilder::gatherIrregularSourcePoints(
|
|
int levelIndex, Index faceIndex,
|
|
Level::VSpan const cornerSpans[4], SourcePatch & sourcePatch,
|
|
Index patchVerts[], int fvarChannel) const
|
|
|
|
{
|
|
//
|
|
// Allocate temporary space for rings around the corners in both the Level
|
|
// and the Patch, then retrieve corresponding rings and assign the source
|
|
// vertices to the given array of patch points
|
|
//
|
|
int numSourceVerts = sourcePatch.GetNumSourcePoints();
|
|
|
|
StackBuffer<Index,64,true> sourceRingVertices(sourcePatch.GetMaxRingSize());
|
|
StackBuffer<Index,64,true> patchRingPoints(sourcePatch.GetMaxRingSize());
|
|
|
|
// Debugging -- all entries should be assigned (see test after assignment)
|
|
const int debugUnassignedPointIndex = -1;
|
|
for (int i = 0; i < numSourceVerts; ++i) {
|
|
patchVerts[i] = debugUnassignedPointIndex;
|
|
}
|
|
|
|
Level const & level = _refiner.getLevel(levelIndex);
|
|
|
|
ConstIndexArray faceVerts = level.getFaceVertices(faceIndex);
|
|
for (int corner = 0; corner < 4; ++corner) {
|
|
Index cornerVertex = faceVerts[corner];
|
|
|
|
// Gather the ring of source points from the Vtr level:
|
|
int sourceRingSize = 0;
|
|
if (!cornerSpans[corner].isAssigned()) {
|
|
sourceRingSize = level.gatherQuadRegularRingAroundVertex(
|
|
cornerVertex, sourceRingVertices,
|
|
fvarChannel);
|
|
} else {
|
|
sourceRingSize = level.gatherQuadRegularPartialRingAroundVertex(
|
|
cornerVertex, cornerSpans[corner], sourceRingVertices,
|
|
fvarChannel);
|
|
}
|
|
|
|
// Gather the ring of local points from the patch:
|
|
int patchRingSize = sourcePatch.GetCornerRingPoints(
|
|
corner, patchRingPoints);
|
|
assert(patchRingSize == sourceRingSize);
|
|
|
|
// Identify source points for corresponding local patch points of ring:
|
|
for (int i = 0; i < patchRingSize; ++i) {
|
|
assert(patchRingPoints[i] < numSourceVerts);
|
|
patchVerts[patchRingPoints[i]] = sourceRingVertices[i];
|
|
}
|
|
}
|
|
|
|
// Debugging -- all entries should be assigned (see pre-assignment above)
|
|
for (int i = 0; i < numSourceVerts; ++i) {
|
|
assert(patchVerts[i] != debugUnassignedPointIndex);
|
|
}
|
|
return numSourceVerts;
|
|
}
|
|
|
|
int
|
|
PatchBuilder::GetIrregularPatchSourcePoints(
|
|
int levelIndex, Index faceIndex, Level::VSpan const cornerSpans[],
|
|
Index sourcePoints[], int fvarChannel) const {
|
|
|
|
assertTriangularPatchesNotYetSupportedHere();
|
|
|
|
SourcePatch sourcePatch;
|
|
assembleIrregularSourcePatch(
|
|
levelIndex, faceIndex, cornerSpans, sourcePatch);
|
|
|
|
return gatherIrregularSourcePoints(levelIndex, faceIndex,
|
|
cornerSpans, sourcePatch, sourcePoints, fvarChannel);
|
|
}
|
|
|
|
int
|
|
PatchBuilder::GetIrregularPatchConversionMatrix(
|
|
int levelIndex, Index faceIndex,
|
|
Level::VSpan const cornerSpans[],
|
|
SparseMatrix<float> & conversionMatrix) const {
|
|
|
|
assertTriangularPatchesNotYetSupportedHere();
|
|
|
|
SourcePatch sourcePatch;
|
|
assembleIrregularSourcePatch(
|
|
levelIndex, faceIndex, cornerSpans, sourcePatch);
|
|
|
|
return convertToPatchType(
|
|
sourcePatch, GetIrregularPatchType(), conversionMatrix);
|
|
}
|
|
|
|
|
|
bool
|
|
PatchBuilder::IsRegularSingleCreasePatch(int levelIndex, Index faceIndex,
|
|
SingleCreaseInfo & creaseInfo) const {
|
|
|
|
assertTriangularPatchesNotYetSupportedHere();
|
|
|
|
Level const & level = _refiner.getLevel(levelIndex);
|
|
|
|
return level.isSingleCreasePatch(faceIndex,
|
|
&creaseInfo.creaseSharpness, &creaseInfo.creaseEdgeInFace);
|
|
}
|
|
|
|
PatchParam
|
|
PatchBuilder::ComputePatchParam(int levelIndex, Index faceIndex,
|
|
PtexIndices const& ptexIndices,
|
|
int boundaryMask, bool computeTransitionMask) const {
|
|
|
|
// Move up the hierarchy accumulating u,v indices to the coarse level:
|
|
int depth = levelIndex;
|
|
int childIndexInParent = 0,
|
|
u = 0,
|
|
v = 0,
|
|
ofs = 1;
|
|
|
|
int regFaceSize = _schemeRegFaceSize;
|
|
|
|
bool irregular =
|
|
_refiner.GetLevel(depth).GetFaceVertices(faceIndex).size() !=
|
|
regFaceSize;
|
|
|
|
// For triangle refinement, the parameterization is rotated at
|
|
// the fourth triangle subface at each level. The u and v values
|
|
// computed for rotated triangles will be negative while we are
|
|
// walking through the refinement levels.
