OpenSubdiv/opensubdiv/far/protoStencil.h
manuelk c237ab00fc WIP check-point for Gregory basis factorization
- adding support for StencilTables creation from a Gregory basis
- fix a bug in the prot-stencil allocator (slow memory pool was not being cleared properly)
2014-11-04 11:14:21 -08:00

506 lines
16 KiB
C++

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#ifndef FAR_PROTOSTENCIL_H
#define FAR_PROTOSTENCIL_H
#include "../far/stencilTables.h"
#include <cstring>
#include <map>
#include <vector>
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
namespace Far {
//
// Proto-stencil Pool Allocator classes
//
// Strategy: allocate up-front a data pool for supporting PROTOSTENCILS of a size
// (maxsize) slightly above average. For the (rare) BIG_PROTOSTENCILS that
// require more support vertices, switch to (slow) heap allocation.
//
template <typename PROTOSTENCIL, class BIG_PROTOSTENCIL>
class Allocator {
public:
// Constructor
Allocator(int maxSize, bool interpolateVarying=false) :
_maxsize(maxSize), _interpolateVarying(interpolateVarying) { }
// Returns the number of stencils in the allocator
int GetNumStencils() const {
return (int)_sizes.size();
}
// Returns the total number of control vertices used by the all the stencils
int GetNumVerticesTotal() const {
int nverts=0;
for (int i=0; i<GetNumStencils(); ++i) {
nverts += _sizes[i];
}
return nverts;
}
// Returns true if the pool allocator executes AddVaryingWithWeight
// factorization
bool GetInterpolateVarying() const {
return _interpolateVarying;
}
// Allocates storage for 'size' stencils with a fixed '_maxsize' supporting
// basis of control-vertices
void Resize(int numStencils) {
clearBigStencils();
int nelems = numStencils * _maxsize;
_sizes.clear();
_sizes.resize(numStencils);
_indices.resize(nelems);
_weights.resize(nelems);
}
// Adds the contribution of a supporting vertex that was not yet
// in the stencil
void PushBackVertex(Index protoStencil, Index vert, float weight) {
assert(weight!=0.0f);
unsigned char & size = _sizes[protoStencil];
Index idx = protoStencil*_maxsize;
if (size < (_maxsize-1)) {
idx += size;
_indices[idx] = vert;
_weights[idx] = weight;
} else {
BIG_PROTOSTENCIL * dst = 0;
if (size==(_maxsize-1)) {
dst = new BIG_PROTOSTENCIL(size, &_indices[idx], &_weights[idx]);
assert(_bigStencils.find(protoStencil)==_bigStencils.end());
_bigStencils[protoStencil] = dst;
} else {
assert(_bigStencils.find(protoStencil)!=_bigStencils.end());
dst = _bigStencils[protoStencil];
}
dst->_indices.push_back(vert);
dst->_weights.push_back(weight);
}
++size;
}
// Returns the local index in 'stencil' of a given vertex index, or
// INDEX_INVALID if the stencil does not contain this vertex
int FindVertex(Index protoStencil, Index vert) {
int size = _sizes[protoStencil];
Index const * indices = GetIndices(protoStencil);
for (int i=0; i<size; ++i) {
if (indices[i]==vert) {
return i;
}
}
return Vtr::INDEX_INVALID;
}
// Returns true of the stencil does not fit in the pool allocator and
// has been moved to the 'big' (slow) allocation pool
bool IsBigStencil(Index protoStencil) const {
assert(protoStencil<(int)_sizes.size());
return _sizes[protoStencil]>=_maxsize;
}
// Returns the size of a given proto-stencil
unsigned char GetSize(Index protoStencil) const {
assert(protoStencil<(int)_sizes.size());
return _sizes[protoStencil];
}
// Resolve memory pool and return a pointer to the indices of a given
// proto-stencil
Index * GetIndices(Index protoStencil) {
if (not IsBigStencil(protoStencil)) {
return &_indices[protoStencil*_maxsize];
} else {
assert(_bigStencils.find(protoStencil)!=_bigStencils.end());
return &_bigStencils[protoStencil]->_indices[0];
}
}
// Resolve memory pool and return a pointer to the weights of a given
// proto-stencil
float * GetWeights(Index protoStencil) {
if (not IsBigStencil(protoStencil)) {
return &_weights[protoStencil*_maxsize];
} else {
assert(_bigStencils.find(protoStencil)!=_bigStencils.end());
return &_bigStencils[protoStencil]->_weights[0];
}
}
// Returns the proto-stencil at a given index
PROTOSTENCIL operator[] (Index protoStencil) {
// If the allocator is empty, AddWithWeight() expects a coarse control
// vertex instead of a stencil and we only need to pass the index
return PROTOSTENCIL(protoStencil, this->GetNumStencils()>0 ? this : 0);
}
// Returns the proto-stencil at a given index
PROTOSTENCIL operator[] (Index protoStencil) const {
// If the allocator is empty, AddWithWeight() expects a coarse control
// vertex instead of a stencil and we only need to pass the index
return PROTOSTENCIL(protoStencil, this->GetNumStencils()>0 ?
