OpenSubdiv/opensubdiv/osd/cudaKernel.cu
manuelk 3ae50d1c50 Amending Apache license language & file headers.
New text:

     Copyright 2013 Pixar

     Licensed under the Apache License, Version 2.0 (the "Apache License")
     with the following modification; you may not use this file except in
     compliance with the Apache License and the following modification to it:
     Section 6. Trademarks. is deleted and replaced with:

     6. Trademarks. This License does not grant permission to use the trade
        names, trademarks, service marks, or product names of the Licensor
        and its affiliates, except as required to comply with Section 4(c) of
        the License and to reproduce the content of the NOTICE file.

     You may obtain a copy of the Apache License at

         http://www.apache.org/licenses/LICENSE-2.0

     Unless required by applicable law or agreed to in writing, software
     distributed under the Apache License with the above modification is
     distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
     KIND, either express or implied. See the Apache License for the specific
     language governing permissions and limitations under the Apache License.
2013-09-26 12:04:57 -07:00

700 lines
30 KiB
Plaintext

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#include <assert.h>
template<int N> struct DeviceVertex
{
float pos[3];
float userVertexData[N];
__device__ void addWithWeight(const DeviceVertex<N> *src, float weight) {
pos[0] += src->pos[0] * weight;
pos[1] += src->pos[1] * weight;
pos[2] += src->pos[2] * weight;
for(int i = 0; i < N; ++i){
userVertexData[i] += src->userVertexData[i] * weight;
}
}
__device__ void clear() {
pos[0] = pos[1] = pos[2] = 0.0f;
for(int i = 0; i < N; ++i){
userVertexData[i] = 0.0f;
}
}
};
template<int N> struct DeviceVarying
{
float v[N];
__device__ void addVaryingWithWeight(const DeviceVarying<N> *src, float weight) {
for(int i = 0; i < N; ++i){
v[i] += src->v[i] * weight;
}
}
__device__ void clear() {
for(int i = 0; i < N; ++i){
v[i] = 0.0f;
}
}
};
// Specialize DeviceVarying for N=0 to avoid compile error:
// "flexible array member in otherwise empty struct"
template<> struct DeviceVarying<0>
{
__device__ void addVaryingWithWeight(const DeviceVarying<0> *src, float weight) {
}
__device__ void clear() {
}
};
struct DeviceTable
{
void **tables;
int *F0_IT;
int *F0_ITa;
int *E0_IT;
int *V0_IT;
int *V0_ITa;
float *E0_S;
float *V0_S;
};
__device__ void clear(float *dst, int count)
{
for(int i = 0; i < count; ++i) dst[i] = 0;
}
__device__ void addWithWeight(float *dst, float *src, float weight, int count)
{
for(int i = 0; i < count; ++i) dst[i] += src[i] * weight;
}
__device__ void addVaryingWithWeight(float *dst, float *src, float weight, int count)
{
for(int i = 0; i < count; ++i) dst[i] += src[i] * weight;
}
template <int NUM_USER_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeFace(float *fVertex, float *fVaryings, int *F0_IT, int *F0_ITa, int offset, int tableOffset, int start, int end)
{
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_USER_VERTEX_ELEMENTS>*)fVertex;
DeviceVarying<NUM_VARYING_ELEMENTS> *varyings = (DeviceVarying<NUM_VARYING_ELEMENTS>*)fVaryings;
for(int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x; i < end + tableOffset; i += blockDim.x * gridDim.x){
int h = F0_ITa[2*i];
int n = F0_ITa[2*i+1];
float weight = 1.0f/n;
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> dst;
dst.clear();
if(NUM_VARYING_ELEMENTS > 0){
DeviceVarying<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
for(int j=0; j<n; ++j){
int index = F0_IT[h+j];
dst.addWithWeight(&vertex[index], weight);
dstVarying.addVaryingWithWeight(&varyings[index], weight);
}
vertex[offset + i - tableOffset] = dst;
varyings[offset + i - tableOffset] = dstVarying;
}else{
for(int j=0; j<n; ++j){
int index = F0_IT[h+j];
dst.addWithWeight(&vertex[index], weight);
}
vertex[offset + i - tableOffset] = dst;
}
}
}
__global__ void
computeFace(float *fVertex, int numVertexElements, float *fVaryings, int numVaryingElements,
int *F0_IT, int *F0_ITa, int offset, int tableOffset, int start, int end)
{
for(int i = start + tableOffset +threadIdx.x + blockIdx.x*blockDim.x; i < end + tableOffset; i += blockDim.x * gridDim.x){
int h = F0_ITa[2*i];
int n = F0_ITa[2*i+1];
float weight = 1.0f/n;
// XXX: can we use local stack like alloca?
