OpenSubdiv/opensubdiv/vtr/level.h
manuelk 15b4135cfb Fix infinitely sharp edges isolation
- change topology refiner to check for edge sharpnesses when selecting faces for isolation
- add face-aggregator for edge tags to Vtr::Level
- fix logic in Far::PatchTablesFactory to correctly tag single-crease patches along infinitely sharp edges

note : this fix is a bit of a cludge - barfowl confirms that the vertex crease tags (VTags) are intended to
carry neighborhood information, which they currently do not. we will revisit this shortly and fix the tags,
which will allow us to simplify the traversal logic when isolating topology features.

fixes #369
2014-12-19 18:18:13 -08:00

741 lines
28 KiB
C++

//
// Copyright 2014 DreamWorks Animation LLC.
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#ifndef VTR_LEVEL_H
#define VTR_LEVEL_H
#include "../version.h"
#include "../sdc/type.h"
#include "../sdc/crease.h"
#include "../sdc/options.h"
#include "../vtr/types.h"
#include <algorithm>
#include <vector>
#include <cassert>
#include <cstring>
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
// Forward declarations for friends:
namespace Far {
template <class MESH> class TopologyRefinerFactory;
class TopologyRefinerFactoryBase;
class TopologyRefiner;
class PatchTablesFactory;
}
namespace Vtr {
class Refinement;
class QuadRefinement;
class TriRefinement;
class FVarRefinement;
class FVarLevel;
//
// Level:
// A refinement level includes a vectorized representation of the topology
// for a particular subdivision level. The topology is "complete" in that any
// level can be used as the base level of another subdivision hierarchy and can
// be considered a complete mesh independent of its ancestors. It currently
// does contain a "depth" member -- as some inferences can then be made about
// the topology (i.e. all quads or all tris if not level 0) but that is still
// under consideration (e.g. a "regular" flag would serve the same purpose, and
// level 0 may even be regular).
//
// This class is intended for private use within the library. So really its
// interface should be fully protected and only those library classes that need
// it will be declared as friends, e.g. Refinement.
//
// The represenation of topology here is to store six topological relationships
// in tables of integers. Each is stored in its own array(s) so the result is
// a SOA representation of the topology. The six relations are:
//
// - face-verts: vertices incident/comprising a face
// - face-edges: edges incident a face
// - edge-verts: vertices incident/comprising an edge
// - edge-faces: faces incident an edge
// - vert-faces: faces incident a vertex
// - vert-edges: edges incident a vertex
//
// There is some redundancy here but the intent is not that this be a minimal
// represenation, the intent is that it be amenable to refinement. Classes in
// the Far layer essentially store 5 of these 6 in a permuted form -- we add
// the face-edges here to simplify refinement.
//
// Notes/limitations/stuff to do -- much of this code still reflects the early days
// when it was being prototyped and so it does not conform to OSD standards in many
// ways:
// - superficial stylistic issues:
// . replacing "m" prefix with "_" on member variables
// - done
// . replace "access" and "modify" prefixes on Array methods with "get"
// - done
// - replace use of "...Count" with "GetNum..."
// - use of Vertex vs Vert in non-local (or any?) methods
// - review public/protected/friend accessibility
//
// Most are more relevant to the refinement, which used to be part of this class:
// - short cuts that need revisiting:
// - support for face-vert counts > 4
// - support for edge-face counts > 2
// - some neighborhood searches avoidable with more "local indexing"
// - identify (informally) where scheme-specific code will be needed, so far:
// - topological splitting and associated marking
// - really the only variable here is whether to generate tris or
// quads from non-quads
// - interpolation
// - potentially not part of the pre-processing required for FarMesh
// and where it appears *not* to be needed:
// - subdivision of sharpness values
// - classification of vertex type/mask
// - apply classification of vertices (computing Rules or masks)
// - apply to base/course level on conversion
// - apply to child level after subdivision of sharpness
// - keep in mind desired similarity with FarMesh tables for ease of transfer
// (contradicts previous point to some degree)
//
class Level {
public:
//
// Simple nested types to hold the tags for each component type -- some of
// which are user-specified features (e.g. whether a face is a hole or not)
// while others indicate the topological nature of the component, how it
// is affected by creasing in its neighborhood, etc.
