OpenSubdiv/examples/mtlViewer/mtlViewer.mm
barry 936aff0b8a Moved ArgOptions from examples/common to regression/common:
- updated CMakeLists to account for the moved files
    - updated references to argOptions.h in all examples
    - added method to ArgOptions to populate vector<ShapeDesc>
    - minor changes to ViewerArgUtils to use forward references
2019-12-14 12:06:55 -08:00

1495 lines
65 KiB
Plaintext

//
// Copyright 2015 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#import "mtlViewer.h"
#import <simd/simd.h>
#import <algorithm>
#import <cfloat>
#import <fstream>
#import <iostream>
#import <iterator>
#import <memory>
#import <sstream>
#import <string>
#import <vector>
#import <opensubdiv/far/error.h>
#import <opensubdiv/osd/mesh.h>
#import <opensubdiv/osd/cpuVertexBuffer.h>
#import <opensubdiv/osd/cpuEvaluator.h>
#import <opensubdiv/osd/cpuPatchTable.h>
#import <opensubdiv/osd/mtlLegacyGregoryPatchTable.h>
#import <opensubdiv/osd/mtlVertexBuffer.h>
#import <opensubdiv/osd/mtlMesh.h>
#import <opensubdiv/osd/mtlPatchTable.h>
#import <opensubdiv/osd/mtlComputeEvaluator.h>
#import <opensubdiv/osd/mtlPatchShaderSource.h>
#import "../../regression/common/far_utils.h"
#import "../../regression/common/arg_utils.h"
#import "../common/mtlUtils.h"
#import "../common/mtlControlMeshDisplay.h"
#import "../common/simple_math.h"
#import "../common/viewerArgsUtils.h"
#import "init_shapes.h"
#define VERTEX_BUFFER_INDEX 0
#define PATCH_INDICES_BUFFER_INDEX 1
#define CONTROL_INDICES_BUFFER_INDEX 2
#define OSD_PERPATCHVERTEX_BUFFER_INDEX 3
#define OSD_PERPATCHVERTEXBEZIER_BUFFER_INDEX OSD_PERPATCHVERTEX_BUFFER_INDEX
#define OSD_PERPATCHVERTEXGREGORY_BUFFER_INDEX OSD_PERPATCHVERTEX_BUFFER_INDEX
#define OSD_PATCHPARAM_BUFFER_INDEX 4
#define OSD_VALENCE_BUFFER_INDEX 6
#define OSD_QUADOFFSET_BUFFER_INDEX 7
#define OSD_PERPATCHTESSFACTORS_BUFFER_INDEX 8
#define PATCH_TESSFACTORS_INDEX 10
#define QUAD_TESSFACTORS_INDEX PATCH_TESSFACTORS_INDEX
#define TRIANGLE_TESSFACTORS_INDEX PATCH_TESSFACTORS_INDEX
#define OSD_PATCH_INDEX_BUFFER_INDEX 13
#define OSD_DRAWINDIRECT_BUFFER_INDEX 14
#define OSD_KERNELLIMIT_BUFFER_INDEX 15
#define OSD_FVAR_DATA_BUFFER_INDEX 16
#define OSD_FVAR_INDICES_BUFFER_INDEX 17
#define OSD_FVAR_PATCHPARAM_BUFFER_INDEX 18
#define OSD_FVAR_PATCH_ARRAYS_BUFFER_INDEX 19
#define FRAME_CONST_BUFFER_INDEX 11
#define INDICES_BUFFER_INDEX 2
#define FVAR_SINGLE_BUFFER 1
using namespace OpenSubdiv;
template <> Far::StencilTable const *
Osd::convertToCompatibleStencilTable<
Far::StencilTable,
Far::StencilTable,
Osd::MTLContext>(Far::StencilTable const *table,
Osd::MTLContext* /*context*/) {
// no need for conversion
// XXX: We don't want to even copy.
if (not table) return NULL;
return new Far::StencilTable(*table);
}
using CPUMeshType = Osd::Mesh<
Osd::CPUMTLVertexBuffer,
Far::StencilTable,
Osd::CpuEvaluator,
Osd::MTLPatchTable,
Osd::MTLContext>;
using mtlMeshType = Osd::Mesh<
Osd::CPUMTLVertexBuffer,
Osd::MTLStencilTable,
Osd::MTLComputeEvaluator,
Osd::MTLPatchTable,
Osd::MTLContext>;
using MTLMeshInterface = Osd::MTLMeshInterface;
struct alignas(16) PerFrameConstants
{
float ModelViewMatrix[16];
float ProjectionMatrix[16];
float ModelViewProjectionMatrix[16];
float ModelViewInverseMatrix[16];
float TessLevel;
};
struct alignas(16) Light {
simd::float4 position;
simd::float4 ambient;
simd::float4 diffuse;
simd::float4 specular;
};
static const char* shaderSource =
#include "mtlViewer.gen.h"
;
using Osd::MTLRingBuffer;
#define FRAME_LAG 3
template<typename DataType>
using PerFrameBuffer = MTLRingBuffer<DataType, FRAME_LAG>;
#define DISPATCHSLOTS 11 // XXXdyu-mtl
@implementation OSDRenderer {
MTLRingBuffer<Light, 1> _lightsBuffer;
PerFrameBuffer<PerFrameConstants> _frameConstantsBuffer;
PerFrameBuffer<uint8_t> _tessFactorsBuffer;
PerFrameBuffer<uint8_t> _perPatchVertexBuffer;
PerFrameBuffer<uint8_t> _perPatchTessFactorsBuffer;
PerFrameBuffer<MTLDrawPatchIndirectArguments> _drawIndirectCommandsBuffer;
PerFrameBuffer<unsigned> _patchIndexBuffers[DISPATCHSLOTS];
unsigned _tessFactorsOffsets[DISPATCHSLOTS];
unsigned _perPatchVertexOffsets[DISPATCHSLOTS];
unsigned _perPatchTessFactorsOffsets[DISPATCHSLOTS];
unsigned _threadgroupSizes[DISPATCHSLOTS];
id<MTLComputePipelineState> _computePipelines[DISPATCHSLOTS];
id<MTLRenderPipelineState> _renderPipelines[DISPATCHSLOTS];
id<MTLRenderPipelineState> _controlLineRenderPipelines[DISPATCHSLOTS];
id<MTLRenderPipelineState> _renderControlEdgesPipeline;
id<MTLDepthStencilState> _readWriteDepthStencilState;
id<MTLDepthStencilState> _readOnlyDepthStencilState;
id<MTLBuffer> _faceVaryingDataBuffer;
id<MTLBuffer> _faceVaryingIndicesBuffer;
id<MTLBuffer> _faceVaryingPatchParamBuffer;
Camera _cameraData;
Osd::MTLContext _context;
int _numVertexElements;
int _numVaryingElements;
int _numFaceVaryingElements;
int _numVertices;
int _frameCount;
int _animationFrames;
std::vector<float> _vertexData, _animatedVertices;
std::unique_ptr<MTLMeshInterface> _mesh;
std::unique_ptr<MTLControlMeshDisplay> _controlMesh;
std::unique_ptr<Osd::MTLLegacyGregoryPatchTable> _legacyGregoryPatchTable;
bool _legacyGregoryEnabled;
std::unique_ptr<Shape> _shape;
bool _needsRebuild;
NSString* _osdShaderSource;
simd::float3 _meshCenter;
float _meshSize;
NSMutableArray<NSString*>* _loadedModels;
int _patchCounts[DISPATCHSLOTS];
}
-(Camera*)camera {
return &_cameraData;
}
-(int *)patchCounts {
return _patchCounts;
}
struct PipelineConfig {
Far::PatchDescriptor::Type patchType;
bool useTessellation;
bool useTriangleTessellation;
bool useSingleCreasePatch;
bool useLegacyBuffers;
bool drawIndexed;
int numControlPointsPerPatchRefined;
int numControlPointsPerPatchToDraw;
int numControlPointsPerThreadRefined;
int numControlPointsPerThreadToDraw;
int numThreadsPerPatch;
};
-(PipelineConfig) _lookupPipelineConfig:(Far::PatchDescriptor::Type) patchType
useSingleCreasePatch:(bool) useSingleCreasePatch {
PipelineConfig config;
config.patchType = patchType;
config.useTessellation = false;
config.useTriangleTessellation = false;
config.useSingleCreasePatch = false;
config.useLegacyBuffers = false;
config.drawIndexed = false;
switch(config.patchType)
{
case Far::PatchDescriptor::QUADS:
config.numControlPointsPerPatchRefined = 4;
config.numControlPointsPerPatchToDraw = 4;
config.numControlPointsPerThreadRefined = 4;
config.numControlPointsPerThreadToDraw = 4;
config.numThreadsPerPatch = 1;
break;
case Far::PatchDescriptor::TRIANGLES:
config.numControlPointsPerPatchRefined = 3;
config.numControlPointsPerPatchToDraw = 3;
config.numControlPointsPerThreadRefined = 3;
config.numControlPointsPerThreadToDraw = 3;
config.numThreadsPerPatch = 1;
break;
case Far::PatchDescriptor::LOOP:
config.useTessellation = true;
config.useTriangleTessellation = true;
config.numControlPointsPerPatchRefined = 12;
config.numControlPointsPerPatchToDraw = 15;
config.numControlPointsPerThreadRefined = 3;
config.numControlPointsPerThreadToDraw = 4;
config.numThreadsPerPatch = 4;
break;
case Far::PatchDescriptor::REGULAR:
config.useTessellation = true;