float *dstVertex = fVertex + (i+offset-tableOffset)*numVertexElements;
clear(dstVertex, numVertexElements);
float *dstVarying = fVaryings + (i+offset-tableOffset)*numVaryingElements;
clear(dstVarying, numVaryingElements);
for(int j=0; j<n; ++j){
int index = F0_IT[h+j];
addWithWeight(dstVertex, fVertex + index*numVertexElements, weight, numVertexElements);
addVaryingWithWeight(dstVarying, fVaryings + index*numVaryingElements, weight, numVaryingElements);
}
}
}
template <int NUM_USER_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeEdge(float *fVertex, float *fVaryings, int *E0_IT, float *E0_S, int offset, int tableOffset, int start, int end)
{
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_USER_VERTEX_ELEMENTS>*)fVertex;
DeviceVarying<NUM_VARYING_ELEMENTS> *varyings = (DeviceVarying<NUM_VARYING_ELEMENTS>*)fVaryings;
for(int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x; i < end + tableOffset; i+= blockDim.x * gridDim.x){
int eidx0 = E0_IT[4*i+0];
int eidx1 = E0_IT[4*i+1];
int eidx2 = E0_IT[4*i+2];
int eidx3 = E0_IT[4*i+3];
float vertWeight = E0_S[i*2+0];
// Fully sharp edge : vertWeight = 0.5f;
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> dst;
dst.clear();
dst.addWithWeight(&vertex[eidx0], vertWeight);
dst.addWithWeight(&vertex[eidx1], vertWeight);
if(eidx2 > -1){
float faceWeight = E0_S[i*2+1];
dst.addWithWeight(&vertex[eidx2], faceWeight);
dst.addWithWeight(&vertex[eidx3], faceWeight);
}
vertex[offset+i-tableOffset] = dst;
if(NUM_VARYING_ELEMENTS > 0){
DeviceVarying<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
dstVarying.addVaryingWithWeight(&varyings[eidx0], 0.5f);
dstVarying.addVaryingWithWeight(&varyings[eidx1], 0.5f);
varyings[offset+i-tableOffset] = dstVarying;
}
}
}
__global__ void
computeEdge(float *fVertex, int numVertexElements, float *fVarying, int numVaryingElements,
int *E0_IT, float *E0_S, int offset, int tableOffset, int start, int end)
{
for(int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x; i < end + tableOffset; i+= blockDim.x * gridDim.x){
int eidx0 = E0_IT[4*i+0];
int eidx1 = E0_IT[4*i+1];
int eidx2 = E0_IT[4*i+2];
int eidx3 = E0_IT[4*i+3];
float vertWeight = E0_S[i*2+0];
// Fully sharp edge : vertWeight = 0.5f;
float *dstVertex = fVertex + (i+offset-tableOffset)*numVertexElements;
clear(dstVertex, numVertexElements);
addWithWeight(dstVertex, fVertex + eidx0*numVertexElements, vertWeight, numVertexElements);
addWithWeight(dstVertex, fVertex + eidx1*numVertexElements, vertWeight, numVertexElements);
if(eidx2 > -1){
float faceWeight = E0_S[i*2+1];
addWithWeight(dstVertex, fVertex + eidx2*numVertexElements, faceWeight, numVertexElements);
addWithWeight(dstVertex, fVertex + eidx3*numVertexElements, faceWeight, numVertexElements);
}
if(numVaryingElements > 0){
float *dstVarying = fVarying + (i+offset-tableOffset)*numVaryingElements;
clear(dstVarying, numVaryingElements);
addVaryingWithWeight(dstVarying, fVarying + eidx0*numVaryingElements, 0.5f, numVaryingElements);
addVaryingWithWeight(dstVarying, fVarying + eidx1*numVaryingElements, 0.5f, numVaryingElements);
}
}
}
