OpenSubdiv/examples/dxPtexViewer/shader.hlsl
Takahito Tejima 4a4322983f Osd drawing API refactoring.
Remove DrawRegistry from osd layer and put a simple shader caching
utility into examples/common. osd layer only provides patch shader
snippet and let client configure and compile the code. Clients also
maintain the lifetime of shader object, which is preferable for the
actual application integration.

update all examples to use the new scheme.
2015-05-13 17:35:46 -07:00

565 lines
19 KiB
HLSL

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
struct OutputPointVertex {
float4 positionOut : SV_Position;
};
cbuffer Transform : register( b0 ) {
float4x4 ModelViewMatrix;
float4x4 ProjectionMatrix;
float4x4 ModelViewProjectionMatrix;
};
cbuffer Tessellation : register( b1 ) {
float TessLevel;
int GregoryQuadOffsetBase;
int PrimitiveIdBase;
};
cbuffer Config : register( b3 ) {
float displacementScale;
float mipmapBias;
};
float4x4 OsdModelViewMatrix()
{
return ModelViewMatrix;
}
float4x4 OsdProjectionMatrix()
{
return ProjectionMatrix;
}
float4x4 OsdModelViewProjectionMatrix()
{
return ModelViewProjectionMatrix;
}
float OsdTessLevel()
{
return TessLevel;
}
int OsdGregoryQuadOffsetBase()
{
return GregoryQuadOffsetBase;
}
int OsdPrimitiveIdBase()
{
return PrimitiveIdBase;
}
// ---------------------------------------------------------------------------
#if defined(DISPLACEMENT_HW_BILINEAR) \
|| defined(DISPLACEMENT_BILINEAR) \
|| defined(DISPLACEMENT_BIQUADRATIC) \
|| defined(NORMAL_HW_SCREENSPACE) \
|| defined(NORMAL_SCREENSPACE) \
|| defined(NORMAL_BIQUADRATIC) \
|| defined(NORMAL_BIQUADRATIC_WG)
Texture2DArray textureDisplace_Data : register(t6);
Buffer<uint> textureDisplace_Packing : register(t7);
#endif
#if defined(DISPLACEMENT_HW_BILINEAR) \
|| defined(DISPLACEMENT_BILINEAR) \
|| defined(DISPLACEMENT_BIQUADRATIC)
#undef OSD_DISPLACEMENT_CALLBACK
#define OSD_DISPLACEMENT_CALLBACK \
output.position = \
displacement(output.position, \
output.normal, \
output.patchCoord);
float4 displacement(float4 position, float3 normal, float4 patchCoord)
{
#if defined(DISPLACEMENT_HW_BILINEAR)
float disp = PtexLookupFast(patchCoord,
textureDisplace_Data,
textureDisplace_Packing).x;
#elif defined(DISPLACEMENT_BILINEAR)
float disp = PtexMipmapLookup(patchCoord, mipmapBias,
textureDisplace_Data,
textureDisplace_Packing).x;
#elif defined(DISPLACEMENT_BIQUADRATIC)
float disp = PtexMipmapLookupQuadratic(patchCoord, mipmapBias,
textureDisplace_Data,
textureDisplace_Packing).x;
#else
float disp(0);
#endif
return position + float4(disp*normal, 0) * displacementScale;
}
#endif
float4 GeneratePatchCoord(float2 uv, int primitiveID) // for non-adaptive
{
int3 patchParam = OsdGetPatchParam(OsdGetPatchIndex(primitiveID));
return OsdInterpolatePatchCoord(uv, OsdGetPatchCoord(patchParam));
}
// ---------------------------------------------------------------------------
// Vertex Shader
// ---------------------------------------------------------------------------
void vs_main( in InputVertex input,
out OutputVertex output )
{
output.positionOut = mul(ModelViewProjectionMatrix, input.position);
output.position = mul(ModelViewMatrix, input.position);