config.useSingleCreasePatch = useSingleCreasePatch;
config.numControlPointsPerPatchRefined = 16;
config.numControlPointsPerPatchToDraw = 16;
config.numControlPointsPerThreadRefined = 4;
config.numControlPointsPerThreadToDraw = 4;
config.numThreadsPerPatch = 4;
break;
case Far::PatchDescriptor::GREGORY:
config.useTessellation = true;
config.useLegacyBuffers = true;
config.numControlPointsPerPatchRefined = 4;
config.numControlPointsPerPatchToDraw = 4;
config.numControlPointsPerThreadRefined = 1;
config.numControlPointsPerThreadToDraw = 5;
config.numThreadsPerPatch = 4;
break;
case Far::PatchDescriptor::GREGORY_BOUNDARY:
config.useTessellation = true;
config.useLegacyBuffers = true;
config.numControlPointsPerPatchRefined = 4;
config.numControlPointsPerPatchToDraw = 4;
config.numControlPointsPerThreadRefined = 1;
config.numControlPointsPerThreadToDraw = 5;
config.numThreadsPerPatch = 4;
break;
case Far::PatchDescriptor::GREGORY_BASIS:
config.useTessellation = true;
config.drawIndexed = true;
config.numControlPointsPerPatchRefined = 20;
config.numControlPointsPerPatchToDraw = 20;
config.numControlPointsPerThreadRefined = 5;
config.numControlPointsPerThreadToDraw = 5;
config.numThreadsPerPatch = 4;
break;
case Far::PatchDescriptor::GREGORY_TRIANGLE:
config.useTessellation = true;
config.useTriangleTessellation = true;
config.drawIndexed = true;
config.numControlPointsPerPatchRefined = 18;
config.numControlPointsPerPatchToDraw = 18;
config.numControlPointsPerThreadRefined = 5;
config.numControlPointsPerThreadToDraw = 5;
config.numThreadsPerPatch = 4;
break;
default:
assert("Unsupported patch type" && 0); break;
}
return config;
}
-(void)_processArgs {
NSEnumerator *argsArray =
[[[NSProcessInfo processInfo] arguments] objectEnumerator];
std::vector<char *> argsVector;
for (id arg in argsArray) {
argsVector.push_back((char *)[arg UTF8String]);
}
ArgOptions args;
args.Parse(argsVector.size(), argsVector.data());
// Parse remaining args
const std::vector<const char *> &rargs = args.GetRemainingArgs();
for (size_t i = 0; i < rargs.size(); ++i) {
if (!strcmp(rargs[i], "-lg")) {
self.legacyGregoryEnabled = true;
} else {
args.PrintUnrecognizedArgWarning(rargs[i]);
}
}
self.yup = args.GetYUp();
self.useAdaptive = args.GetAdaptive();
self.refinementLevel = args.GetLevel();
ViewerArgsUtils::PopulateShapes(args, &g_defaultShapes);
}
-(instancetype)initWithDelegate:(id<OSDRendererDelegate>)delegate {
self = [super init];
if (self) {
self.useSmoothCornerPatch = true;
self.useSingleCreasePatch = true;
self.useInfinitelySharpPatch = true;
self.useStageIn = true;
self.endCapMode = kEndCapGregoryBasis;
self.useScreenspaceTessellation = false;
self.useFractionalTessellation = false;
self.usePatchClipCulling = false;
self.usePatchIndexBuffer = false;
self.usePatchBackfaceCulling = false;
self.usePrimitiveBackfaceCulling = false;
self.useAdaptive = true;
self.yup = false;
self.kernelType = kMetal;
self.refinementLevel = 2;
self.tessellationLevel = 1;
self.shadingMode = kShadingPatchType;
self.displayStyle = kDisplayStyleWireOnShaded;
self.legacyGregoryEnabled = false;
[self _processArgs];
_frameCount = 0;
_animationFrames = 0;
_delegate = delegate;
_context.device = [delegate deviceFor:self];
_context.commandQueue = [delegate commandQueueFor:self];
_osdShaderSource = @(shaderSource);
_needsRebuild = true;
[self _initializeBuffers];
[self _initializeCamera];
[self _initializeLights];
[self _initializeModels];
}
return self;
}
-(id<MTLRenderCommandEncoder>)drawFrame:(id<MTLCommandBuffer>)commandBuffer {
if(_needsRebuild) {
[self _rebuildState];
}
if(!_freeze) {
if(_animateVertices) {
_animatedVertices.resize(_vertexData.size());
auto p = _vertexData.data();
auto n = _animatedVertices.data();
int numElements = _numVertexElements + _numVaryingElements;
float r = sin(_animationFrames*0.01f) * _animateVertices;
for (int i = 0; i < _numVertices; ++i) {
float ct = cos(p[2] * r);
float st = sin(p[2] * r);
n[0] = p[0]*ct + p[1]*st;
n[1] = -p[0]*st + p[1]*ct;
n[2] = p[2];
for (int j = 0; j < _numVaryingElements; ++j) {
n[3 + j] = p[3 + j];
}
p += numElements;
n += numElements;
}
_mesh->UpdateVertexBuffer(_animatedVertices.data(), 0, _numVertices);
_animationFrames++;
}
_mesh->Refine();
_mesh->Synchronize();
}
[self _updateState];
if (_useAdaptive) {
auto computeEncoder = [commandBuffer computeCommandEncoder];
[self _computeTessFactors:computeEncoder];
[computeEncoder endEncoding];
}
auto renderEncoder = [commandBuffer renderCommandEncoderWithDescriptor:[_delegate renderPassDescriptorFor: self]];
if (_usePrimitiveBackfaceCulling) {
[renderEncoder setCullMode:MTLCullModeBack];
} else {
[renderEncoder setCullMode:MTLCullModeNone];
}
[self _renderMesh:renderEncoder];
_lightsBuffer.next();
_frameConstantsBuffer.next();
_tessFactorsBuffer.next();
_perPatchVertexBuffer.next();
_perPatchTessFactorsBuffer.next();
for (int i=0; i<DISPATCHSLOTS; ++i) {
_patchIndexBuffers[i].next();
}
_drawIndirectCommandsBuffer.next();
_frameCount++;
return renderEncoder;
}
-(void)fitFrame {
_cameraData.dollyDistance = _meshSize;
}
-(void)_renderMesh:(id<MTLRenderCommandEncoder>)renderCommandEncoder {
auto patchVertexBuffer = _mesh->BindVertexBuffer();
auto patchIndexBuffer = _mesh->GetPatchTable()->GetPatchIndexBuffer();
[renderCommandEncoder setVertexBuffer:patchVertexBuffer offset:0 atIndex:VERTEX_BUFFER_INDEX];
[renderCommandEncoder setVertexBuffer:patchIndexBuffer offset:0 atIndex:INDICES_BUFFER_INDEX];
[renderCommandEncoder setVertexBuffer:_frameConstantsBuffer offset:0 atIndex:FRAME_CONST_BUFFER_INDEX];
[renderCommandEncoder setFragmentBuffer:_lightsBuffer offset:0 atIndex:0];
if (_numFaceVaryingElements > 0) {
#if FVAR_SINGLE_BUFFER
int faceVaryingDataBufferOffset = _useAdaptive ? 0 : _shape->uvs.size() * sizeof(float);
[renderCommandEncoder setVertexBuffer:_faceVaryingDataBuffer offset:faceVaryingDataBufferOffset atIndex:OSD_FVAR_DATA_BUFFER_INDEX];
#else
[renderCommandEncoder setVertexBuffer:_faceVaryingDataBuffer offset:0 atIndex:OSD_FVAR_DATA_BUFFER_INDEX];
#endif
[renderCommandEncoder setVertexBuffer:_faceVaryingIndicesBuffer offset:0 atIndex:OSD_FVAR_INDICES_BUFFER_INDEX];
auto fvarPatchArrays = _mesh->GetPatchTable()->GetFVarPatchArrays();
[renderCommandEncoder setVertexBytes:fvarPatchArrays.data()
length:fvarPatchArrays.size() *
sizeof(fvarPatchArrays[0])
atIndex:OSD_FVAR_PATCH_ARRAYS_BUFFER_INDEX];
}
if (_useAdaptive)
{
[renderCommandEncoder setVertexBuffer:_perPatchTessFactorsBuffer offset:0 atIndex:OSD_PERPATCHTESSFACTORS_BUFFER_INDEX];
[renderCommandEncoder setVertexBuffer:_perPatchVertexBuffer offset:0 atIndex:OSD_PERPATCHVERTEX_BUFFER_INDEX];
[renderCommandEncoder setVertexBuffer:_mesh->GetPatchTable()->GetPatchParamBuffer() offset:0 atIndex:OSD_PATCHPARAM_BUFFER_INDEX];
if (_numFaceVaryingElements > 0) {
[renderCommandEncoder setVertexBuffer:_faceVaryingPatchParamBuffer
offset:0
atIndex:OSD_FVAR_PATCHPARAM_BUFFER_INDEX];
}
}
if(_displayStyle == kDisplayStyleWire)
[renderCommandEncoder setTriangleFillMode:MTLTriangleFillModeLines];
else