template <int NUM_USER_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeVertexA(float *fVertex, float *fVaryings, int *V0_ITa, float *V0_S, int offset, int tableOffset, int start, int end, int pass)
{
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_USER_VERTEX_ELEMENTS>*)fVertex;
DeviceVarying<NUM_VARYING_ELEMENTS> *varyings = (DeviceVarying<NUM_VARYING_ELEMENTS>*)fVaryings;
for(int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x; i < end+tableOffset; i += blockDim.x * gridDim.x){
int n = V0_ITa[5*i+1];
int p = V0_ITa[5*i+2];
int eidx0 = V0_ITa[5*i+3];
int eidx1 = V0_ITa[5*i+4];
float weight = (pass==1) ? V0_S[i] : 1.0f - V0_S[i];
// In the case of fractional weight, the weight must be inverted since
// the value is shared with the k_Smooth kernel (statistically the
// k_Smooth kernel runs much more often than this one)
if (weight>0.0f && weight<1.0f && n > 0)
weight=1.0f-weight;
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> dst;
if (not pass) {
dst.clear();
} else {
dst = vertex[i+offset-tableOffset];
}
if (eidx0==-1 || (pass==0 && (n==-1)) ) {
dst.addWithWeight(&vertex[p], weight);
} else {
dst.addWithWeight(&vertex[p], weight * 0.75f);
dst.addWithWeight(&vertex[eidx0], weight * 0.125f);
dst.addWithWeight(&vertex[eidx1], weight * 0.125f);
}
vertex[i+offset-tableOffset] = dst;
if(NUM_VARYING_ELEMENTS > 0){
if(not pass){
DeviceVarying<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
dstVarying.addVaryingWithWeight(&varyings[p], 1.0f);
varyings[i+offset-tableOffset] = dstVarying;
}
}
}
}
__global__ void
computeVertexA(float *fVertex, int numVertexElements, float *fVaryings, int numVaryingElements,
int *V0_ITa, float *V0_S, int offset, int tableOffset, int start, int end, int pass)
{
for(int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x; i < end + tableOffset; i += blockDim.x * gridDim.x){
int n = V0_ITa[5*i+1];
int p = V0_ITa[5*i+2];
int eidx0 = V0_ITa[5*i+3];
int eidx1 = V0_ITa[5*i+4];
float weight = (pass==1) ? V0_S[i] : 1.0f - V0_S[i];
// In the case of fractional weight, the weight must be inverted since
// the value is shared with the k_Smooth kernel (statistically the
// k_Smooth kernel runs much more often than this one)
if (weight>0.0f && weight<1.0f && n > 0)
weight=1.0f-weight;
float *dstVertex = fVertex + (i+offset-tableOffset)*numVertexElements;
if (not pass) {
clear(dstVertex, numVertexElements);
}
if (eidx0==-1 || (pass==0 && (n==-1)) ) {
addWithWeight(dstVertex, fVertex + p*numVertexElements, weight, numVertexElements);
} else {
addWithWeight(dstVertex, fVertex + p*numVertexElements, weight*0.75f, numVertexElements);
addWithWeight(dstVertex, fVertex + eidx0*numVertexElements, weight*0.125f, numVertexElements);
addWithWeight(dstVertex, fVertex + eidx1*numVertexElements, weight*0.125f, numVertexElements);
}
if(numVaryingElements > 0){
if(not pass){
float *dstVarying = fVaryings + (i+offset-tableOffset)*numVaryingElements;
clear(dstVarying, numVaryingElements);
addVaryingWithWeight(dstVarying, fVaryings + p*numVaryingElements, 1.0f, numVaryingElements);
}
}
}
}
//texture <int, 1> texV0_IT;
template <int NUM_USER_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeVertexB(float *fVertex, float *fVaryings,