//
// Most of these properties are passed down to child components during
// refinement, but some -- notably the designation of a component as semi-
// sharp -- require re-determination as sharpnes values are reduced at each
// level.
//
struct VTag {
typedef unsigned short VTagSize;
VTag() { }
VTagSize _nonManifold : 1; // fixed
VTagSize _xordinary : 1; // fixed
VTagSize _boundary : 1; // fixed
VTagSize _infSharp : 1; // fixed
VTagSize _semiSharp : 1; // variable
VTagSize _rule : 4; // variable when _semiSharp
VTagSize _incomplete : 1; // variable for sparse refinement
// On deck -- coming soon...
//VTagSize _constSharp : 1; // variable when _semiSharp
//VTagSize _hasEdits : 1; // variable
//VTagSize _editsApplied : 1; // variable
};
struct ETag {
typedef unsigned char ETagSize;
ETag() { }
ETagSize _nonManifold : 1; // fixed
ETagSize _boundary : 1; // fixed
ETagSize _infSharp : 1; // fixed
ETagSize _semiSharp : 1; // variable
};
struct FTag {
typedef unsigned char FTagSize;
FTag() { }
FTagSize _hole : 1; // fixed
// On deck -- coming soon...
//FTagSize _hasEdits : 1; // variable
};
VTag getFaceCompositeVTag(ConstIndexArray & faceVerts) const;
ETag getFaceCompositeETag(ConstIndexArray & faceEdges) const;
public:
Level();
~Level();
// Simple accessors:
int getDepth() const { return _depth; }
int getNumVertices() const { return _vertCount; }
int getNumFaces() const { return _faceCount; }
int getNumEdges() const { return _edgeCount; }
// More global sizes may prove useful...
int getNumFaceVerticesTotal() const { return (int) _faceVertIndices.size(); }
int getNumFaceEdgesTotal() const { return (int) _faceEdgeIndices.size(); }
int getNumEdgeVerticesTotal() const { return (int) _edgeVertIndices.size(); }
int getNumEdgeFacesTotal() const { return (int) _edgeFaceIndices.size(); }
int getNumVertexFacesTotal() const { return (int) _vertFaceIndices.size(); }
int getNumVertexEdgesTotal() const { return (int) _vertEdgeIndices.size(); }
int getMaxValence() const { return _maxValence; }
int getMaxEdgeFaces() const { return _maxEdgeFaces; }
// Methods to access the relation tables/indices -- note that for some relations
// we store an additional "local index", e.g. for the case of vert-faces if one
// of the faces F[i] is incident a vertex V, then L[i] is the "local index" in
// F[i] of vertex V. Once have only quads (or tris), this local index need only
// occupy two bits and could conceivably be packed into the same integer as the
// face index, but for now, given the need to support faces of potentially high
// valence we'll us an 8- or 16-bit integer.
//
// Methods to access the six topological relations:
ConstIndexArray getFaceVertices(Index faceIndex) const;
ConstIndexArray getFaceEdges(Index faceIndex) const;
ConstIndexArray getEdgeVertices(Index edgeIndex) const;
ConstIndexArray getEdgeFaces(Index edgeIndex) const;
ConstIndexArray getVertexFaces(Index vertIndex) const;
ConstIndexArray getVertexEdges(Index vertIndex) const;
ConstLocalIndexArray getVertexFaceLocalIndices(Index vertIndex) const;
ConstLocalIndexArray getVertexEdgeLocalIndices(Index vertIndex) const;
// Replace these with access to sharpness buffers/arrays rather than elements:
Sharpness getEdgeSharpness(Index edgeIndex) const;
Sharpness getVertexSharpness(Index vertIndex) const;
Sdc::Crease::Rule getVertexRule(Index vertIndex) const;
Index findEdge(Index v0Index, Index v1Index) const;
// Holes
void setHole(Index faceIndex, bool b);
bool isHole(Index faceIndex) const;
public:
// Debugging aides -- unclear what will persist...