[renderCommandEncoder setTriangleFillMode:MTLTriangleFillModeFill];
std::fill_n(_patchCounts, DISPATCHSLOTS, 0);
for (auto& patch : _mesh->GetPatchTable()->GetPatchArrays())
{
auto patchType = patch.desc.GetType();
PipelineConfig pipelineConfig = [self _lookupPipelineConfig:patchType useSingleCreasePatch:_useSingleCreasePatch];
_patchCounts[patchType] = patch.GetNumPatches();
[renderCommandEncoder setVertexBufferOffset:patch.indexBase * sizeof(unsigned) atIndex:INDICES_BUFFER_INDEX];
simd::float4 shade{.0f,0.0f,0.0f,1.0f};
[renderCommandEncoder setFragmentBytes:&shade length:sizeof(shade) atIndex:2];
[renderCommandEncoder setDepthBias:0 slopeScale:1.0 clamp:0];
[renderCommandEncoder setDepthStencilState:_readWriteDepthStencilState];
[renderCommandEncoder setRenderPipelineState:_renderPipelines[patchType]];
[renderCommandEncoder setFrontFacingWinding:MTLWindingCounterClockwise];
if (pipelineConfig.useTessellation) {
[renderCommandEncoder setVertexBufferOffset:patch.primitiveIdBase * sizeof(int) * 3 atIndex:OSD_PATCHPARAM_BUFFER_INDEX];
[renderCommandEncoder setTessellationFactorBuffer:_tessFactorsBuffer offset:_tessFactorsOffsets[patchType] instanceStride:0];
[renderCommandEncoder setVertexBufferOffset:_perPatchTessFactorsOffsets[patchType] atIndex:OSD_PERPATCHTESSFACTORS_BUFFER_INDEX];
if (!pipelineConfig.drawIndexed) {
[renderCommandEncoder setVertexBufferOffset:_perPatchVertexOffsets[patchType] atIndex:OSD_PERPATCHVERTEX_BUFFER_INDEX];
}
if(pipelineConfig.useLegacyBuffers) {
[renderCommandEncoder setVertexBuffer:_legacyGregoryPatchTable->GetQuadOffsetsBuffer() offset:_legacyGregoryPatchTable->GetQuadOffsetsBase(patchType) * sizeof(int) atIndex:OSD_QUADOFFSET_BUFFER_INDEX];
[renderCommandEncoder setVertexBuffer:_legacyGregoryPatchTable->GetVertexValenceBuffer() offset:0 atIndex:OSD_VALENCE_BUFFER_INDEX];
}
if(_numFaceVaryingElements) {;
auto pfvarav = _mesh->GetPatchTable()->GetFVarPatchArrays();
auto& fvarPatch = pfvarav[0]; // XXXdyu-mtl
assert(sizeof(Osd::PatchParam) == sizeof(int) * 3);
[renderCommandEncoder setVertexBufferOffset:(fvarPatch.primitiveIdBase+patch.primitiveIdBase) * sizeof(int) * 3 atIndex:OSD_FVAR_PATCHPARAM_BUFFER_INDEX];
[renderCommandEncoder setVertexBufferOffset:(fvarPatch.indexBase+(patch.primitiveIdBase*fvarPatch.desc.GetNumControlVertices())) * sizeof(unsigned) atIndex:OSD_FVAR_INDICES_BUFFER_INDEX];
}
if (_usePatchIndexBuffer) {
if (pipelineConfig.drawIndexed) {
[renderCommandEncoder drawIndexedPatches:pipelineConfig.numControlPointsPerPatchToDraw
patchStart:0 patchCount:patch.GetNumPatches()
patchIndexBuffer:_patchIndexBuffers[patchType] patchIndexBufferOffset:0
controlPointIndexBuffer:patchIndexBuffer controlPointIndexBufferOffset:patch.indexBase * sizeof(unsigned)
instanceCount:1 baseInstance:0];
} else {
[renderCommandEncoder drawPatches:pipelineConfig.numControlPointsPerPatchToDraw
patchIndexBuffer:_patchIndexBuffers[patchType] patchIndexBufferOffset:0
indirectBuffer:_drawIndirectCommandsBuffer indirectBufferOffset: sizeof(MTLDrawPatchIndirectArguments) * patchType];
}
} else {
if (pipelineConfig.drawIndexed) {
[renderCommandEncoder drawIndexedPatches:pipelineConfig.numControlPointsPerPatchToDraw
patchStart:0 patchCount:patch.GetNumPatches()
patchIndexBuffer:nil patchIndexBufferOffset:0
controlPointIndexBuffer:patchIndexBuffer controlPointIndexBufferOffset:patch.indexBase * sizeof(unsigned)
instanceCount:1 baseInstance:0];
} else {
[renderCommandEncoder drawPatches:pipelineConfig.numControlPointsPerPatchToDraw
patchStart:0 patchCount:patch.GetNumPatches()
patchIndexBuffer:nil patchIndexBufferOffset:0 instanceCount:1 baseInstance:0];
}
}
if(_displayStyle == kDisplayStyleWireOnShaded)
{
simd::float4 shade = {1,1,1,1};
[renderCommandEncoder setFragmentBytes:&shade length:sizeof(shade) atIndex:2];
[renderCommandEncoder setTriangleFillMode:MTLTriangleFillModeLines];
[renderCommandEncoder setDepthBias:-5 slopeScale:-1.0 clamp:-100.0];
if (_usePatchIndexBuffer) {
if (pipelineConfig.drawIndexed) {
[renderCommandEncoder drawIndexedPatches:pipelineConfig.numControlPointsPerPatchToDraw
patchStart:0 patchCount:patch.GetNumPatches()
patchIndexBuffer:_patchIndexBuffers[patchType] patchIndexBufferOffset:0
controlPointIndexBuffer:patchIndexBuffer controlPointIndexBufferOffset:patch.indexBase * sizeof(unsigned)
instanceCount:1 baseInstance:0];
} else {
[renderCommandEncoder drawPatches:pipelineConfig.numControlPointsPerPatchToDraw
patchIndexBuffer:_patchIndexBuffers[patchType] patchIndexBufferOffset:0
indirectBuffer:_drawIndirectCommandsBuffer indirectBufferOffset: sizeof(MTLDrawPatchIndirectArguments) * patchType];
}
} else {
if (pipelineConfig.drawIndexed) {
[renderCommandEncoder drawIndexedPatches:pipelineConfig.numControlPointsPerPatchToDraw
patchStart:0 patchCount:patch.GetNumPatches()
patchIndexBuffer:nil patchIndexBufferOffset:0
controlPointIndexBuffer:patchIndexBuffer controlPointIndexBufferOffset:patch.indexBase * sizeof(unsigned)
instanceCount:1 baseInstance:0];
} else {
[renderCommandEncoder drawPatches:pipelineConfig.numControlPointsPerPatchToDraw
patchStart:0 patchCount:patch.GetNumPatches()
patchIndexBuffer:nil patchIndexBufferOffset:0 instanceCount:1 baseInstance:0];
}
}
[renderCommandEncoder setTriangleFillMode:MTLTriangleFillModeFill];
}
} else {
if (patchType == Far::PatchDescriptor::QUADS) {
[renderCommandEncoder drawPrimitives:MTLPrimitiveTypeTriangle vertexStart:0 vertexCount:patch.GetNumPatches() * 6];
if(_displayStyle == kDisplayStyleWireOnShaded)
{
simd::float4 shade = {1,1,1,1};
[renderCommandEncoder setFragmentBytes:&shade length:sizeof(shade) atIndex:2];
[renderCommandEncoder setTriangleFillMode:MTLTriangleFillModeLines];
[renderCommandEncoder setDepthBias:-5 slopeScale:-1.0 clamp:-100.0];
[renderCommandEncoder drawPrimitives:MTLPrimitiveTypeTriangle vertexStart:0 vertexCount:patch.GetNumPatches() * 6];
[renderCommandEncoder setTriangleFillMode:MTLTriangleFillModeFill];
}
} else if (patchType == Far::PatchDescriptor::TRIANGLES) {
[renderCommandEncoder drawPrimitives:MTLPrimitiveTypeTriangle vertexStart:0 vertexCount:patch.GetNumPatches() * 3];
if(_displayStyle == kDisplayStyleWireOnShaded)
{
simd::float4 shade = {1,1,1,1};
[renderCommandEncoder setFragmentBytes:&shade length:sizeof(shade) atIndex:2];
[renderCommandEncoder setTriangleFillMode:MTLTriangleFillModeLines];
[renderCommandEncoder setDepthBias:-5 slopeScale:-1.0 clamp:-100.0];
[renderCommandEncoder drawPrimitives:MTLPrimitiveTypeTriangle vertexStart:0 vertexCount:patch.GetNumPatches() * 3];
[renderCommandEncoder setTriangleFillMode:MTLTriangleFillModeFill];
}
}
}
if(_displayControlMeshEdges)
{
if(_displayControlMeshEdges && _controlLineRenderPipelines[patchType])
{
[renderCommandEncoder setRenderPipelineState:_controlLineRenderPipelines[patchType]];
unsigned primPerPatch = 0;
switch(patchType)
{
case Far::PatchDescriptor::REGULAR:
primPerPatch = 48;
break;
case Far::PatchDescriptor::GREGORY:
case Far::PatchDescriptor::GREGORY_BOUNDARY:
case Far::PatchDescriptor::GREGORY_BASIS:
primPerPatch = 56;
break;
}