output.normal = mul(ModelViewMatrix,float4(input.normal, 0)).xyz;
output.patchCoord = float4(0,0,0,0);
output.tangent = float3(0,0,0);
output.bitangent = float3(0,0,0);
output.edgeDistance = float4(0,0,0,0);
}
// ---------------------------------------------------------------------------
// Geometry Shader
// ---------------------------------------------------------------------------
struct GS_OUT
{
OutputVertex v;
uint primitiveID : SV_PrimitiveID;
};
GS_OUT
outputVertex(OutputVertex input, float3 normal, uint primitiveID)
{
GS_OUT gsout;
gsout.v = input;
gsout.v.normal = normal;
gsout.primitiveID = primitiveID;
return gsout;
}
GS_OUT
outputVertex(OutputVertex input, float3 normal, float4 patchCoord, uint primitiveID)
{
GS_OUT gsout;
gsout.v = input;
gsout.v.normal = normal;
gsout.v.patchCoord = patchCoord;
gsout.primitiveID = primitiveID;
return gsout;
}
#if defined(GEOMETRY_OUT_WIRE) || defined(GEOMETRY_OUT_LINE)
#ifdef PRIM_TRI
#define EDGE_VERTS 3
#endif
#ifdef PRIM_QUAD
#define EDGE_VERTS 4
#endif
static float VIEWPORT_SCALE = 1024.0; // XXXdyu
float edgeDistance(float2 p, float2 p0, float2 p1)
{
return VIEWPORT_SCALE *
abs((p.x - p0.x) * (p1.y - p0.y) -
(p.y - p0.y) * (p1.x - p0.x)) / length(p1.xy - p0.xy);
}
GS_OUT
outputWireVertex(OutputVertex input, float3 normal,
int index, float2 edgeVerts[EDGE_VERTS], uint primitiveID)
{
GS_OUT gsout;
gsout.v = input;
gsout.v.normal = normal;
gsout.v.edgeDistance[0] =
edgeDistance(edgeVerts[index], edgeVerts[0], edgeVerts[1]);
gsout.v.edgeDistance[1] =
edgeDistance(edgeVerts[index], edgeVerts[1], edgeVerts[2]);
#ifdef PRIM_TRI
gsout.v.edgeDistance[2] =
edgeDistance(edgeVerts[index], edgeVerts[2], edgeVerts[0]);
#endif
#ifdef PRIM_QUAD
gsout.v.edgeDistance[2] =
edgeDistance(edgeVerts[index], edgeVerts[2], edgeVerts[3]);
gsout.v.edgeDistance[3] =
edgeDistance(edgeVerts[index], edgeVerts[3], edgeVerts[0]);
#endif
gsout.primitiveID = primitiveID;
return gsout;
}
#endif
#ifdef PRIM_QUAD
[maxvertexcount(6)]
void gs_main( lineadj OutputVertex input[4],
inout TriangleStream<GS_OUT> triStream,
uint primitiveID : SV_PrimitiveID)
{
float3 A = (input[0].position - input[1].position).xyz;
float3 B = (input[3].position - input[1].position).xyz;
float3 C = (input[2].position - input[1].position).xyz;
float3 n0 = normalize(cross(B, A));
float4 patchCoord[4];
patchCoord[0] = GeneratePatchCoord(float2(0, 0), primitiveID);
patchCoord[1] = GeneratePatchCoord(float2(1, 0), primitiveID);
patchCoord[2] = GeneratePatchCoord(float2(1, 1), primitiveID);
patchCoord[3] = GeneratePatchCoord(float2(0, 1), primitiveID);
triStream.Append(outputVertex(input[0], n0, patchCoord[0], primitiveID));
triStream.Append(outputVertex(input[1], n0, patchCoord[1], primitiveID));
triStream.Append(outputVertex(input[3], n0, patchCoord[3], primitiveID));
triStream.RestartStrip();
triStream.Append(outputVertex(input[3], n0, patchCoord[3], primitiveID));
triStream.Append(outputVertex(input[1], n0, patchCoord[1], primitiveID));
triStream.Append(outputVertex(input[2], n0, patchCoord[2], primitiveID));
triStream.RestartStrip();
}
#else // PRIM_TRI
[maxvertexcount(3)]