enum TopologyError {
TOPOLOGY_MISSING_EDGE_FACES=0,
TOPOLOGY_MISSING_EDGE_VERTS,
TOPOLOGY_MISSING_FACE_EDGES,
TOPOLOGY_MISSING_FACE_VERTS,
TOPOLOGY_MISSING_VERT_FACES,
TOPOLOGY_MISSING_VERT_EDGES,
TOPOLOGY_FAILED_CORRELATION_EDGE_FACE,
TOPOLOGY_FAILED_CORRELATION_FACE_VERT,
TOPOLOGY_FAILED_CORRELATION_FACE_EDGE,
TOPOLOGY_FAILED_ORIENTATION_INCIDENT_EDGE,
TOPOLOGY_FAILED_ORIENTATION_INCIDENT_FACE,
TOPOLOGY_FAILED_ORIENTATION_INCIDENT_FACES_EDGES,
TOPOLOGY_DEGENERATE_EDGE,
TOPOLOGY_NON_MANIFOLD_EDGE,
TOPOLOGY_INVALID_CREASE_EDGE,
TOPOLOGY_INVALID_CREASE_VERT
};
static char const * getTopologyErrorString(TopologyError errCode);
typedef void (* ValidationCallback)(TopologyError errCode, char const * msg, void const * clientData);
bool validateTopology(ValidationCallback callback=0, void const * clientData=0) const;
void print(const Refinement* parentRefinement = 0) const;
public:
// High-level topology queries -- these are likely to be moved elsewhere, but here
// is the best place for them for now...
int gatherManifoldVertexRingFromIncidentQuads(Index vIndex, int vOffset, int ringVerts[]) const;
int gatherQuadRegularInteriorPatchVertices(Index fIndex, Index patchVerts[], int rotation = 0) const;
int gatherQuadRegularBoundaryPatchVertices(Index fIndex, Index patchVerts[], int boundaryEdgeInFace) const;
int gatherQuadRegularCornerPatchVertices( Index fIndex, Index patchVerts[], int cornerVertInFace) const;
int gatherTriRegularInteriorPatchVertices( Index fIndex, Index patchVerts[], int rotation = 0) const;
int gatherTriRegularBoundaryVertexPatchVertices(Index fIndex, Index patchVerts[], int boundaryVertInFace) const;
int gatherTriRegularBoundaryEdgePatchVertices( Index fIndex, Index patchVerts[], int boundaryEdgeInFace) const;
int gatherTriRegularCornerVertexPatchVertices( Index fIndex, Index patchVerts[], int cornerVertInFace) const;
int gatherTriRegularCornerEdgePatchVertices( Index fIndex, Index patchVerts[], int cornerEdgeInFace) const;
bool isSingleCreasePatch(Index face, float* sharpnessOut=NULL, int* rotationOut=NULL) const;
protected:
friend class Refinement;
friend class QuadRefinement;
friend class TriRefinement;
friend class FVarRefinement;
friend class FVarLevel;
template <class MESH> friend class Far::TopologyRefinerFactory;
friend class Far::TopologyRefinerFactoryBase;
friend class Far::TopologyRefiner;
friend class Far::PatchTablesFactory;
// Sizing methods used to construct a level to populate:
void resizeFaces( int numFaces);
void resizeFaceVertices(int numFaceVertsTotal);
void resizeFaceEdges( int numFaceEdgesTotal);
void resizeEdges( int numEdges);
void resizeEdgeVertices(); // always 2*edgeCount
void resizeEdgeFaces(int numEdgeFacesTotal);
void resizeVertices( int numVertices);
void resizeVertexFaces(int numVertexFacesTotal);
void resizeVertexEdges(int numVertexEdgesTotal);
// Modifiers to populate the relations for each component:
IndexArray getFaceVertices(Index faceIndex);
IndexArray getFaceEdges(Index faceIndex);
IndexArray getEdgeVertices(Index edgeIndex);
IndexArray getEdgeFaces(Index edgeIndex);
IndexArray getVertexFaces( Index vertIndex);
LocalIndexArray getVertexFaceLocalIndices(Index vertIndex);
IndexArray getVertexEdges( Index vertIndex);
LocalIndexArray getVertexEdgeLocalIndices(Index vertIndex);
// Replace these with access to sharpness buffers/arrays rather than elements:
Sharpness& getEdgeSharpness(Index edgeIndex);
Sharpness& getVertexSharpness(Index vertIndex);
// Create, destroy and populate face-varying channels:
int createFVarChannel(int fvarValueCount, Sdc::Options const& options);
void destroyFVarChannel(int channel = 0);
int getNumFVarChannels() const { return (int) _fvarChannels.size(); }
int getNumFVarValues(int channel = 0) const;
ConstIndexArray getFVarFaceValues(Index faceIndex, int channel = 0) const;
IndexArray getFVarFaceValues(Index faceIndex, int channel = 0);
void completeFVarChannelTopology(int channel = 0);
// Counts and offsets for all relation types:
// - these may be unwarranted if we let Refinement access members directly...