const int *V0_ITa, const int *V0_IT, const float *V0_S, int offset, int tableOffset, int start, int end)
{
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_USER_VERTEX_ELEMENTS>*)fVertex;
DeviceVarying<NUM_VARYING_ELEMENTS> *varyings = (DeviceVarying<NUM_VARYING_ELEMENTS>*)fVaryings;
for(int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x; i < end + tableOffset; i += blockDim.x * gridDim.x){
int h = V0_ITa[5*i];
int n = V0_ITa[5*i+1];
int p = V0_ITa[5*i+2];
float weight = V0_S[i];
float wp = 1.0f/float(n*n);
float wv = (n-2.0f) * n * wp;
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> dst;
dst.clear();
dst.addWithWeight(&vertex[p], weight * wv);
for(int j = 0; j < n; ++j){
dst.addWithWeight(&vertex[V0_IT[h+j*2]], weight * wp);
dst.addWithWeight(&vertex[V0_IT[h+j*2+1]], weight * wp);
// int idx0 = tex1Dfetch(texV0_IT, h+j*2);
// int idx1 = tex1Dfetch(texV0_IT, h+j*2+1);
// dst.addWithWeight(&vertex[idx0], weight * wp);
// dst.addWithWeight(&vertex[idx1], weight * wp);
}
vertex[i+offset-tableOffset] = dst;
if(NUM_VARYING_ELEMENTS > 0){
DeviceVarying<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
dstVarying.addVaryingWithWeight(&varyings[p], 1.0f);
varyings[i+offset-tableOffset] = dstVarying;
}
}
}
__global__ void
computeVertexB(float *fVertex, int numVertexElements, float *fVaryings, int numVaryingElements,
const int *V0_ITa, const int *V0_IT, const float *V0_S, int offset, int tableOffset, int start, int end)
{
for(int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x; i < end + tableOffset; i += blockDim.x * gridDim.x){
int h = V0_ITa[5*i];
int n = V0_ITa[5*i+1];
int p = V0_ITa[5*i+2];
float weight = V0_S[i];
float wp = 1.0f/float(n*n);
float wv = (n-2.0f) * n * wp;
float *dstVertex = fVertex + (i+offset-tableOffset)*numVertexElements;
clear(dstVertex, numVertexElements);
addWithWeight(dstVertex, fVertex + p*numVertexElements, weight*wv, numVertexElements);
for(int j = 0; j < n; ++j){
addWithWeight(dstVertex, fVertex + V0_IT[h+j*2]*numVertexElements, weight*wp, numVertexElements);
addWithWeight(dstVertex, fVertex + V0_IT[h+j*2+1]*numVertexElements, weight*wp, numVertexElements);
}
if(numVaryingElements > 0){
float *dstVarying = fVaryings + (i+offset-tableOffset)*numVaryingElements;
clear(dstVarying, numVaryingElements);
addVaryingWithWeight(dstVarying, fVaryings + p*numVaryingElements, 1.0f, numVaryingElements);
}
}
}
// --------------------------------------------------------------------------------------------
template <int NUM_USER_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeLoopVertexB(float *fVertex, float *fVaryings, int *V0_ITa, int *V0_IT, float *V0_S, int offset, int tableOffset, int start, int end)
{
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_USER_VERTEX_ELEMENTS>*)fVertex;
DeviceVarying<NUM_VARYING_ELEMENTS> *varyings = (DeviceVarying<NUM_VARYING_ELEMENTS>*)fVaryings;
for(int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x; i < end + tableOffset; i += blockDim.x * gridDim.x){
int h = V0_ITa[5*i];
int n = V0_ITa[5*i+1];
int p = V0_ITa[5*i+2];
float weight = V0_S[i];
float wp = 1.0f/float(n);