const_cast<Allocator<PROTOSTENCIL, BIG_PROTOSTENCIL> *>(this) : 0);
}
// Copy the proto-stencil out of the pool
unsigned char CopyStencil(Index protoStencil,
Index * indices, float * weights) {
unsigned char size = GetSize(protoStencil);
memcpy(indices, this->GetIndices(protoStencil), size*sizeof(Index));
memcpy(weights, this->GetWeights(protoStencil), size*sizeof(float));
return size;
}
protected:
// delete 'slow' memory pool
void clearBigStencils() {
typename BigStencilMap::iterator it;
for (it=_bigStencils.begin(); it!=_bigStencils.end(); ++it) {
delete it->second;
}
_bigStencils.clear();
}
protected:
int _maxsize; // max size of stencil that fits in the 'fast' pool
bool _interpolateVarying; // true for varying interpolation
std::vector<unsigned char> _sizes; // 'fast' memory pool
std::vector<int> _indices;
std::vector<float> _weights;
typedef std::map<int, BIG_PROTOSTENCIL *> BigStencilMap;
BigStencilMap _bigStencils; // 'slow' memory pool
};
//
// Specialization of the Allocator for stencils with tangents that require
// additional derivative weights.
//
template <typename PROTOSTENCIL, class BIG_PROTOSTENCIL>
class LimitAllocator : public Allocator<PROTOSTENCIL, BIG_PROTOSTENCIL> {
public:
// Constructor
LimitAllocator(int maxSize) :
Allocator<PROTOSTENCIL, BIG_PROTOSTENCIL>(maxSize) { }
void Resize(int size) {
Allocator<PROTOSTENCIL, BIG_PROTOSTENCIL>::Resize(size);
int nelems = (int)this->_weights.size();
_tan1Weights.resize(nelems);
_tan2Weights.resize(nelems);
}
void PushBackVertex(Index protoStencil,
Index vert, float weight, float tan1Weight, float tan2Weight) {
assert(weight!=0.0f);
unsigned char & size = this->_sizes[protoStencil];
Index idx = protoStencil*this->_maxsize;
if (size < (this->_maxsize-1)) {
idx += size;
this->_indices[idx] = vert;
this->_weights[idx] = weight;
this->_tan1Weights[idx] = tan1Weight;
this->_tan2Weights[idx] = tan2Weight;
} else {
BIG_PROTOSTENCIL * dst = 0;
if (size==(this->_maxsize-1)) {
dst = new BIG_PROTOSTENCIL(size,
&this->_indices[idx], &this->_weights[idx],
&this->_tan1Weights[idx], &this->_tan2Weights[idx]);
assert(this->_bigStencils.find(protoStencil)==this->_bigStencils.end());
this->_bigStencils[protoStencil] = dst;
} else {
assert(this->_bigStencils.find(protoStencil)!=this->_bigStencils.end());
dst = this->_bigStencils[protoStencil];
}
dst->_indices.push_back(vert);
dst->_weights.push_back(weight);
dst->_tan1Weights.push_back(tan1Weight);
dst->_tan2Weights.push_back(tan2Weight);
}
++size;
}
float * GetTan1Weights(Index protoStencil) {
if (not this->IsBigStencil(protoStencil)) {
return &_tan1Weights[protoStencil*this->_maxsize];