int getNumFaceVertices( Index faceIndex) const { return _faceVertCountsAndOffsets[2*faceIndex]; }
int getOffsetOfFaceVertices(Index faceIndex) const { return _faceVertCountsAndOffsets[2*faceIndex + 1]; }
int getNumFaceEdges( Index faceIndex) const { return getNumFaceVertices(faceIndex); }
int getOffsetOfFaceEdges(Index faceIndex) const { return getOffsetOfFaceVertices(faceIndex); }
int getNumEdgeVertices( Index ) const { return 2; }
int getOffsetOfEdgeVertices(Index edgeIndex) const { return 2 * edgeIndex; }
int getNumEdgeFaces( Index edgeIndex) const { return _edgeFaceCountsAndOffsets[2*edgeIndex]; }
int getOffsetOfEdgeFaces(Index edgeIndex) const { return _edgeFaceCountsAndOffsets[2*edgeIndex + 1]; }
int getNumVertexFaces( Index vertIndex) const { return _vertFaceCountsAndOffsets[2*vertIndex]; }
int getOffsetOfVertexFaces(Index vertIndex) const { return _vertFaceCountsAndOffsets[2*vertIndex + 1]; }
int getNumVertexEdges( Index vertIndex) const { return _vertEdgeCountsAndOffsets[2*vertIndex]; }
int getOffsetOfVertexEdges(Index vertIndex) const { return _vertEdgeCountsAndOffsets[2*vertIndex + 1]; }
//
// Note that for some relations, the size of the relations for a child component
// can vary radically from its parent due to the sparsity of the refinement. So
// in these cases a few additional utilities are provided to help define the set
// of incident components. Assuming adequate memory has been allocated, the
// "resize" methods here initialize the set of incident components by setting
// both the size and the appropriate offset, while "trim" is use to quickly lower
// the size from an upper bound and nothing else.
//
void resizeFaceVertices(Index FaceIndex, int count);
void resizeEdgeFaces(Index edgeIndex, int count);
void trimEdgeFaces( Index edgeIndex, int count);
void resizeVertexFaces(Index vertIndex, int count);
void trimVertexFaces( Index vertIndex, int count);
void resizeVertexEdges(Index vertIndex, int count);
void trimVertexEdges( Index vertIndex, int count);
protected:
//
// Plans where to have a few specific friend classes properly construct the topology,
// e.g. the Refinement class. There is now clearly a need to have some class
// construct full topology given only a simple face-vertex list. That can be done
// externally (either a Factory outside Vtr or another Vtr construction helper), but
// until we decide where, the required implementation is defined here.
//
void completeTopologyFromFaceVertices();
Index findEdge(Index v0, Index v1, ConstIndexArray v0Edges) const;
// Methods supporting the above:
void orientIncidentComponents();
bool orderVertexFacesAndEdges(Index vIndex, Index* vFaces, Index* vEdges) const;
bool orderVertexFacesAndEdges(Index vIndex);
void populateLocalIndices();
IndexArray shareFaceVertCountsAndOffsets() const;
protected:
//
// A Level is independent of subdivision scheme or options. While it may have been
// affected by them in its construction, they are not associated with it -- a Level
// is pure topology and any subdivision parameters are external.