float beta = 0.25f * __cosf(float(M_PI) * 2.0f * wp) + 0.375f;
beta = beta * beta;
beta = (0.625f - beta) * wp;
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> dst;
dst.clear();
dst.addWithWeight(&vertex[p], weight * (1.0f - (beta * n)));
for(int j = 0; j < n; ++j){
dst.addWithWeight(&vertex[V0_IT[h+j]], weight * beta);
}
vertex[i+offset-tableOffset] = dst;
if(NUM_VARYING_ELEMENTS > 0){
DeviceVarying<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
dstVarying.addVaryingWithWeight(&varyings[p], 1.0f);
varyings[i+offset-tableOffset] = dstVarying;
}
}
}
__global__ void
computeLoopVertexB(float *fVertex, int numVertexElements, float *fVaryings, int numVaryingElements,
const int *V0_ITa, const int *V0_IT, const float *V0_S, int offset, int tableOffset, int start, int end)
{
for(int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x; i < end + tableOffset; i += blockDim.x * gridDim.x){
int h = V0_ITa[5*i];
int n = V0_ITa[5*i+1];
int p = V0_ITa[5*i+2];
float weight = V0_S[i];
float wp = 1.0f/float(n);
float beta = 0.25f * __cosf(float(M_PI) * 2.0f * wp) + 0.375f;
beta = beta * beta;
beta = (0.625f - beta) * wp;
float *dstVertex = fVertex + (i+offset-tableOffset)*numVertexElements;
clear(dstVertex, numVertexElements);
addWithWeight(dstVertex, fVertex + p*numVertexElements, weight*(1.0f-(beta*n)), numVertexElements);
for(int j = 0; j < n; ++j){
addWithWeight(dstVertex, fVertex + V0_IT[h+j]*numVertexElements, weight*beta, numVertexElements);
}
if(numVaryingElements > 0){
float *dstVarying = fVaryings + (i+offset-tableOffset)*numVaryingElements;
clear(dstVarying, numVaryingElements);
addVaryingWithWeight(dstVarying, fVaryings + p*numVaryingElements, 1.0f, numVaryingElements);
}
}
}
// --------------------------------------------------------------------------------------------
template <int NUM_USER_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeBilinearEdge(float *fVertex, float *fVaryings, int *E0_IT, int offset, int tableOffset, int start, int end)
{
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_USER_VERTEX_ELEMENTS>*)fVertex;
DeviceVarying<NUM_VARYING_ELEMENTS> *varyings = (DeviceVarying<NUM_VARYING_ELEMENTS>*)fVaryings;
for(int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x; i < end + tableOffset; i+= blockDim.x * gridDim.x){
int eidx0 = E0_IT[2*i+0];
int eidx1 = E0_IT[2*i+1];
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> dst;
dst.clear();
dst.addWithWeight(&vertex[eidx0], 0.5f);
dst.addWithWeight(&vertex[eidx1], 0.5f);
vertex[offset+i-tableOffset] = dst;
if(NUM_VARYING_ELEMENTS > 0){
DeviceVarying<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
dstVarying.addVaryingWithWeight(&varyings[eidx0], 0.5f);
dstVarying.addVaryingWithWeight(&varyings[eidx1], 0.5f);
varyings[offset+i-tableOffset] = dstVarying;
}
}
}
__global__ void
computeBilinearEdge(float *fVertex, int numVertexElements, float *fVarying, int numVaryingElements,
int *E0_IT, int offset, int tableOffset, int start, int end)
{
for(int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x; i < end + tableOffset; i+= blockDim.x * gridDim.x){
int eidx0 = E0_IT[2*i+0];
int eidx1 = E0_IT[2*i+1];