[renderCommandEncoder drawPrimitives:MTLPrimitiveTypeLine vertexStart:0 vertexCount:patch.GetNumPatches() * primPerPatch];
}
}
}
if(_displayControlMeshEdges)
{
[renderCommandEncoder setDepthStencilState:_readOnlyDepthStencilState];
_controlMesh->Draw(renderCommandEncoder, _mesh->BindVertexBuffer(), _frameConstantsBuffer->ModelViewProjectionMatrix);
}
}
-(void)_computeTessFactors:(id<MTLComputeCommandEncoder>)computeCommandEncoder {
[computeCommandEncoder setBuffer:_mesh->BindVertexBuffer() offset:0 atIndex:VERTEX_BUFFER_INDEX];
[computeCommandEncoder setBuffer:_mesh->GetPatchTable()->GetPatchIndexBuffer() offset:0 atIndex:CONTROL_INDICES_BUFFER_INDEX];
[computeCommandEncoder setBuffer:_mesh->GetPatchTable()->GetPatchParamBuffer() offset:0 atIndex:OSD_PATCHPARAM_BUFFER_INDEX];
[computeCommandEncoder setBuffer:_frameConstantsBuffer offset:0 atIndex:FRAME_CONST_BUFFER_INDEX];
for (auto& patch : _mesh->GetPatchTable()->GetPatchArrays())
{
auto patchType = patch.desc.GetType();
PipelineConfig pipelineConfig = [self _lookupPipelineConfig:patchType useSingleCreasePatch:_useSingleCreasePatch];
// Don't compute tess factors when not using tessellation
if (!pipelineConfig.useTessellation) {
continue;
}
[computeCommandEncoder setComputePipelineState:_computePipelines[patchType]];
[computeCommandEncoder setBufferOffset:patch.primitiveIdBase * sizeof(int) * 3 atIndex:OSD_PATCHPARAM_BUFFER_INDEX];
[computeCommandEncoder setBufferOffset:patch.indexBase * sizeof(unsigned) atIndex:CONTROL_INDICES_BUFFER_INDEX];
if (pipelineConfig.useTessellation) {
[computeCommandEncoder setBuffer:_tessFactorsBuffer offset:_tessFactorsOffsets[patchType] atIndex:PATCH_TESSFACTORS_INDEX];
[computeCommandEncoder setBuffer:_perPatchTessFactorsBuffer offset:_perPatchTessFactorsOffsets[patchType] atIndex:OSD_PERPATCHTESSFACTORS_BUFFER_INDEX];
[computeCommandEncoder setBuffer:_perPatchVertexBuffer offset:_perPatchVertexOffsets[patchType] atIndex:OSD_PERPATCHVERTEX_BUFFER_INDEX];
}
if (pipelineConfig.useLegacyBuffers) {
[computeCommandEncoder setBuffer:_legacyGregoryPatchTable->GetQuadOffsetsBuffer() offset:_legacyGregoryPatchTable->GetQuadOffsetsBase(patchType) * sizeof(int) atIndex:OSD_QUADOFFSET_BUFFER_INDEX];
[computeCommandEncoder setBuffer:_legacyGregoryPatchTable->GetVertexValenceBuffer() offset:0 atIndex:OSD_VALENCE_BUFFER_INDEX];
}
if (_usePatchIndexBuffer) {
[computeCommandEncoder setBuffer:_patchIndexBuffers[patchType] offset:0 atIndex:OSD_PATCH_INDEX_BUFFER_INDEX];
[computeCommandEncoder setBuffer:_drawIndirectCommandsBuffer offset:sizeof(MTLDrawPatchIndirectArguments) * patchType atIndex:OSD_DRAWINDIRECT_BUFFER_INDEX];
}
int numTotalControlPoints = patch.GetNumPatches() * pipelineConfig.numControlPointsPerPatchRefined;
int numTotalControlPointThreads = std::max<int>(1, numTotalControlPoints / pipelineConfig.numControlPointsPerThreadRefined);
int numThreadsPerThreadgroup = _threadgroupSizes[patchType];
int numTotalThreadgroups = std::max<int>(1, (numTotalControlPointThreads+numThreadsPerThreadgroup-1) / numThreadsPerThreadgroup);
unsigned kernelExecutionLimit = patch.GetNumPatches() * pipelineConfig.numControlPointsPerPatchToDraw;
[computeCommandEncoder setBytes:&kernelExecutionLimit length:sizeof(kernelExecutionLimit) atIndex:OSD_KERNELLIMIT_BUFFER_INDEX];
[computeCommandEncoder dispatchThreadgroups:MTLSizeMake(numTotalThreadgroups,1, 1)
threadsPerThreadgroup:MTLSizeMake(numThreadsPerThreadgroup, 1, 1)];
}
}
-(void)_rebuildState {
[self _rebuildModel];
[self _rebuildBuffers];
[self _rebuildPipelines];
_needsRebuild = false;
}
-(void)_rebuildModel {
auto shapeDesc = &g_defaultShapes[[_loadedModels indexOfObject:_currentModel]];
_shape.reset(Shape::parseObj(shapeDesc->data.c_str(), shapeDesc->scheme));
// create Far mesh (topology)
Sdc::SchemeType sdctype = GetSdcType(*_shape);
Sdc::Options sdcoptions = GetSdcOptions(*_shape);
sdcoptions.SetFVarLinearInterpolation((Sdc::Options::FVarLinearInterpolation)_fVarLinearInterp);
std::unique_ptr<Far::TopologyRefiner> refiner;
refiner.reset(Far::TopologyRefinerFactory<Shape>::Create(*_shape, Far::TopologyRefinerFactory<Shape>::Options(sdctype, sdcoptions)));
// save coarse topology (used for coarse mesh drawing)
Far::TopologyLevel const & refBaseLevel = refiner->GetLevel(0);
_numVertices = refBaseLevel.GetNumVertices();
Osd::MeshBitset bits;
bits.set(Osd::MeshAdaptive, _useAdaptive);
bits.set(Osd::MeshUseSmoothCornerPatch, _useSmoothCornerPatch);
bits.set(Osd::MeshUseSingleCreasePatch, _useSingleCreasePatch);
bits.set(Osd::MeshUseInfSharpPatch, _useInfinitelySharpPatch);
bits.set(Osd::MeshEndCapBilinearBasis, _endCapMode == kEndCapBilinearBasis);
bits.set(Osd::MeshEndCapBSplineBasis, _endCapMode == kEndCapBSplineBasis);
bits.set(Osd::MeshEndCapGregoryBasis, _endCapMode == kEndCapGregoryBasis);
bits.set(Osd::MeshEndCapLegacyGregory, _endCapMode == kEndCapLegacyGregory);
int level = _refinementLevel;
_numVertexElements = 3;
_numVaryingElements = 0;
bits.set(Osd::MeshInterleaveVarying, _numVaryingElements > 0);
_numFaceVaryingElements = (_shadingMode == kShadingFaceVaryingColor && _shape->HasUV()) ? 2 : 0;
if (_numFaceVaryingElements > 0) {;
bits.set(Osd::MeshFVarData, _numFaceVaryingElements > 0);
bits.set(Osd::MeshFVarAdaptive, _useAdaptive);
}
int numElements = _numVertexElements + _numVaryingElements;
if(_kernelType == kCPU)
{
_mesh.reset(new CPUMeshType(refiner.get(),
_numVertexElements,
_numVaryingElements,
level, bits, nullptr, &_context));
}
else
{
_mesh.reset(new mtlMeshType(refiner.get(),
_numVertexElements,
_numVaryingElements,
level, bits, nullptr, &_context));
}
MTLRenderPipelineDescriptor* desc = [MTLRenderPipelineDescriptor new];
[_delegate setupRenderPipelineState:desc for:self];
const auto vertexDescriptor = desc.vertexDescriptor;
vertexDescriptor.layouts[0].stride = sizeof(float) * numElements;
vertexDescriptor.layouts[0].stepFunction = MTLVertexStepFunctionPerVertex;
vertexDescriptor.layouts[0].stepRate = 1;
vertexDescriptor.attributes[0].format = MTLVertexFormatFloat3;
vertexDescriptor.attributes[0].offset = 0;
vertexDescriptor.attributes[0].bufferIndex = 0;
_controlMesh.reset(new MTLControlMeshDisplay(_context.device, desc));
_controlMesh->SetTopology(refBaseLevel);
_controlMesh->SetEdgesDisplay(true);
_controlMesh->SetVerticesDisplay(false);
_legacyGregoryPatchTable.reset();
if(_endCapMode == kEndCapLegacyGregory)
{
_legacyGregoryPatchTable.reset(Osd::MTLLegacyGregoryPatchTable::Create(_mesh->GetFarPatchTable(),
&_context));
}
_vertexData.resize(refBaseLevel.GetNumVertices() * numElements);
for(int i = 0; i < refBaseLevel.GetNumVertices(); ++i)
{
_vertexData[i * numElements + 0] = _shape->verts[i * 3 + 0];
_vertexData[i * numElements + 1] = _shape->verts[i * 3 + 1];
_vertexData[i * numElements + 2] = _shape->verts[i * 3 + 2];
}
// compute model bounding
float min[3] = { FLT_MAX, FLT_MAX, FLT_MAX};
float max[3] = {-FLT_MAX,-FLT_MAX,-FLT_MAX};
for (int i = 0; i < refBaseLevel.GetNumVertices(); ++i) {
for (int j = 0; j < 3; ++j) {
float v = _vertexData[i*numElements+j];
min[j] = std::min(min[j], v);