void gs_main( triangle OutputVertex input[3],
inout TriangleStream<GS_OUT> triStream,
uint primitiveID : SV_PrimitiveID)
{
float4 position[3];
float4 patchCoord[3];
float3 normal[3];
// patch coords are computed in tessellation shader
patchCoord[0] = input[0].patchCoord;
patchCoord[1] = input[1].patchCoord;
patchCoord[2] = input[2].patchCoord;
position[0] = input[0].position;
position[1] = input[1].position;
position[2] = input[2].position;
#ifdef NORMAL_FACET
// emit flat normals for displaced surface
float3 A = (position[0] - position[1]).xyz;
float3 B = (position[2] - position[1]).xyz;
normal[0]= normalize(cross(B, A));
normal[1] = normal[0];
normal[2] = normal[0];
#else
normal[0] = input[0].normal;
normal[1] = input[1].normal;
normal[2] = input[2].normal;
#endif
#if defined(GEOMETRY_OUT_WIRE) || defined(GEOMETRY_OUT_LINE)
float2 edgeVerts[3];
edgeVerts[0] = input[0].positionOut.xy / input[0].positionOut.w;
edgeVerts[1] = input[1].positionOut.xy / input[1].positionOut.w;
edgeVerts[2] = input[2].positionOut.xy / input[2].positionOut.w;
triStream.Append(outputWireVertex(input[0], normal[0], 0, edgeVerts, primitiveID));
triStream.Append(outputWireVertex(input[1], normal[1], 1, edgeVerts, primitiveID));
triStream.Append(outputWireVertex(input[2], normal[2], 2, edgeVerts, primitiveID));
#else
triStream.Append(outputVertex(input[0], normal[0], primitiveID));
triStream.Append(outputVertex(input[1], normal[1], primitiveID));
triStream.Append(outputVertex(input[2], normal[2], primitiveID));
#endif
}
#endif
// ---------------------------------------------------------------------------
// Lighting
// ---------------------------------------------------------------------------
#define NUM_LIGHTS 2
struct LightSource {
float4 position;
float4 ambient;
float4 diffuse;
float4 specular;
};
cbuffer Lighting : register( b2 ) {
LightSource lightSource[NUM_LIGHTS];
};
float4
lighting(float4 texColor, float3 Peye, float3 Neye, float occ)
{
float4 color = float4(0.0, 0.0, 0.0, 0.0);
float3 n = Neye;
for (int i = 0; i < NUM_LIGHTS; ++i) {
float4 Plight = lightSource[i].position;
float3 l = (Plight.w == 0.0)
? normalize(Plight.xyz) : normalize(Plight.xyz - Peye);
float3 h = normalize(l + float3(0,0,1)); // directional viewer
float d = max(0.0, dot(n, l));
float s = pow(max(0.0, dot(n, h)), 64.0f);
color += (1.0 - occ) * ((lightSource[i].ambient +
d * lightSource[i].diffuse) * texColor +
s * lightSource[i].specular);
}
color.a = 1.0;
return color;
}
// ---------------------------------------------------------------------------
// Pixel Shader
// ---------------------------------------------------------------------------
float4
edgeColor(float4 Cfill, float4 edgeDistance)
{
#if defined(GEOMETRY_OUT_WIRE) || defined(GEOMETRY_OUT_LINE)
#ifdef PRIM_TRI
float d =
min(edgeDistance[0], min(edgeDistance[1], edgeDistance[2]));
#endif
#ifdef PRIM_QUAD
float d =
min(min(edgeDistance[0], edgeDistance[1]),
min(edgeDistance[2], edgeDistance[3]));
#endif
float4 Cedge = float4(1.0, 1.0, 0.0, 1.0);
float p = exp2(-2 * d * d);
#if defined(GEOMETRY_OUT_WIRE)
if (p < 0.25) discard;
#endif
Cfill.rgb = lerp(Cfill.rgb, Cedge.rgb, p);
#endif
return Cfill;