//
// Simple members for inventory, etc.
int _faceCount;
int _edgeCount;
int _vertCount;
// TBD - "depth" is clearly useful in both the topological splitting and the
// stencil queries so could be valuable in both. As face-vert valence becomes
// constant there is no need to store face-vert and face-edge counts so it has
// value in Level, though perhaps specified as something other than "depth"
int _depth;
int _maxEdgeFaces;
int _maxValence;
//
// Topology vectors:
// Note that of all of these, only data for the face-edge relation is not
// stored in the osd::FarTables in any form. The FarTable vectors combine
// the edge-vert and edge-face relations. The eventual goal is that this
// data be part of the osd::Far classes and be a superset of the FarTable
// vectors, i.e. no data duplication or conversion. The fact that FarTable
// already stores 5 of the 6 possible relations should make the topology
// storage as a whole a non-issue.
//
// The vert-face-child and vert-edge-child indices are also arguably not
// a topology relation but more one for parent/child relations. But it is
// a topological relationship, and if named differently would not likely
// raise this. It has been named with "child" in the name as it does play
// a more significant role during subdivision in mapping between parent
// and child components, and so has been named to reflect that more clearly.
//
// Per-face:
std::vector<Index> _faceVertCountsAndOffsets; // 2 per face, redundant after level 0
std::vector<Index> _faceVertIndices; // 3 or 4 per face, variable at level 0
std::vector<Index> _faceEdgeIndices; // matches face-vert indices
std::vector<FTag> _faceTags; // 1 per face: includes "hole" tag
// Per-edge:
std::vector<Index> _edgeVertIndices; // 2 per edge
std::vector<Index> _edgeFaceCountsAndOffsets; // 2 per edge
std::vector<Index> _edgeFaceIndices; // varies with faces per edge
std::vector<Sharpness> _edgeSharpness; // 1 per edge
std::vector<ETag> _edgeTags; // 1 per edge: manifold, boundary, etc.
// Per-vertex:
std::vector<Index> _vertFaceCountsAndOffsets; // 2 per vertex
std::vector<Index> _vertFaceIndices; // varies with valence
std::vector<LocalIndex> _vertFaceLocalIndices; // varies with valence, 8-bit for now
std::vector<Index> _vertEdgeCountsAndOffsets; // 2 per vertex
std::vector<Index> _vertEdgeIndices; // varies with valence
std::vector<LocalIndex> _vertEdgeLocalIndices; // varies with valence, 8-bit for now
std::vector<Sharpness> _vertSharpness; // 1 per vertex
std::vector<VTag> _vertTags; // 1 per vertex: manifold, Sdc::Rule, etc.
// Face-varying channels:
std::vector<FVarLevel*> _fvarChannels;
};
//
// Access/modify the vertices indicent a given face:
//
inline ConstIndexArray
Level::getFaceVertices(Index faceIndex) const {
return ConstIndexArray(&_faceVertIndices[_faceVertCountsAndOffsets[faceIndex*2+1]],
_faceVertCountsAndOffsets[faceIndex*2]);
}
inline IndexArray
Level::getFaceVertices(Index faceIndex) {
return IndexArray(&_faceVertIndices[_faceVertCountsAndOffsets[faceIndex*2+1]],
_faceVertCountsAndOffsets[faceIndex*2]);
}
inline void
Level::resizeFaceVertices(Index faceIndex, int count) {
assert(count < 256);
int* countOffsetPair = &_faceVertCountsAndOffsets[faceIndex*2];
countOffsetPair[0] = count;
countOffsetPair[1] = (faceIndex == 0) ? 0 : (countOffsetPair[-2] + countOffsetPair[-1]);
_maxValence = std::max(_maxValence, count);
}
//