max[j] = std::max(max[j], v);
}
}
_meshSize = 0.0f;
for (int j = 0; j < 3; ++j) {
_meshCenter[j] = (min[j] + max[j]) * 0.5f;
_meshSize += (max[j]-min[j])*(max[j]-min[j]);
}
_meshSize = sqrt(_meshSize);
_mesh->UpdateVertexBuffer(_vertexData.data(), 0, refBaseLevel.GetNumVertices());
_mesh->Refine();
_mesh->Synchronize();
if(_numFaceVaryingElements > 0)
{
Far::StencilTableFactory::Options stencilTableFactoryOptions;
stencilTableFactoryOptions.interpolationMode = Far::StencilTableFactory::INTERPOLATE_FACE_VARYING;
stencilTableFactoryOptions.generateOffsets = true;
stencilTableFactoryOptions.generateControlVerts = false;
stencilTableFactoryOptions.generateIntermediateLevels = _useAdaptive;
stencilTableFactoryOptions.factorizeIntermediateLevels = true;
stencilTableFactoryOptions.maxLevel = level;
stencilTableFactoryOptions.fvarChannel = 0;
Far::PatchTable const *farPatchTable = _mesh->GetFarPatchTable();
Far::StencilTable const *stencilTable = Far::StencilTableFactory::Create(*refiner, stencilTableFactoryOptions);
Far::StencilTable const *stencilTableWithLocalPoints =
Far::StencilTableFactory::AppendLocalPointStencilTableFaceVarying(
*refiner, stencilTable, farPatchTable->GetLocalPointFaceVaryingStencilTable(), 0);
if(stencilTableWithLocalPoints) {
delete stencilTable;
stencilTable = stencilTableWithLocalPoints;
}
Osd::MTLStencilTable mtlStencilTable = Osd::MTLStencilTable(stencilTable, &_context);
if (_numFaceVaryingElements > 0) {
uint32_t fvarWidth = _numFaceVaryingElements;
uint32_t coarseFVarValuesCount = _shape->uvs.size() / fvarWidth;
uint32_t finalFVarValuesCount = stencilTable->GetNumStencils();
#if FVAR_SINGLE_BUFFER
Osd::CPUMTLVertexBuffer *fvarDataBuffer = Osd::CPUMTLVertexBuffer::Create(fvarWidth, coarseFVarValuesCount + finalFVarValuesCount, &_context);
fvarDataBuffer->UpdateData(_shape->uvs.data(), 0, coarseFVarValuesCount, &_context);
_faceVaryingDataBuffer = fvarDataBuffer->BindMTLBuffer(&_context);
_faceVaryingDataBuffer.label = @"OSD FVar data";
Osd::BufferDescriptor srcDesc(0, fvarWidth, fvarWidth);
Osd::BufferDescriptor dstDesc(coarseFVarValuesCount * fvarWidth, fvarWidth, fvarWidth);
Osd::MTLComputeEvaluator::EvalStencils(fvarDataBuffer, srcDesc,
fvarDataBuffer, dstDesc,
&mtlStencilTable,
nullptr,
&_context);
delete fvarDataBuffer;
#else
Osd::CPUMTLVertexBuffer *coarseFVarDataBuffer = Osd::CPUMTLVertexBuffer::Create(fvarWidth, coarseFVarValuesCount, &_context);
coarseFVarDataBuffer->UpdateData(_shape->uvs.data(), 0, coarseFVarValuesCount, &_context);
id<MTLBuffer> mtlCoarseFVarDataBuffer = coarseFVarDataBuffer->BindMTLBuffer(&_context);
mtlCoarseFVarDataBuffer.label = @"OSD FVar coarse data";
Osd::CPUMTLVertexBuffer *refinedFVarDataBuffer = Osd::CPUMTLVertexBuffer::Create(fvarWidth, finalFVarValuesCount, &_context);
_faceVaryingDataBuffer = refinedFVarDataBuffer->BindMTLBuffer(&_context);
_faceVaryingDataBuffer.label = @"OSD FVar data";
Osd::BufferDescriptor coarseBufferDescriptor(0, fvarWidth, fvarWidth);
Osd::BufferDescriptor refinedBufferDescriptor(0, fvarWidth, fvarWidth);
Osd::MTLComputeEvaluator::EvalStencils(coarseFVarDataBuffer, coarseBufferDescriptor,
refinedFVarDataBuffer, refinedBufferDescriptor,
&mtlStencilTable,
nullptr,
&_context);
delete refinedFVarDataBuffer;
delete coarseFVarDataBuffer;
#endif
Osd::MTLPatchTable const *patchTable = _mesh->GetPatchTable();
_faceVaryingIndicesBuffer = patchTable->GetFVarPatchIndexBuffer(0);
_faceVaryingIndicesBuffer.label = @"OSD FVar indices";
_faceVaryingPatchParamBuffer = patchTable->GetFVarPatchParamBuffer(0);
_faceVaryingPatchParamBuffer.label = @"OSD FVar patch params";
}
delete stencilTable;
}
refiner.release();
}
-(void)_updateState {
[self _updateCamera];
auto pData = _frameConstantsBuffer.data();
pData->TessLevel = static_cast<float>(1 << _tessellationLevel);
if (_useAdaptive && _usePatchIndexBuffer)
{
for (auto& patch : _mesh->GetPatchTable()->GetPatchArrays())
{
auto patchType = patch.desc.GetType();
MTLDrawPatchIndirectArguments* drawCommand = _drawIndirectCommandsBuffer.data();
drawCommand[patchType].baseInstance = 0;
drawCommand[patchType].instanceCount = 1;
drawCommand[patchType].patchCount = 0;
drawCommand[patchType].patchStart = 0;
}
_drawIndirectCommandsBuffer.markModified();
}
_frameConstantsBuffer.markModified();
}
-(void)_rebuildBuffers {
auto totalPatches = 0;
auto totalPerPatchVertexSize = 0;
auto totalPerPatchTessFactorsSize = 0;
auto totalTessFactorsSize = 0;
if (_usePatchIndexBuffer)
{
_drawIndirectCommandsBuffer.alloc(_context.device, DISPATCHSLOTS, @"draw patch indirect commands");
}
if (_useAdaptive)
{
for (auto& patch : _mesh->GetPatchTable()->GetPatchArrays())
{
auto patchType = patch.desc.GetType();
PipelineConfig pipelineConfig = [self _lookupPipelineConfig:patchType useSingleCreasePatch:_useSingleCreasePatch];
if (pipelineConfig.useTessellation) {
float elementFloats = 3;
if (patchType == Far::PatchDescriptor::GREGORY || patchType == Far::PatchDescriptor::GREGORY_BOUNDARY) { // XXXdyu-mtl
elementFloats *= 5;
}
if (pipelineConfig.useSingleCreasePatch) {
elementFloats += 6;
}
if (_usePatchIndexBuffer)
{
_patchIndexBuffers[patchType].alloc(_context.device, patch.GetNumPatches(), @"patch indices", MTLResourceStorageModePrivate);
}
_perPatchTessFactorsOffsets[patchType] = totalPerPatchTessFactorsSize;
_perPatchVertexOffsets[patchType] = totalPerPatchVertexSize;
_tessFactorsOffsets[patchType] = totalTessFactorsSize;
totalPerPatchTessFactorsSize += 2 * 4 * sizeof(float) * patch.GetNumPatches();
totalPerPatchVertexSize += elementFloats * sizeof(float) * patch.GetNumPatches() * pipelineConfig.numControlPointsPerPatchToDraw;
totalTessFactorsSize += patch.GetNumPatches() * (pipelineConfig.useTriangleTessellation
? sizeof(MTLTriangleTessellationFactorsHalf)
: sizeof(MTLQuadTessellationFactorsHalf));
}
totalPatches += patch.GetNumPatches();
}
_tessFactorsBuffer.alloc(_context.device, totalTessFactorsSize, @"tessellation factors buffer", MTLResourceStorageModePrivate);
_perPatchVertexBuffer.alloc(_context.device, totalPerPatchVertexSize, @"per patch data", MTLResourceStorageModePrivate);
_perPatchTessFactorsBuffer.alloc(_context.device, totalPerPatchTessFactorsSize, @"per patch tess factors", MTLResourceStorageModePrivate);
}
}
-(void)_rebuildPipelines {
for (int i = 0; i < DISPATCHSLOTS; ++i) {
_computePipelines[i] = nil;
_renderPipelines[i] = nil;
_renderControlEdgesPipeline = nil;
}
Osd::MTLPatchShaderSource shaderSource;
for (auto& patch : _mesh->GetPatchTable()->GetPatchArrays())
{
auto patchType = patch.desc.GetType();
PipelineConfig pipelineConfig = [self _lookupPipelineConfig:patchType useSingleCreasePatch:_useSingleCreasePatch];
auto compileOptions = [[MTLCompileOptions alloc] init];
auto preprocessor = [[NSMutableDictionary alloc] init];
std::stringstream shaderBuilder;
#define DEFINE(x,y) preprocessor[@(#x)] = @(y)
#if TARGET_OS_EMBEDDED
shaderBuilder << "#define OSD_UV_CORRECTION if (t > 0.5){ ti += 0.01f; } else { ti += 0.01f; }\n";
#endif
//Need to define the input vertex struct so that it's available everywhere.