}
// ---------------------------------------------------------------------------
// Pixel Shader
// ---------------------------------------------------------------------------
#if defined(COLOR_PTEX_NEAREST) || \
defined(COLOR_PTEX_HW_BILINEAR) || \
defined(COLOR_PTEX_BILINEAR) || \
defined(COLOR_PTEX_BIQUADRATIC)
Texture2DArray textureImage_Data : register(t4);
Buffer<uint> textureImage_Packing : register(t5);
#endif
#ifdef USE_PTEX_OCCLUSION
Texture2DArray textureOcclusion_Data : register(t8);
Buffer<uint> textureOcclusion_Packing : register(t9);
#endif
#ifdef USE_PTEX_SPECULAR
Texture2DArray textureSpecular_Data : register(t10);
Buffer<uint> textureSpecular_Packing : register(t11);
#endif
float4
getAdaptivePatchColor(int3 patchParam, float sharpness)
{
const float4 patchColors[7*6] = {
float4(1.0f, 1.0f, 1.0f, 1.0f), // regular
float4(0.0f, 1.0f, 1.0f, 1.0f), // regular pattern 0
float4(0.0f, 0.5f, 1.0f, 1.0f), // regular pattern 1
float4(0.0f, 0.5f, 0.5f, 1.0f), // regular pattern 2
float4(0.5f, 0.0f, 1.0f, 1.0f), // regular pattern 3
float4(1.0f, 0.5f, 1.0f, 1.0f), // regular pattern 4
float4(1.0f, 0.5f, 0.5f, 1.0f), // single crease
float4(1.0f, 0.70f, 0.6f, 1.0f), // single crease pattern 0
float4(1.0f, 0.65f, 0.6f, 1.0f), // single crease pattern 1
float4(1.0f, 0.60f, 0.6f, 1.0f), // single crease pattern 2
float4(1.0f, 0.55f, 0.6f, 1.0f), // single crease pattern 3
float4(1.0f, 0.50f, 0.6f, 1.0f), // single crease pattern 4
float4(0.8f, 0.0f, 0.0f, 1.0f), // boundary
float4(0.0f, 0.0f, 0.75f, 1.0f), // boundary pattern 0
float4(0.0f, 0.2f, 0.75f, 1.0f), // boundary pattern 1
float4(0.0f, 0.4f, 0.75f, 1.0f), // boundary pattern 2
float4(0.0f, 0.6f, 0.75f, 1.0f), // boundary pattern 3
float4(0.0f, 0.8f, 0.75f, 1.0f), // boundary pattern 4
float4(0.0f, 1.0f, 0.0f, 1.0f), // corner
float4(0.25f, 0.25f, 0.25f, 1.0f), // corner pattern 0
float4(0.25f, 0.25f, 0.25f, 1.0f), // corner pattern 1
float4(0.25f, 0.25f, 0.25f, 1.0f), // corner pattern 2
float4(0.25f, 0.25f, 0.25f, 1.0f), // corner pattern 3
float4(0.25f, 0.25f, 0.25f, 1.0f), // corner pattern 4
float4(1.0f, 1.0f, 0.0f, 1.0f), // gregory
float4(1.0f, 1.0f, 0.0f, 1.0f), // gregory
float4(1.0f, 1.0f, 0.0f, 1.0f), // gregory
float4(1.0f, 1.0f, 0.0f, 1.0f), // gregory
float4(1.0f, 1.0f, 0.0f, 1.0f), // gregory
float4(1.0f, 1.0f, 0.0f, 1.0f), // gregory
float4(1.0f, 0.5f, 0.0f, 1.0f), // gregory boundary
float4(1.0f, 0.5f, 0.0f, 1.0f), // gregory boundary
float4(1.0f, 0.5f, 0.0f, 1.0f), // gregory boundary
float4(1.0f, 0.5f, 0.0f, 1.0f), // gregory boundary
float4(1.0f, 0.5f, 0.0f, 1.0f), // gregory boundary
float4(1.0f, 0.5f, 0.0f, 1.0f), // gregory boundary
float4(1.0f, 0.7f, 0.3f, 1.0f), // gregory basis
float4(1.0f, 0.7f, 0.3f, 1.0f), // gregory basis
float4(1.0f, 0.7f, 0.3f, 1.0f), // gregory basis
float4(1.0f, 0.7f, 0.3f, 1.0f), // gregory basis
float4(1.0f, 0.7f, 0.3f, 1.0f), // gregory basis
float4(1.0f, 0.7f, 0.3f, 1.0f) // gregory basis
};
int patchType = 0;
#if defined OSD_PATCH_GREGORY
patchType = 4;
#elif defined OSD_PATCH_GREGORY_BOUNDARY
patchType = 5;
#elif defined OSD_PATCH_GREGORY_BASIS
patchType = 6;
#endif