float *dstVertex = fVertex + (i+offset-tableOffset)*numVertexElements;
clear(dstVertex, numVertexElements);
addWithWeight(dstVertex, fVertex + eidx0*numVertexElements, 0.5f, numVertexElements);
addWithWeight(dstVertex, fVertex + eidx1*numVertexElements, 0.5f, numVertexElements);
if(numVaryingElements > 0){
float *dstVarying = fVarying + (i+offset-tableOffset)*numVaryingElements;
clear(dstVarying, numVaryingElements);
addVaryingWithWeight(dstVarying, fVarying + eidx0*numVaryingElements, 0.5f, numVaryingElements);
addVaryingWithWeight(dstVarying, fVarying + eidx1*numVaryingElements, 0.5f, numVaryingElements);
}
}
}
template <int NUM_USER_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeBilinearVertex(float *fVertex, float *fVaryings, int *V0_ITa, int offset, int tableOffset, int start, int end)
{
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_USER_VERTEX_ELEMENTS>*)fVertex;
DeviceVarying<NUM_VARYING_ELEMENTS> *varyings = (DeviceVarying<NUM_VARYING_ELEMENTS>*)fVaryings;
for(int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x; i < end + tableOffset; i += blockDim.x * gridDim.x){
int p = V0_ITa[i];
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> dst;
dst.clear();
dst.addWithWeight(&vertex[p], 1.0f);
vertex[i+offset-tableOffset] = dst;
if(NUM_VARYING_ELEMENTS > 0){
DeviceVarying<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
dstVarying.addVaryingWithWeight(&varyings[p], 1.0f);
varyings[i+offset-tableOffset] = dstVarying;
}
}
}
__global__ void
computeBilinearVertex(float *fVertex, int numVertexElements, float *fVaryings, int numVaryingElements,
const int *V0_ITa, int offset, int tableOffset, int start, int end)
{
for(int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x; i < end + tableOffset; i += blockDim.x * gridDim.x){
int p = V0_ITa[i];
float *dstVertex = fVertex + (i+offset-tableOffset)*numVertexElements;
clear(dstVertex, numVertexElements);
addWithWeight(dstVertex, fVertex + p*numVertexElements, 1.0f, numVertexElements);
if(numVaryingElements > 0){
float *dstVarying = fVaryings + (i+offset-tableOffset)*numVaryingElements;
clear(dstVarying, numVaryingElements);
addVaryingWithWeight(dstVarying, fVaryings + p*numVaryingElements, 1.0f, numVaryingElements);
}
}
}
// --------------------------------------------------------------------------------------------
__global__ void
editVertexAdd(float *fVertex, int numVertexElements, int primVarOffset, int primVarWidth,
int vertexOffset, int tableOffset, int start, int end,
const int *editIndices, const float *editValues)
{
for(int i = start + tableOffset + threadIdx.x + blockIdx.x*blockDim.x;
i < end + tableOffset;
i += blockDim.x * gridDim.x) {
float *dstVertex = fVertex + (editIndices[i] + vertexOffset) * numVertexElements + primVarOffset;
for(int j = 0; j < primVarWidth; j++) {
*dstVertex++ += editValues[i*primVarWidth + j];
}
}
}
// --------------------------------------------------------------------------------------------
#include "../version.h"
// XXX: this macro usage is tentative. Since cuda kernel can't be dynamically configured,
// still trying to find better way to have optimized kernel..