} else {
assert(this->_bigStencils.find(protoStencil)!=this->_bigStencils.end());
return &this->_bigStencils[protoStencil]->_tan1Weights[0];
}
}
float * GetTan2Weights(Index protoStencil) {
if (not this->IsBigStencil(protoStencil)) {
return &_tan2Weights[protoStencil*this->_maxsize];
} else {
assert(this->_bigStencils.find(protoStencil)!=this->_bigStencils.end());
return &this->_bigStencils[protoStencil]->_tan2Weights[0];
}
}
PROTOSTENCIL operator[] (Index protoStencil) {
assert(this->GetNumStencils()>0);
return PROTOSTENCIL(protoStencil, this);
}
void ClearStencil(Index protoStencil) {
Allocator<PROTOSTENCIL, BIG_PROTOSTENCIL>::ClearStencil(protoStencil);
memset(GetTan1Weights(protoStencil), 0, this->_sizes[protoStencil]*sizeof(float));
memset(GetTan2Weights(protoStencil), 0, this->_sizes[protoStencil]*sizeof(float));
}
unsigned char CopyLimitStencil(Index protoStencil,
Index * indices, float * weights, float * tan1Weights, float * tan2Weights) {
unsigned char size =
Allocator<PROTOSTENCIL, BIG_PROTOSTENCIL>::CopyStencil(
protoStencil, indices, weights);
memcpy(tan1Weights, this->GetTan1Weights(protoStencil), size*sizeof(Index));
memcpy(tan2Weights, this->GetTan2Weights(protoStencil), size*sizeof(float));
return size;
}
private:
std::vector<float> _tan1Weights,
_tan2Weights;
};
//
// 'Big' Proto stencil classes
//
// When proto-stencils exceed _maxsize, fall back to dynamically allocated
// "BigStencils" (with 'Limit' specialization to handle tangents)
//
struct BigStencil {
BigStencil(unsigned char size, Index const * indices,
float const * weights) {
_indices.reserve(size+5); _indices.resize(size);
memcpy(&_indices.at(0), indices, size*sizeof(int));
_weights.reserve(size+5); _weights.resize(size);
memcpy(&_weights.at(0), weights, size*sizeof(float));
}
std::vector<Index> _indices;
std::vector<float> _weights;
};
struct BigLimitStencil : public BigStencil {
BigLimitStencil(unsigned char size,
Index const * indices, float const * weights,
float const * tan1Weights, float const * tan2Weights) :
BigStencil(size, indices, weights) {
_tan1Weights.reserve(size+5); _tan1Weights.resize(size);
memcpy(&_tan1Weights.at(0), tan1Weights, size*sizeof(float));
_tan2Weights.reserve(size+5); _tan2Weights.resize(size);
memcpy(&_tan2Weights.at(0), tan2Weights, size*sizeof(float));
}
std::vector<float> _tan1Weights,
_tan2Weights;
};
//
// ProtoStencils
//
// Proto-stencils are used to interpolate stencils from supporting vertices.
// These stencils are backed by a pool allocator to allow for fast push-back
// of contributing control-vertices weights & indices as they are discovered.