{
shaderBuilder << R"(
#include <metal_stdlib>
using namespace metal;
struct OsdInputVertexType {
metal::packed_float3 position;
};
)";
}
shaderBuilder << shaderSource.GetHullShaderSource(patchType);
if (_numFaceVaryingElements > 0) {
shaderBuilder << shaderSource.GetPatchBasisShaderSource();
}
shaderBuilder << _osdShaderSource.UTF8String;
const auto str = shaderBuilder.str();
int numElements = _numVertexElements + _numVaryingElements;
DEFINE(VERTEX_BUFFER_INDEX,VERTEX_BUFFER_INDEX);
DEFINE(PATCH_INDICES_BUFFER_INDEX,PATCH_INDICES_BUFFER_INDEX);
DEFINE(CONTROL_INDICES_BUFFER_INDEX,CONTROL_INDICES_BUFFER_INDEX);
DEFINE(OSD_PATCHPARAM_BUFFER_INDEX,OSD_PATCHPARAM_BUFFER_INDEX);
DEFINE(OSD_PERPATCHVERTEX_BUFFER_INDEX,OSD_PERPATCHVERTEX_BUFFER_INDEX);
DEFINE(OSD_PERPATCHVERTEXBEZIER_BUFFER_INDEX,OSD_PERPATCHVERTEXBEZIER_BUFFER_INDEX);
DEFINE(OSD_PERPATCHVERTEXGREGORY_BUFFER_INDEX,OSD_PERPATCHVERTEXGREGORY_BUFFER_INDEX);
DEFINE(OSD_PERPATCHTESSFACTORS_BUFFER_INDEX,OSD_PERPATCHTESSFACTORS_BUFFER_INDEX);
DEFINE(OSD_VALENCE_BUFFER_INDEX,OSD_VALENCE_BUFFER_INDEX);
DEFINE(OSD_QUADOFFSET_BUFFER_INDEX,OSD_QUADOFFSET_BUFFER_INDEX);
DEFINE(FRAME_CONST_BUFFER_INDEX,FRAME_CONST_BUFFER_INDEX);
DEFINE(INDICES_BUFFER_INDEX,INDICES_BUFFER_INDEX);
DEFINE(PATCH_TESSFACTORS_INDEX,PATCH_TESSFACTORS_INDEX);
DEFINE(QUAD_TESSFACTORS_INDEX,QUAD_TESSFACTORS_INDEX);
DEFINE(TRIANGLE_TESSFACTORS_INDEX,TRIANGLE_TESSFACTORS_INDEX);
DEFINE(OSD_PATCH_INDEX_BUFFER_INDEX,OSD_PATCH_INDEX_BUFFER_INDEX);
DEFINE(OSD_DRAWINDIRECT_BUFFER_INDEX,OSD_DRAWINDIRECT_BUFFER_INDEX);
DEFINE(OSD_KERNELLIMIT_BUFFER_INDEX,OSD_KERNELLIMIT_BUFFER_INDEX);
if (patchType == Far::PatchDescriptor::QUADS) {
DEFINE(OSD_PATCH_QUADS, 1);
} else if (patchType == Far::PatchDescriptor::TRIANGLES) {
DEFINE(OSD_PATCH_TRIANGLES, 1);
}
DEFINE(CONTROL_POINTS_PER_PATCH, pipelineConfig.numControlPointsPerPatchRefined);
DEFINE(VERTEX_CONTROL_POINTS_PER_PATCH, pipelineConfig.numControlPointsPerPatchToDraw);
DEFINE(CONTROL_POINTS_PER_THREAD, pipelineConfig.numControlPointsPerThreadRefined);
DEFINE(VERTEX_CONTROL_POINTS_PER_THREAD, pipelineConfig.numControlPointsPerThreadToDraw);
DEFINE(THREADS_PER_PATCH, pipelineConfig.numThreadsPerPatch);
DEFINE(OSD_PATCH_ENABLE_SINGLE_CREASE, pipelineConfig.useSingleCreasePatch);
auto partitionMode = _useScreenspaceTessellation && _useFractionalTessellation
? MTLTessellationPartitionModeFractionalOdd
: MTLTessellationPartitionModeInteger;
if (partitionMode == MTLTessellationPartitionModeFractionalOdd) {
DEFINE(OSD_FRACTIONAL_ODD_SPACING, 1);
} else if (partitionMode == MTLTessellationPartitionModeFractionalEven) {
DEFINE(OSD_FRACTIONAL_EVEN_SPACING, 1);
}
#if TARGET_OS_EMBEDDED
DEFINE(OSD_MAX_TESS_LEVEL, 16);
#else
DEFINE(OSD_MAX_TESS_LEVEL, 64);
#endif
DEFINE(USE_STAGE_IN, _useStageIn);
DEFINE(USE_PTVS_FACTORS, !_useScreenspaceTessellation);
DEFINE(USE_PTVS_SHARPNESS, 1);
DEFINE(OSD_MAX_VALENCE, _mesh->GetMaxValence());
DEFINE(OSD_NUM_ELEMENTS, numElements);
DEFINE(OSD_ENABLE_BACKPATCH_CULL, _usePatchBackfaceCulling);
DEFINE(SHADING_TYPE, _shadingMode);
DEFINE(OSD_USE_PATCH_INDEX_BUFFER, _usePatchIndexBuffer);
DEFINE(OSD_ENABLE_SCREENSPACE_TESSELLATION, _useScreenspaceTessellation);
DEFINE(OSD_ENABLE_PATCH_CULL, _usePatchClipCulling && _useAdaptive);
DEFINE(OSD_FVAR_DATA_BUFFER_INDEX, OSD_FVAR_DATA_BUFFER_INDEX);
DEFINE(OSD_FVAR_INDICES_BUFFER_INDEX, OSD_FVAR_INDICES_BUFFER_INDEX);
DEFINE(OSD_FVAR_PATCHPARAM_BUFFER_INDEX, OSD_FVAR_PATCHPARAM_BUFFER_INDEX);
DEFINE(OSD_FVAR_PATCH_ARRAYS_BUFFER_INDEX, OSD_FVAR_PATCH_ARRAYS_BUFFER_INDEX);
auto & threadsPerThreadgroup = _threadgroupSizes[patchType];
threadsPerThreadgroup = 32; //Initial guess of 32
DEFINE(THREADS_PER_THREADGROUP, threadsPerThreadgroup);
compileOptions.preprocessorMacros = preprocessor;
NSError* err = nil;
auto librarySource = [NSString stringWithUTF8String:str.data()];
auto library = [_context.device newLibraryWithSource:librarySource options:compileOptions error:&err];
if(!library && err) {
NSLog(@"%s", [err localizedDescription].UTF8String);
}
assert(library);
auto vertexFunction = [library newFunctionWithName:@"vertex_main"];
auto fragmentFunction = [library newFunctionWithName:@"fragment_main"];
if (vertexFunction && fragmentFunction)
{
MTLRenderPipelineDescriptor* pipelineDesc = [[MTLRenderPipelineDescriptor alloc] init];
pipelineDesc.tessellationFactorFormat = MTLTessellationFactorFormatHalf;
pipelineDesc.tessellationPartitionMode = partitionMode;
pipelineDesc.tessellationFactorScaleEnabled = false;
pipelineDesc.tessellationFactorStepFunction = MTLTessellationFactorStepFunctionPerPatch;
if (pipelineConfig.drawIndexed && _useStageIn) {
pipelineDesc.tessellationControlPointIndexType = MTLTessellationControlPointIndexTypeUInt32;
}
[_delegate setupRenderPipelineState:pipelineDesc for:self];
{
pipelineDesc.fragmentFunction = [library newFunctionWithName:@"fragment_solidcolor"];
pipelineDesc.vertexFunction = [library newFunctionWithName:@"vertex_lines"];
if(pipelineDesc.vertexFunction)
_controlLineRenderPipelines[patchType] = [_context.device newRenderPipelineStateWithDescriptor:pipelineDesc error:&err];
else
_controlLineRenderPipelines[patchType] = nil;
}