#define OPT_KERNEL(NUM_USER_VERTEX_ELEMENTS, NUM_VARYING_ELEMENTS, KERNEL, X, Y, ARG) \
if(numUserVertexElements == NUM_USER_VERTEX_ELEMENTS && \
numVaryingElements == NUM_VARYING_ELEMENTS) \
{ KERNEL<NUM_USER_VERTEX_ELEMENTS, NUM_VARYING_ELEMENTS><<<X,Y>>>ARG; \
return; }
extern "C" {
void OsdCudaComputeFace(float *vertex, float *varying,
int numUserVertexElements, int numVaryingElements,
int *F_IT, int *F_ITa, int offset, int tableOffset, int start, int end)
{
//computeFace<3, 0><<<512,32>>>(vertex, varying, F_IT, F_ITa, offset, start, end);
OPT_KERNEL(0, 0, computeFace, 512, 32, (vertex, varying, F_IT, F_ITa, offset, tableOffset, start, end));
OPT_KERNEL(0, 3, computeFace, 512, 32, (vertex, varying, F_IT, F_ITa, offset, tableOffset, start, end));
OPT_KERNEL(3, 0, computeFace, 512, 32, (vertex, varying, F_IT, F_ITa, offset, tableOffset, start, end));
OPT_KERNEL(3, 3, computeFace, 512, 32, (vertex, varying, F_IT, F_ITa, offset, tableOffset, start, end));
// fallback kernel (slow)
computeFace<<<512, 32>>>(vertex, 3+numUserVertexElements, varying, numVaryingElements,
F_IT, F_ITa, offset, tableOffset, start, end);
}
void OsdCudaComputeEdge(float *vertex, float *varying,
int numUserVertexElements, int numVaryingElements,
int *E_IT, float *E_W, int offset, int tableOffset, int start, int end)
{
//computeEdge<0, 3><<<512,32>>>(vertex, varying, E_IT, E_W, offset, start, end);
OPT_KERNEL(0, 0, computeEdge, 512, 32, (vertex, varying, E_IT, E_W, offset, tableOffset, start, end));
OPT_KERNEL(0, 3, computeEdge, 512, 32, (vertex, varying, E_IT, E_W, offset, tableOffset, start, end));
OPT_KERNEL(3, 0, computeEdge, 512, 32, (vertex, varying, E_IT, E_W, offset, tableOffset, start, end));
OPT_KERNEL(3, 3, computeEdge, 512, 32, (vertex, varying, E_IT, E_W, offset, tableOffset, start, end));
computeEdge<<<512, 32>>>(vertex, 3+numUserVertexElements, varying, numVaryingElements,
E_IT, E_W, offset, tableOffset, start, end);
}
void OsdCudaComputeVertexA(float *vertex, float *varying,
int numUserVertexElements, int numVaryingElements,
int *V_ITa, float *V_W, int offset, int tableOffset, int start, int end, int pass)
{
// computeVertexA<0, 3><<<512,32>>>(vertex, varying, V_ITa, V_W, offset, start, end, pass);
OPT_KERNEL(0, 0, computeVertexA, 512, 32, (vertex, varying, V_ITa, V_W, offset, tableOffset, start, end, pass));
OPT_KERNEL(0, 3, computeVertexA, 512, 32, (vertex, varying, V_ITa, V_W, offset, tableOffset, start, end, pass));
OPT_KERNEL(3, 0, computeVertexA, 512, 32, (vertex, varying, V_ITa, V_W, offset, tableOffset, start, end, pass));
OPT_KERNEL(3, 3, computeVertexA, 512, 32, (vertex, varying, V_ITa, V_W, offset, tableOffset, start, end, pass));
computeVertexA<<<512, 32>>>(vertex, 3+numUserVertexElements, varying, numVaryingElements,
V_ITa, V_W, offset, tableOffset, start, end, pass);
}
void OsdCudaComputeVertexB(float *vertex, float *varying,
int numUserVertexElements, int numVaryingElements,
int *V_ITa, int *V_IT, float *V_W, int offset, int tableOffset, int start, int end)
{
// computeVertexB<0, 3><<<512,32>>>(vertex, varying, V_ITa, V_IT, V_W, offset, start, end);
OPT_KERNEL(0, 0, computeVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