|
|
bool rotatedTriangle = false;
|
|
|
|
int childFaceIndex = faceIndex;
|
|
for (int i = depth; i > 0; --i) {
|
|
Refinement const& refinement = _refiner.getRefinement(i-1);
|
|
Level const& parentLevel = _refiner.getLevel(i-1);
|
|
|
|
Index parentFaceIndex =
|
|
refinement.getChildFaceParentFace(childFaceIndex);
|
|
|
|
irregular =
|
|
parentLevel.getFaceVertices(parentFaceIndex).size() !=
|
|
regFaceSize;
|
|
|
|
if (_schemeRegFaceSize == 3) {
|
|
// For now, we don't consider irregular faces for
|
|
// triangle refinement.
|
|
|
|
childIndexInParent =
|
|
refinement.getChildFaceInParentFace(childFaceIndex);
|
|
|
|
if (rotatedTriangle) {
|
|
switch ( childIndexInParent ) {
|
|
case 0 : break;
|
|
case 1 : { u-=ofs; } break;
|
|
case 2 : { v-=ofs; } break;
|
|
case 3 : { u+=ofs; v+=ofs; rotatedTriangle = false; } break;
|
|
}
|
|
} else {
|
|
switch ( childIndexInParent ) {
|
|
case 0 : break;
|
|
case 1 : { u+=ofs; } break;
|
|
case 2 : { v+=ofs; } break;
|
|
case 3 : { u-=ofs; v-=ofs; rotatedTriangle = true; } break;
|
|
}
|
|
}
|
|
ofs = (unsigned short)(ofs << 1);
|
|
} else if (!irregular) {
|
|
childIndexInParent =
|
|
refinement.getChildFaceInParentFace(childFaceIndex);
|
|
|
|
switch ( childIndexInParent ) {
|
|
case 0 : break;
|
|
case 1 : { u+=ofs; } break;
|
|
case 2 : { u+=ofs; v+=ofs; } break;
|
|
case 3 : { v+=ofs; } break;
|
|
}
|
|
ofs = (unsigned short)(ofs << 1);
|
|
} else {
|
|
// If the root face is not a quad, we need to offset the ptex index
|
|
// CCW to match the correct child face
|
|
ConstIndexArray children =
|
|
refinement.getFaceChildFaces(parentFaceIndex);
|
|
|
|
for (int j=0; j<children.size(); ++j) {
|
|
if (children[j] == childFaceIndex) {
|
|
childIndexInParent = j;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
childFaceIndex = parentFaceIndex;
|
|
}
|
|
if (rotatedTriangle) {
|
|
// If the triangle is tagged as rotated at this point then the
|
|
// computed u and v parameters will both be negative and we map
|
|
// them onto positive values in the opposite diagonal of the
|
|
// parameter space.
|
|
u += ofs;
|
|
v += ofs;
|
|
}
|
|
int baseFaceIndex = childFaceIndex;
|
|
|
|
// Need to store ptex index from base face and child of an irregular face:
|
|
Index ptexIndex = ptexIndices.GetFaceId(baseFaceIndex);
|
|
assert(ptexIndex != -1);
|
|
if (irregular) {
|
|
ptexIndex += childIndexInParent;
|
|
}
|
|
|
|
// Compute/identify the transition mask if requested, otherwise leave it 0:
|
|
int transitionMask = 0;
|
|
if (computeTransitionMask && (levelIndex < _refiner.GetMaxLevel())) {
|
|
transitionMask = _refiner.getRefinement(levelIndex).