int edgeCount = countbits(OsdGetPatchBoundaryMask(patchParam));
if (edgeCount == 1) {
patchType = 2; // BOUNDARY
}
if (edgeCount == 2) {
patchType = 3; // CORNER
}
int pattern = countbits(OsdGetPatchTransitionMask(patchParam));
#ifdef OSD_PATCH_ENABLE_SINGLE_CREASE
if (sharpness > 0) pattern += 6;
#endif
return patchColors[6*patchType + pattern];
}
void
ps_main(in OutputVertex input,
uint primitiveID : SV_PrimitiveID,
out float4 outColor : SV_Target )
{
// ------------ normal ---------------
#if defined(NORMAL_HW_SCREENSPACE) || defined(NORMAL_SCREENSPACE)
float3 normal = perturbNormalFromDisplacement(input.position.xyz,
input.normal,
input.patchCoord);
#elif defined(NORMAL_BIQUADRATIC) || defined(NORMAL_BIQUADRATIC_WG)
float4 du, dv;
float4 disp = PtexMipmapLookupQuadratic(du, dv, input.patchCoord,
mipmapBias,
textureDisplace_Data,
textureDisplace_Packing);
disp *= displacementScale;
du *= displacementScale;
dv *= displacementScale;
float3 n = normalize(cross(input.tangent, input.bitangent));
float3 tangent = input.tangent + n * du.x;
float3 bitangent = input.bitangent + n * dv.x;
#if defined(NORMAL_BIQUADRATIC_WG)
tangent += input.Nu * disp.x;
bitangent += input.Nv * disp.x;
#endif
float3 normal = normalize(cross(tangent, bitangent));
#else
float3 normal = input.normal;
#endif
// ------------ color ---------------
#if defined(COLOR_PTEX_NEAREST)
float4 texColor = PtexLookupNearest(input.patchCoord,
textureImage_Data,
textureImage_Packing);
#elif defined(COLOR_PTEX_HW_BILINEAR)
float4 texColor = PtexLookupFast(input.patchCoord,
textureImage_Data,
textureImage_Packing);
#elif defined(COLOR_PTEX_BILINEAR)
float4 texColor = PtexMipmapLookup(input.patchCoord, mipmapBias,
textureImage_Data,
textureImage_Packing);
#elif defined(COLOR_PTEX_BIQUADRATIC)
float4 texColor = PtexMipmapLookupQuadratic(input.patchCoord, mipmapBias,
textureImage_Data,
textureImage_Packing);
#elif defined(COLOR_PATCHTYPE)
float4 patchColor = getAdaptivePatchColor(
OsdGetPatchParam(OsdGetPatchIndex(primitiveID)), 0);
float4 texColor = edgeColor(lighting(patchColor, input.position.xyz, normal, 0),
input.edgeDistance);
outColor = texColor;
return;
#elif defined(COLOR_PATCHCOORD)
float4 texColor = edgeColor(lighting(input.patchCoord, input.position.xyz, normal, 0),
input.edgeDistance);
outColor = texColor;
return;
#elif defined(COLOR_NORMAL)
float4 texColor = edgeColor(float4(normal.x, normal.y, normal.z, 1),
input.edgeDistance);
outColor = texColor;
return;
#else // COLOR_NONE
float4 texColor = float4(0.5, 0.5, 0.5, 1);
#endif
// ------------ occlusion ---------------
#ifdef USE_PTEX_OCCLUSION
float occ = PtexMipmapLookup(input.patchCoord, mipmapBias,
textureOcclusion_Data,
textureOcclusion_Packing).x;
#else
float occ = 0.0;
#endif
// ------------ specular ---------------
#ifdef USE_PTEX_SPECULAR
float specular = PtexMipmapLookup(input.patchCoord, mipmapBias,
textureSpecular_Data,
textureSpecular_Packing).x;
#else
float specular = 1.0;
#endif
// ------------ lighting ---------------
float4 Cf = lighting(texColor, input.position.xyz, normal, occ);
// ------------ wireframe ---------------
outColor = edgeColor(Cf, input.edgeDistance);
}