OPT_KERNEL(0, 3, computeVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
OPT_KERNEL(3, 0, computeVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
OPT_KERNEL(3, 3, computeVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
computeVertexB<<<512, 32>>>(vertex, 3+numUserVertexElements, varying, numVaryingElements,
V_ITa, V_IT, V_W, offset, tableOffset, start, end);
}
void OsdCudaComputeLoopVertexB(float *vertex, float *varying,
int numUserVertexElements, int numVaryingElements,
int *V_ITa, int *V_IT, float *V_W, int offset, int tableOffset, int start, int end)
{
// computeLoopVertexB<0, 3><<<512,32>>>(vertex, varying, V_ITa, V_IT, V_W, offset, start, end);
OPT_KERNEL(0, 0, computeLoopVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
OPT_KERNEL(0, 3, computeLoopVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
OPT_KERNEL(3, 0, computeLoopVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
OPT_KERNEL(3, 3, computeLoopVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, tableOffset, start, end));
computeLoopVertexB<<<512, 32>>>(vertex, 3+numUserVertexElements, varying, numVaryingElements,
V_ITa, V_IT, V_W, offset, tableOffset, start, end);
}
void OsdCudaComputeBilinearEdge(float *vertex, float *varying,
int numUserVertexElements, int numVaryingElements,
int *E_IT, int offset, int tableOffset, int start, int end)
{
//computeBilinearEdge<0, 3><<<512,32>>>(vertex, varying, E_IT, offset, start, end);
OPT_KERNEL(0, 0, computeBilinearEdge, 512, 32, (vertex, varying, E_IT, offset, tableOffset, start, end));
OPT_KERNEL(0, 3, computeBilinearEdge, 512, 32, (vertex, varying, E_IT, offset, tableOffset, start, end));
OPT_KERNEL(3, 0, computeBilinearEdge, 512, 32, (vertex, varying, E_IT, offset, tableOffset, start, end));
OPT_KERNEL(3, 3, computeBilinearEdge, 512, 32, (vertex, varying, E_IT, offset, tableOffset, start, end));
computeBilinearEdge<<<512, 32>>>(vertex, 3+numUserVertexElements, varying, numVaryingElements,
E_IT, offset, tableOffset, start, end);
}
void OsdCudaComputeBilinearVertex(float *vertex, float *varying,
int numUserVertexElements, int numVaryingElements,
int *V_ITa, int offset, int tableOffset, int start, int end)
{
// computeBilinearVertex<0, 3><<<512,32>>>(vertex, varying, V_ITa, offset, start, end);
OPT_KERNEL(0, 0, computeBilinearVertex, 512, 32, (vertex, varying, V_ITa, offset, tableOffset, start, end));
OPT_KERNEL(0, 3, computeBilinearVertex, 512, 32, (vertex, varying, V_ITa, offset, tableOffset, start, end));
OPT_KERNEL(3, 0, computeBilinearVertex, 512, 32, (vertex, varying, V_ITa, offset, tableOffset, start, end));
OPT_KERNEL(3, 3, computeBilinearVertex, 512, 32, (vertex, varying, V_ITa, offset, tableOffset, start, end));
computeBilinearVertex<<<512, 32>>>(vertex, 3+numUserVertexElements, varying, numVaryingElements,
V_ITa, offset, tableOffset, start, end);
}
void OsdCudaEditVertexAdd(float *vertex, int numUserVertexElements,
int primVarOffset, int primVarWidth,
int vertexOffset, int tableOffset,
int start, int end, int *editIndices, float *editValues)
{
editVertexAdd<<<512, 32>>>(vertex, 3+numUserVertexElements, primVarOffset, primVarWidth,
vertexOffset, tableOffset, start, end,
editIndices, editValues);
}
} /* extern "C" */