|
|
getParentFaceSparseTag(faceIndex)._transitional;
|
|
}
|
|
|
|
PatchParam param;
|
|
param.Set(ptexIndex, (short)u, (short)v, (unsigned short) depth, irregular,
|
|
(unsigned short) boundaryMask, (unsigned short) transitionMask);
|
|
return param;
|
|
}
|
|
|
|
|
|
//
|
|
// SourcePatch
|
|
//
|
|
// This class allows the full topological specification of the neighborhood
|
|
// of vertices and edges around a face that collectively define a rectangular
|
|
// piece of surface corresponding to that face. All components are declared
|
|
// in terms of local indices and explicitly avoid any references/indices to
|
|
// an external representation. It is assembled by specifying the topology
|
|
// of each corner (number of faces/edges, boundary, etc.) and finalization
|
|
// determines a set of source vertices in a canonical orientation relative
|
|
// to the face and any patch which may be derived from it.
|
|
//
|
|
// Any/all corners can be arbitrarily irregular. Information for each corner
|
|
// is similar to what is provided in a Vtr::Level::VSpan but does not require
|
|
// any Vtr dependent orientation (e.g. the leading edge) and also requires
|
|
// identification of the incident face that corresponds to the patch (i.e.
|
|
// the "patch face").
|
|
//
|
|
// The set of local source vertices begins with the corner vertices of the
|
|
// face corresponding to the patch. Since the 1-rings of the corner vertices
|
|
// overlap, a subset of the 1-rings is identified as the "local ring points"
|
|
// for a corner, which are the points most associated with the corner. While
|
|
// one of these local ring points may overlap with an adjacent corner, the
|
|
// local ring points for each corner are indexed successively for each corner.
|
|
//
|
|
// The cumulative set of source points forming the 1-ring around the patch
|
|
// face is indexed successively in a counter-clockwise orientation beginning
|
|
// with the first edge-vertex of the first corner, e.g. for a patch with
|
|
// three regular corners and an irregular boundary:
|
|
//
|
|
// 13 12 11 10
|
|
// x--------x--------x--------x
|
|
// | | | |
|
|
// | | | |
|
|
// | | | |
|
|
// | | | |
|
|
// 14 x--------x--------x--------x 9
|
|
// | |3 2| |
|
|
// | | | |
|
|
// | | | |
|
|
// | |0 1| |
|
|
// 4 x--------x--------x--------x 8
|
|
// | | |
|
|
// | | |
|
|
// | | |
|
|
// | | |
|
|
// x--------x--------x
|
|
// 5 6 7
|
|
//
|
|
// The set of source points consists of the corner points {0,1,2,3} followed
|
|
// by the four sets of points {4,5,6}, {7,8}, {9,10,11} and {12,13,14} --
|
|
// each being the exterior subset of the points of the one-ring for the
|
|
// corresponding corner point.
|
|
//
|
|
// The 1-ring for each corner is made available for both assembling the points
|
|
// of the resulting Gregory patch and for defining correspondence between the
|
|
// original source of the vertices. All 1-rings are oriented counter-clockwise
|
|
// and begin with a vertex at the end of an edge. The 1-rings for boundaries
|
|
// begin/end with vertices at the ends of the leading/trailing edges. Interior
|
|
// 1-rings are ordered such that the patch-face vertices occur as specified.
|
|
//
|
|
|
|
//
|
|
// SourcePatch method to initialize other internal members once required
|
|
// members of all corners have been explicitly initialized. This deals with
|
|
// all of the awkward ways in which rings of vertices around each corner
|
|
// overlap in order to define the canonical ordering of vertices (and avoiding
|
|
// have the same vertex twice).
|
|
//
|
|
// Note: Considering passing Corner[4] to a constructor so that this is all
|
|
// dealt with in the constructor.