pipelineDesc.fragmentFunction = fragmentFunction;
pipelineDesc.vertexFunction = vertexFunction;
if(_useStageIn)
{
auto vertexDesc = pipelineDesc.vertexDescriptor;
[vertexDesc reset];
if (_useAdaptive)
{
vertexDesc.layouts[OSD_PATCHPARAM_BUFFER_INDEX].stepFunction = MTLVertexStepFunctionPerPatch;
vertexDesc.layouts[OSD_PATCHPARAM_BUFFER_INDEX].stepRate = 1;
vertexDesc.layouts[OSD_PATCHPARAM_BUFFER_INDEX].stride = sizeof(int) * 3;
// PatchInput :: int3 patchParam [[attribute(10)]];
vertexDesc.attributes[10].bufferIndex = OSD_PATCHPARAM_BUFFER_INDEX;
vertexDesc.attributes[10].format = MTLVertexFormatInt3;
vertexDesc.attributes[10].offset = 0;
}
switch(patchType)
{
case Far::PatchDescriptor::LOOP:
case Far::PatchDescriptor::REGULAR:
case Far::PatchDescriptor::GREGORY_BASIS:
case Far::PatchDescriptor::GREGORY_TRIANGLE:
if (pipelineConfig.drawIndexed) {
vertexDesc.layouts[VERTEX_BUFFER_INDEX].stepFunction = MTLVertexStepFunctionPerPatchControlPoint;
vertexDesc.layouts[VERTEX_BUFFER_INDEX].stepRate = 1;
vertexDesc.layouts[VERTEX_BUFFER_INDEX].stride = sizeof(float) * 3;
// ControlPoint :: float3 position [[attribute(0)]];
vertexDesc.attributes[0].bufferIndex = VERTEX_BUFFER_INDEX;
vertexDesc.attributes[0].format = MTLVertexFormatFloat3;
vertexDesc.attributes[0].offset = 0;
} else {
vertexDesc.layouts[OSD_PERPATCHVERTEX_BUFFER_INDEX].stepFunction = MTLVertexStepFunctionPerPatchControlPoint;
vertexDesc.layouts[OSD_PERPATCHVERTEX_BUFFER_INDEX].stepRate = 1;
vertexDesc.layouts[OSD_PERPATCHVERTEX_BUFFER_INDEX].stride = sizeof(float) * 3;
// ControlPoint :: float3 P [[attribute(0)]];
// OsdPerPatchVertexBezier :: packed_float3 P
vertexDesc.attributes[0].bufferIndex = OSD_PERPATCHVERTEX_BUFFER_INDEX;
vertexDesc.attributes[0].format = MTLVertexFormatFloat3;
vertexDesc.attributes[0].offset = 0;
}
if (pipelineConfig.useSingleCreasePatch)
{
vertexDesc.layouts[OSD_PERPATCHVERTEX_BUFFER_INDEX].stride += sizeof(float) * 3 * 2;
// ControlPoint :: float3 P1 [[attribute(1)]];
// OsdPerPatchVertexBezier :: packed_float3 P1
vertexDesc.attributes[1].bufferIndex = OSD_PERPATCHVERTEX_BUFFER_INDEX;
vertexDesc.attributes[1].format = MTLVertexFormatFloat3;
vertexDesc.attributes[1].offset = sizeof(float) * 3;
// ControlPoint :: float3 P2 [[attribute(2)]];
// OsdPerPatchVertexBezier :: packed_float3 P2
vertexDesc.attributes[2].bufferIndex = OSD_PERPATCHVERTEX_BUFFER_INDEX;
vertexDesc.attributes[2].format = MTLVertexFormatFloat3;
vertexDesc.attributes[2].offset = sizeof(float) * 6;
// USE_PTVS_SHARPNESS is true and so OsdPerPatchVertexBezier :: float2 vSegments is not used
}
if(_useScreenspaceTessellation)
{
vertexDesc.layouts[OSD_PERPATCHTESSFACTORS_BUFFER_INDEX].stepFunction = MTLVertexStepFunctionPerPatch;
vertexDesc.layouts[OSD_PERPATCHTESSFACTORS_BUFFER_INDEX].stepRate = 1;
vertexDesc.layouts[OSD_PERPATCHTESSFACTORS_BUFFER_INDEX].stride = sizeof(float) * 4 * 2;
// PatchInput :: float4 tessOuterLo [[attribute(5)]];
// OsdPerPatchTessFactors :: float4 tessOuterLo;
vertexDesc.attributes[5].bufferIndex = OSD_PERPATCHTESSFACTORS_BUFFER_INDEX;
vertexDesc.attributes[5].format = MTLVertexFormatFloat4;
vertexDesc.attributes[5].offset = 0;
// PatchInput :: float4 tessOuterHi [[attribute(6)]];
// OsdPerPatchTessFactors :: float4 tessOuterHi;
vertexDesc.attributes[6].bufferIndex = OSD_PERPATCHTESSFACTORS_BUFFER_INDEX;
vertexDesc.attributes[6].format = MTLVertexFormatFloat4;
vertexDesc.attributes[6].offset = sizeof(float) * 4;
}
break;
case Far::PatchDescriptor::GREGORY:
case Far::PatchDescriptor::GREGORY_BOUNDARY:
vertexDesc.layouts[OSD_PERPATCHVERTEX_BUFFER_INDEX].stepFunction = MTLVertexStepFunctionPerPatchControlPoint;
vertexDesc.layouts[OSD_PERPATCHVERTEX_BUFFER_INDEX].stepRate = 1;
vertexDesc.layouts[OSD_PERPATCHVERTEX_BUFFER_INDEX].stride = sizeof(float) * 3 * 5;
// ControlPoint :: float3 P [[attribute(0)]];
// ControlPoint :: float3 Ep [[attribute(1)]];
// ControlPoint :: float3 Em [[attribute(2)]];
// ControlPoint :: float3 Fp [[attribute(3)]];
// ControlPoint :: float3 Fm [[attribute(4)]];
for (int i = 0; i < 5; ++i)
{
vertexDesc.attributes[i].bufferIndex = OSD_PERPATCHVERTEX_BUFFER_INDEX;
vertexDesc.attributes[i].format = MTLVertexFormatFloat3;
vertexDesc.attributes[i].offset = i * sizeof(float) * 3;
}
if(_useScreenspaceTessellation)
{
vertexDesc.layouts[OSD_PERPATCHTESSFACTORS_BUFFER_INDEX].stepFunction = MTLVertexStepFunctionPerPatch;
vertexDesc.layouts[OSD_PERPATCHTESSFACTORS_BUFFER_INDEX].stepRate = 1;
vertexDesc.layouts[OSD_PERPATCHTESSFACTORS_BUFFER_INDEX].stride = sizeof(float) * 4 * 2;
// PatchInput :: float4 tessOuterLo [[attribute(5)]];
// OsdPerPatchTessFactors :: float4 tessOuterLo;
vertexDesc.attributes[5].bufferIndex = OSD_PERPATCHTESSFACTORS_BUFFER_INDEX;
vertexDesc.attributes[5].format = MTLVertexFormatFloat4;
vertexDesc.attributes[5].offset = 0;
// PatchInput :: float4 tessOuterHi [[attribute(6)]];
// OsdPerPatchTessFactors :: float4 tessOuterHi;
vertexDesc.attributes[6].bufferIndex = OSD_PERPATCHTESSFACTORS_BUFFER_INDEX;
vertexDesc.attributes[6].format = MTLVertexFormatFloat4;
vertexDesc.attributes[6].offset = sizeof(float) * 4;
}
break;
case Far::PatchDescriptor::QUADS:
//Quads cannot use stage in, due to the need for re-indexing.