// Access/modify the edges indicent a given face:
//
inline ConstIndexArray
Level::getFaceEdges(Index faceIndex) const {
return ConstIndexArray(&_faceEdgeIndices[_faceVertCountsAndOffsets[faceIndex*2+1]],
_faceVertCountsAndOffsets[faceIndex*2]);
}
inline IndexArray
Level::getFaceEdges(Index faceIndex) {
return IndexArray(&_faceEdgeIndices[_faceVertCountsAndOffsets[faceIndex*2+1]],
_faceVertCountsAndOffsets[faceIndex*2]);
}
//
// Access/modify the faces indicent a given vertex:
//
inline ConstIndexArray
Level::getVertexFaces(Index vertIndex) const {
return ConstIndexArray(&_vertFaceIndices[_vertFaceCountsAndOffsets[vertIndex*2+1]],
_vertFaceCountsAndOffsets[vertIndex*2]);
}
inline IndexArray
Level::getVertexFaces(Index vertIndex) {
return IndexArray(&_vertFaceIndices[_vertFaceCountsAndOffsets[vertIndex*2+1]],
_vertFaceCountsAndOffsets[vertIndex*2]);
}
inline ConstLocalIndexArray
Level::getVertexFaceLocalIndices(Index vertIndex) const {
return ConstLocalIndexArray(&_vertFaceLocalIndices[_vertFaceCountsAndOffsets[vertIndex*2+1]],
_vertFaceCountsAndOffsets[vertIndex*2]);
}
inline LocalIndexArray
Level::getVertexFaceLocalIndices(Index vertIndex) {
return LocalIndexArray(&_vertFaceLocalIndices[_vertFaceCountsAndOffsets[vertIndex*2+1]],
_vertFaceCountsAndOffsets[vertIndex*2]);
}
inline void
Level::resizeVertexFaces(Index vertIndex, int count) {
int* countOffsetPair = &_vertFaceCountsAndOffsets[vertIndex*2];
countOffsetPair[0] = count;
countOffsetPair[1] = (vertIndex == 0) ? 0 : (countOffsetPair[-2] + countOffsetPair[-1]);
}
inline void
Level::trimVertexFaces(Index vertIndex, int count) {
_vertFaceCountsAndOffsets[vertIndex*2] = count;
}
//
// Access/modify the edges indicent a given vertex:
//
inline ConstIndexArray
Level::getVertexEdges(Index vertIndex) const {
return ConstIndexArray(&_vertEdgeIndices[_vertEdgeCountsAndOffsets[vertIndex*2+1]],
_vertEdgeCountsAndOffsets[vertIndex*2]);
}
inline IndexArray
Level::getVertexEdges(Index vertIndex) {
return IndexArray(&_vertEdgeIndices[_vertEdgeCountsAndOffsets[vertIndex*2+1]],
_vertEdgeCountsAndOffsets[vertIndex*2]);
}
inline ConstLocalIndexArray
Level::getVertexEdgeLocalIndices(Index vertIndex) const {
return ConstLocalIndexArray(&_vertEdgeLocalIndices[_vertEdgeCountsAndOffsets[vertIndex*2+1]],
_vertEdgeCountsAndOffsets[vertIndex*2]);
}
inline LocalIndexArray
Level::getVertexEdgeLocalIndices(Index vertIndex) {
return LocalIndexArray(&_vertEdgeLocalIndices[_vertEdgeCountsAndOffsets[vertIndex*2+1]],
_vertEdgeCountsAndOffsets[vertIndex*2]);
}
inline void
Level::resizeVertexEdges(Index vertIndex, int count) {
int* countOffsetPair = &_vertEdgeCountsAndOffsets[vertIndex*2];
countOffsetPair[0] = count;
countOffsetPair[1] = (vertIndex == 0) ? 0 : (countOffsetPair[-2] + countOffsetPair[-1]);
_maxValence = std::max(_maxValence, count);
}
inline void
Level::trimVertexEdges(Index vertIndex, int count) {
_vertEdgeCountsAndOffsets[vertIndex*2] = count;
}
//
// Access/modify the vertices indicent a given edge:
//
inline ConstIndexArray
Level::getEdgeVertices(Index edgeIndex) const {
return ConstIndexArray(&_edgeVertIndices[edgeIndex*2], 2);
}
inline IndexArray
Level::getEdgeVertices(Index edgeIndex) {
return IndexArray(&_edgeVertIndices[edgeIndex*2], 2);
}
//
// Access/modify the faces indicent a given edge:
//
inline ConstIndexArray
Level::getEdgeFaces(Index edgeIndex) const {
return ConstIndexArray(&_edgeFaceIndices[_edgeFaceCountsAndOffsets[edgeIndex*2+1]],