|
|
//
|
|
void
|
|
SourcePatch::Finalize() {
|
|
|
|
//
|
|
// Determine the sizes of the rings and the total number of points
|
|
// involved. In the process, identify which corners share ring points
|
|
// with their neighbors and accumulate maximal ring sizes and valence:
|
|
//
|
|
_maxValence = 0;
|
|
_maxRingSize = 0;
|
|
_numSourcePoints = 4;
|
|
|
|
for (int cIndex = 0; cIndex < 4; ++cIndex) {
|
|
//
|
|
// Need valence-2 information for neighbors as it affects sizing:
|
|
//
|
|
int cPrev = (cIndex + 3) & 0x3;
|
|
int cNext = (cIndex + 1) & 0x3;
|
|
|
|
bool prevIsVal2Interior = ((_corners[cPrev]._numFaces == 2) &&
|
|
!_corners[cPrev]._boundary);
|
|
bool thisIsVal2Interior = ((_corners[cIndex]._numFaces == 2) &&
|
|
!_corners[cIndex]._boundary);
|
|
bool nextIsVal2Interior = ((_corners[cNext]._numFaces == 2) &&
|
|
!_corners[cNext]._boundary);
|
|
|
|
_corners[cIndex]._val2Interior = thisIsVal2Interior;
|
|
_corners[cIndex]._val2Adjacent = prevIsVal2Interior || nextIsVal2Interior;
|
|
|
|
//
|
|
// General cases are >= 3-face interior and >= 2-face boundary:
|
|
//
|
|
Corner & corner = _corners[cIndex];
|
|
|
|
if ((corner._numFaces + corner._boundary) > 2) {
|
|
if (corner._boundary) {
|
|
corner._sharesWithPrev = (corner._patchFace != (corner._numFaces - 1));
|
|
corner._sharesWithNext = (corner._patchFace != 0);
|
|
} else if (corner._dart) {
|
|
corner._sharesWithPrev = !_corners[cPrev]._boundary;
|
|
corner._sharesWithNext = !_corners[cNext]._boundary;
|
|
} else {
|
|
corner._sharesWithPrev = true;
|
|
corner._sharesWithNext = true;
|
|
}
|
|
|
|
_ringSizes[cIndex] = corner._numFaces * 2 + corner._boundary;
|
|
_localRingSizes[cIndex] = _ringSizes[cIndex] - 3
|
|
- corner._sharesWithPrev - corner._sharesWithNext
|
|
- prevIsVal2Interior - nextIsVal2Interior;
|
|
} else {
|
|
corner._sharesWithPrev = false;
|
|
corner._sharesWithNext = false;
|
|
|
|
// Single-face boundary and valence-2 interior:
|
|
if (corner._numFaces == 1) {
|
|
_ringSizes[cIndex] = 3;
|
|
_localRingSizes[cIndex] = 0;
|
|
} else {
|
|
_ringSizes[cIndex] = 4;
|
|
_localRingSizes[cIndex] = 1;
|
|
}
|
|
}
|
|
_localRingOffsets[cIndex] = _numSourcePoints;
|
|
|
|
_maxValence = std::max(_maxValence, corner._numFaces + corner._boundary);
|
|
_maxRingSize = std::max(_maxRingSize, _ringSizes[cIndex]);
|
|
|
|
_numSourcePoints += _localRingSizes[cIndex];
|
|
}
|
|
}
|
|
|
|
int
|
|
SourcePatch::GetCornerRingPoints(int corner, int ringPoints[]) const {
|
|
|
|
int cNext = (corner + 1) & 0x3;
|
|
int cOpp = (corner + 2) & 0x3;
|
|
int cPrev = (corner + 3) & 0x3;
|
|
|
|
//
|
|
// Assemble the ring in a canonical ordering beginning with the points of
|
|
// the three other corners of the face followed by the local ring -- with
|
|
// any shared or compensating points (for valence-2 interior) preceding
|
|
// and following the points local to the ring.
|
|
//
|
|
int ringSize = 0;
|
|
|
|
ringPoints[ringSize++] = cNext;
|
|
ringPoints[ringSize++] = cOpp;
|
|
ringPoints[ringSize++] = cPrev;
|
|
|
|
if (_corners[cPrev]._val2Interior) {
|
|
ringPoints[ringSize++] = cOpp;
|
|
}
|
|
if (_corners[corner]._sharesWithPrev) {
|
|
ringPoints[ringSize++] = _localRingOffsets[cPrev] + _localRingSizes[cPrev] - 1;
|
|
}
|
|
|
|
for (int i = 0; i < _localRingSizes[corner]; ++i) {
|
|
ringPoints[ringSize++] = _localRingOffsets[corner] + i;
|
|
}
|
|
|
|
if (_corners[corner]._sharesWithNext) {
|
|
ringPoints[ringSize++] = _localRingOffsets[cNext];
|
|
}
|
|
if (_corners[cNext]._val2Interior) {
|
|
ringPoints[ringSize++] = cOpp;
|
|
}
|
|
assert(ringSize == _ringSizes[corner]);
|
|
|
|
// The assembled ordering matches the desired ordering if the patch-face
|
|
// is first, so rotate the assembled ring if that's not the case:
|
|
//
|
|
if (_corners[corner]._patchFace) {
|
|
int rotationOffset = ringSize - 2*_corners[corner]._patchFace;
|
|
std::rotate(ringPoints, ringPoints + rotationOffset, ringPoints + ringSize);
|
|
}
|
|
return ringSize;
|
|
}
|
|
|
|
} // end namespace Far
|
|
|
|
} // end namespace OPENSUBDIV_VERSION
|
|
} // end namespace OpenSubdiv
|