pipelineDesc.vertexDescriptor = nil;
case Far::PatchDescriptor::TRIANGLES:
[vertexDesc reset];
break;
}
}
_renderPipelines[patchType] = [_context.device newRenderPipelineStateWithDescriptor:pipelineDesc error:&err];
if (!_renderPipelines[patchType] && err)
{
NSLog(@"%s", [[err localizedDescription] UTF8String]);
}
}
auto computeFunction = [library newFunctionWithName:@"compute_main"];
if(computeFunction)
{
MTLComputePipelineDescriptor* computeDesc = [[MTLComputePipelineDescriptor alloc] init];
#if MTL_TARGET_IPHONE
computeDesc.threadGroupSizeIsMultipleOfThreadExecutionWidth = true;
#else
computeDesc.threadGroupSizeIsMultipleOfThreadExecutionWidth = false;
#endif
computeDesc.computeFunction = computeFunction;
NSError* err;
_computePipelines[patchType] = [_context.device newComputePipelineStateWithDescriptor:computeDesc options:MTLPipelineOptionNone reflection:nil error:&err];
if (err && _computePipelines[patchType] == nil)
{
NSLog(@"first compute compile: %s", [[err description] UTF8String]);
}
if (_computePipelines[patchType].threadExecutionWidth != threadsPerThreadgroup)
{
DEFINE(THREADS_PER_THREADGROUP, _computePipelines[patchType].threadExecutionWidth);
compileOptions.preprocessorMacros = preprocessor;
library = [_context.device newLibraryWithSource:librarySource options:compileOptions error:nil];
assert(library);
computeDesc.threadGroupSizeIsMultipleOfThreadExecutionWidth = true;
computeDesc.computeFunction = [library newFunctionWithName:@"compute_main"];
threadsPerThreadgroup = _computePipelines[patchType].threadExecutionWidth;
_computePipelines[patchType] = [_context.device newComputePipelineStateWithDescriptor:computeDesc options:MTLPipelineOptionNone reflection:nil error:&err];
if (err && _computePipelines[patchType] == nil)
{
NSLog(@"second compute compile: %s", [[err description] UTF8String]);
}
if (_computePipelines[patchType].threadExecutionWidth != threadsPerThreadgroup)
{
DEFINE(THREADS_PER_THREADGROUP, threadsPerThreadgroup);
DEFINE(NEEDS_BARRIER, 1);
compileOptions.preprocessorMacros = preprocessor;
library = [_context.device newLibraryWithSource:librarySource options:compileOptions error:nil];
assert(library);
computeDesc.threadGroupSizeIsMultipleOfThreadExecutionWidth = false;
computeDesc.computeFunction = [library newFunctionWithName:@"compute_main"];
threadsPerThreadgroup = _computePipelines[patchType].threadExecutionWidth;
_computePipelines[patchType] = [_context.device newComputePipelineStateWithDescriptor:computeDesc options:MTLPipelineOptionNone reflection:nil error:&err];
if (err && _computePipelines[patchType] == nil)
{
NSLog(@"third compute compile: %s", [[err description] UTF8String]);
}
}
}
}
}
MTLDepthStencilDescriptor* depthStencilDesc = [[MTLDepthStencilDescriptor alloc] init];
depthStencilDesc.depthCompareFunction = MTLCompareFunctionLess;
[_delegate setupDepthStencilState:depthStencilDesc for:self];
depthStencilDesc.depthWriteEnabled = YES;
_readWriteDepthStencilState = [_context.device newDepthStencilStateWithDescriptor:depthStencilDesc];
depthStencilDesc.depthWriteEnabled = NO;
_readOnlyDepthStencilState = [_context.device newDepthStencilStateWithDescriptor:depthStencilDesc];
}
-(void)_updateCamera {
auto pData = _frameConstantsBuffer.data();
identity(pData->ModelViewMatrix);
translate(pData->ModelViewMatrix, 0, 0, -_cameraData.dollyDistance);
rotate(pData->ModelViewMatrix, _cameraData.rotationY, 1, 0, 0);
rotate(pData->ModelViewMatrix, _cameraData.rotationX, 0, 1, 0);
if (!_yup) {
rotate(pData->ModelViewMatrix, -90, 1, 0, 0);
}
translate(pData->ModelViewMatrix, -_meshCenter[0], -_meshCenter[1], -_meshCenter[2]);
inverseMatrix(pData->ModelViewInverseMatrix, pData->ModelViewMatrix);
identity(pData->ProjectionMatrix);
perspective(pData->ProjectionMatrix, 45.0, _cameraData.aspectRatio, 0.01f, 500.0);
multMatrix(pData->ModelViewProjectionMatrix, pData->ModelViewMatrix, pData->ProjectionMatrix);
}
-(void)_initializeBuffers {
_frameConstantsBuffer.alloc(_context.device, 1, @"frame constants");
_lightsBuffer.alloc(_context.device, 2, @"lights");
}
-(void)_initializeCamera {
_cameraData.rotationY = 0;
_cameraData.rotationX = 0;
_cameraData.dollyDistance = 5;
_cameraData.aspectRatio = 1;
}
-(void)_initializeLights {
_lightsBuffer[0] = {
simd::normalize(simd::float4{ 0.5, 0.2f, 1.0f, 0.0f }),
{ 0.1f, 0.1f, 0.1f, 1.0f },
{ 0.7f, 0.7f, 0.7f, 1.0f },
{ 0.8f, 0.8f, 0.8f, 1.0f },
};
_lightsBuffer[1] = {
simd::normalize(simd::float4{ -0.8f, 0.4f, -1.0f, 0.0f }),
{ 0.0f, 0.0f, 0.0f, 1.0f },
{ 0.5f, 0.5f, 0.5f, 1.0f },
{ 0.8f, 0.8f, 0.8f, 1.0f }
};
_lightsBuffer.markModified();
}
-(void)_initializeModels {
initShapes();
_loadedModels = [[NSMutableArray alloc] initWithCapacity:g_defaultShapes.size()];
int i = 0;
for(auto& shape : g_defaultShapes)
{
_loadedModels[i++] = [NSString stringWithUTF8String:shape.name.c_str()];
}
_currentModel = _loadedModels[0];
}
//Setters for triggering _needsRebuild on property change
-(void)setEndCapMode:(EndCap)endCapMode {
_needsRebuild |= endCapMode != _endCapMode;
_endCapMode = endCapMode;
}
-(void)setUseStageIn:(bool)useStageIn {
_needsRebuild |= useStageIn != _useStageIn;
_useStageIn = useStageIn;
}
-(void)setShadingMode:(ShadingMode)shadingMode {
_needsRebuild |= shadingMode != _shadingMode;
_shadingMode = shadingMode;
}
-(void)setKernelType:(KernelType)kernelType {
_needsRebuild |= kernelType != _kernelType;
_kernelType = kernelType;
}
-(void)setFVarLinearInterp:(FVarLinearInterp)fVarLinearInterp {
_needsRebuild |= (fVarLinearInterp != _fVarLinearInterp);
_fVarLinearInterp = fVarLinearInterp;
}
-(void)setCurrentModel:(NSString *)currentModel {
_needsRebuild |= ![currentModel isEqualToString:_currentModel];
_currentModel = currentModel;
}
-(void)setRefinementLevel:(unsigned int)refinementLevel {
_needsRebuild |= refinementLevel != _refinementLevel;
_refinementLevel = refinementLevel;
}
-(void)setUseSmoothCornerPatch:(bool)useSmoothCornerPatch {
_needsRebuild |= useSmoothCornerPatch != _useSmoothCornerPatch;
_useSmoothCornerPatch = useSmoothCornerPatch;
}
-(void)setUseSingleCreasePatch:(bool)useSingleCreasePatch {
_needsRebuild |= useSingleCreasePatch != _useSingleCreasePatch;
_useSingleCreasePatch = useSingleCreasePatch;
}
-(void)setUsePatchClipCulling:(bool)usePatchClipCulling {
_needsRebuild |= usePatchClipCulling != _usePatchClipCulling;
_usePatchClipCulling = usePatchClipCulling;
}
-(void)setUsePatchIndexBuffer:(bool)usePatchIndexBuffer {
_needsRebuild |= usePatchIndexBuffer != _usePatchIndexBuffer;
_usePatchIndexBuffer = usePatchIndexBuffer;
}
-(void)setUsePatchBackfaceCulling:(bool)usePatchBackfaceCulling {
_needsRebuild |= usePatchBackfaceCulling != _usePatchBackfaceCulling;
_usePatchBackfaceCulling = usePatchBackfaceCulling;
}
-(void)setUseScreenspaceTessellation:(bool)useScreenspaceTessellation {
_needsRebuild |= useScreenspaceTessellation != _useScreenspaceTessellation;
_useScreenspaceTessellation = useScreenspaceTessellation;
}
-(void)setUseAdaptive:(bool)useAdaptive {
_needsRebuild |= useAdaptive != _useAdaptive;
_useAdaptive = useAdaptive;
}
-(void)setUseInfinitelySharpPatch:(bool)useInfinitelySharpPatch {
_needsRebuild |= useInfinitelySharpPatch != _useInfinitelySharpPatch;
_useInfinitelySharpPatch = useInfinitelySharpPatch;
}
-(void)setUseFractionalTessellation:(bool)useFractionalTessellation {
_needsRebuild |= useFractionalTessellation != _useFractionalTessellation;
_useFractionalTessellation = useFractionalTessellation;
}
@end