_edgeFaceCountsAndOffsets[edgeIndex*2]);
}
inline IndexArray
Level::getEdgeFaces(Index edgeIndex) {
return IndexArray(&_edgeFaceIndices[_edgeFaceCountsAndOffsets[edgeIndex*2+1]],
_edgeFaceCountsAndOffsets[edgeIndex*2]);
}
inline void
Level::resizeEdgeFaces(Index edgeIndex, int count) {
int* countOffsetPair = &_edgeFaceCountsAndOffsets[edgeIndex*2];
countOffsetPair[0] = count;
countOffsetPair[1] = (edgeIndex == 0) ? 0 : (countOffsetPair[-2] + countOffsetPair[-1]);
_maxEdgeFaces = std::max(_maxEdgeFaces, count);
}
inline void
Level::trimEdgeFaces(Index edgeIndex, int count) {
_edgeFaceCountsAndOffsets[edgeIndex*2] = count;
}
//
// Access/modify sharpness values:
//
inline Sharpness
Level::getEdgeSharpness(Index edgeIndex) const {
return _edgeSharpness[edgeIndex];
}
inline Sharpness&
Level::getEdgeSharpness(Index edgeIndex) {
return _edgeSharpness[edgeIndex];
}
inline Sharpness
Level::getVertexSharpness(Index vertIndex) const {
return _vertSharpness[vertIndex];
}
inline Sharpness&
Level::getVertexSharpness(Index vertIndex) {
return _vertSharpness[vertIndex];
}
inline Sdc::Crease::Rule
Level::getVertexRule(Index vertIndex) const {
return (Sdc::Crease::Rule) _vertTags[vertIndex]._rule;
}
//
// Access/modify hole tag:
//
inline void
Level::setHole(Index faceIndex, bool b) {
_faceTags[faceIndex]._hole = b;
}
inline bool
Level::isHole(Index faceIndex) const {
return _faceTags[faceIndex]._hole;
}
//
// Sizing methods to allocate space:
//
inline void
Level::resizeFaces(int faceCount) {
_faceCount = faceCount;
_faceVertCountsAndOffsets.resize(2 * faceCount);
_faceTags.resize(faceCount);
std::memset(&_faceTags[0], 0, _faceCount * sizeof(FTag));
}
inline void
Level::resizeFaceVertices(int totalFaceVertCount) {
_faceVertIndices.resize(totalFaceVertCount);
}
inline void
Level::resizeFaceEdges(int totalFaceEdgeCount) {
_faceEdgeIndices.resize(totalFaceEdgeCount);
}
inline void
Level::resizeEdges(int edgeCount) {
_edgeCount = edgeCount;
_edgeFaceCountsAndOffsets.resize(2 * edgeCount);
_edgeSharpness.resize(edgeCount);
_edgeTags.resize(edgeCount);
if (edgeCount>0) {
std::memset(&_edgeTags[0], 0, _edgeCount * sizeof(ETag));
}
}
inline void
Level::resizeEdgeVertices() {
_edgeVertIndices.resize(2 * _edgeCount);
}
inline void
Level::resizeEdgeFaces(int totalEdgeFaceCount) {
_edgeFaceIndices.resize(totalEdgeFaceCount);
}
inline void
Level::resizeVertices(int vertCount) {
_vertCount = vertCount;
_vertFaceCountsAndOffsets.resize(2 * vertCount);
_vertEdgeCountsAndOffsets.resize(2 * vertCount);
_vertSharpness.resize(vertCount);
_vertTags.resize(vertCount);
std::memset(&_vertTags[0], 0, _vertCount * sizeof(VTag));
}
inline void
Level::resizeVertexFaces(int totalVertFaceCount) {
_vertFaceIndices.resize(totalVertFaceCount);
_vertFaceLocalIndices.resize(totalVertFaceCount);
}
inline void
Level::resizeVertexEdges(int totalVertEdgeCount) {
_vertEdgeIndices.resize(totalVertEdgeCount);
_vertEdgeLocalIndices.resize(totalVertEdgeCount);
}
inline IndexArray
Level::shareFaceVertCountsAndOffsets() const {
// XXXX manuelk we have to force const casting here (classes don't 'share'
// members usually...)
return IndexArray(const_cast<Index *>(&_faceVertCountsAndOffsets[0]),
(int)_faceVertCountsAndOffsets.size());
}
} // end namespace Vtr
} // end namespace OPENSUBDIV_VERSION
using namespace OPENSUBDIV_VERSION;
} // end namespace OpenSubdiv
#endif /* VTR_LEVEL_H */