//
class ProtoStencil {
public:
ProtoStencil(Index id, Allocator<ProtoStencil, BigStencil> * alloc) :
_id(id), _alloc(alloc) { }
void Clear() {
// Clear() can only ever be called on an empty stencil: nothing to do
assert(_alloc->GetSize(_id)==0);
}
// Factorize from a proto-stencil allocator
void AddWithWeight(ProtoStencil const & src, float weight) {
if(weight==0.0f) {
return;
}
if (src._alloc) {
// Stencil contribution
unsigned char srcSize = src._alloc->GetSize(src._id);
Index const * srcIndices = src._alloc->GetIndices(src._id);
float const * srcWeights = src._alloc->GetWeights(src._id);
addWithWeight(weight, srcSize, srcIndices, srcWeights);
} else {
// Coarse vertex contribution
Index n = _alloc->FindVertex(_id, src._id);
if (Vtr::IndexIsValid(n)) {
_alloc->GetWeights(_id)[n] += weight;
assert(_alloc->GetWeights(_id)[n]>0.0f);
} else {
_alloc->PushBackVertex(_id, src._id, weight);
}
}
}
// Factorize from a finished stencil table
void AddWithWeight(StencilTables const & table, Index idx, float weight) {
assert(idx<table.GetNumStencils());
if(weight==0.0f) {
return;
}
unsigned char srcSize = table.GetSizes()[idx];
Index offset = table.GetOffsets()[idx];
Index const * srcIndices = &table.GetControlIndices()[offset];
float const * srcWeights = &table.GetWeights()[offset];
addWithWeight(weight, srcSize, srcIndices, srcWeights);
}
void AddVaryingWithWeight(ProtoStencil const & src, float weight) {
if (_alloc->GetInterpolateVarying()) {
AddWithWeight(src, weight);
}
}
protected:
friend class ProtoLimitStencil;
void addWithWeight(float weight, unsigned char srcSize,
Index const * srcIndices, float const * srcWeights) {
for (unsigned char i=0; i<srcSize; ++i) {
assert(srcWeights[i]!=0.0f);
float w = weight * srcWeights[i];
if (w==0.0f) {
continue;
}
Index vertIndex = srcIndices[i],
n = _alloc->FindVertex(_id, vertIndex);
if (Vtr::IndexIsValid(n)) {
_alloc->GetWeights(_id)[n] += w;
assert(_alloc->GetWeights(_id)[n]!=0.0f);
} else {
_alloc->PushBackVertex(_id, vertIndex, w);
}
}
}
Index _id;
Allocator<ProtoStencil, BigStencil> * _alloc;
};
typedef Allocator<ProtoStencil, BigStencil> StencilAllocator;
//
// ProtoLimitStencil
//
class ProtoLimitStencil {
public:
ProtoLimitStencil(Index id,
LimitAllocator<ProtoLimitStencil, BigLimitStencil> * alloc) :
_id(id), _alloc(alloc) { }
void Clear() {
// Clear() can only ever be called on an empty stencil: nothing to do
assert(_alloc->GetSize(_id)==0);
}
void AddWithWeight(Stencil const & src,
float weight, float tan1Weight, float tan2Weight) {
if(weight==0.0f) {
return;
}
unsigned char srcSize = *src.GetSizePtr();
Index const * srcIndices = src.GetVertexIndices();
float const * srcWeights = src.GetWeights();
for (unsigned char i=0; i<srcSize; ++i) {
float w = srcWeights[i];
if (w==0.0f) {
continue;
}
Index vertIndex = srcIndices[i],
n = _alloc->FindVertex(_id, vertIndex);
if (Vtr::IndexIsValid(n)) {
_alloc->GetWeights(_id)[n] += weight*w;
_alloc->GetTan1Weights(_id)[n] += tan1Weight*w;
_alloc->GetTan2Weights(_id)[n] += tan2Weight*w;
} else {
_alloc->PushBackVertex(_id, vertIndex,
weight*w, tan1Weight*w, tan2Weight*w);
}
}
}
private:
Index _id;
LimitAllocator<ProtoLimitStencil, BigLimitStencil> * _alloc;
};
typedef LimitAllocator<ProtoLimitStencil, BigLimitStencil> LimitStencilAllocator;
} // end namespace Far
} // end namespace OPENSUBDIV_VERSION
} // end namespace OpenSubdiv
#endif // FAR_PROTOSTENCIL_H