mirror of
https://github.com/PixarAnimationStudios/OpenSubdiv
synced 2025-01-19 04:30:05 +00:00
420473b45b
Remove the ptex-specific code from the Far::TopologyRefiner and instead provide it in a separate class Far::PtexIndices. Clients who need to use the Ptex API need to first build a Far::PtexIndices object by providing it with a refiner. This has the advantage of keeping the API on the TopologyRefiner a little cleaner. The ptex methods were const but were mutating state with const_casts. The new mechanism still achieves the same lazy initialization behavior by forcing clients to instantiate them exactly when needed. A disadvantage of this approach is that the PatchTablesFactory creates its own PtexIndices and throws it out after the patch tables are created. This is great if you're never going to need the ptex indices again, but not so great if you will need them again.
1641 lines
63 KiB
C++
1641 lines
63 KiB
C++
//
|
|
// Copyright 2014 DreamWorks Animation LLC.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "Apache License")
|
|
// with the following modification; you may not use this file except in
|
|
// compliance with the Apache License and the following modification to it:
|
|
// Section 6. Trademarks. is deleted and replaced with:
|
|
//
|
|
// 6. Trademarks. This License does not grant permission to use the trade
|
|
// names, trademarks, service marks, or product names of the Licensor
|
|
// and its affiliates, except as required to comply with Section 4(c) of
|
|
// the License and to reproduce the content of the NOTICE file.
|
|
//
|
|
// You may obtain a copy of the Apache License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the Apache License with the above modification is
|
|
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the Apache License for the specific
|
|
// language governing permissions and limitations under the Apache License.
|
|
//
|
|
#ifndef FAR_TOPOLOGY_REFINER_H
|
|
#define FAR_TOPOLOGY_REFINER_H
|
|
|
|
#include "../version.h"
|
|
|
|
#include "../sdc/types.h"
|
|
#include "../sdc/options.h"
|
|
#include "../sdc/bilinearScheme.h"
|
|
#include "../sdc/catmarkScheme.h"
|
|
#include "../sdc/loopScheme.h"
|
|
#include "../vtr/level.h"
|
|
#include "../vtr/fvarLevel.h"
|
|
#include "../vtr/refinement.h"
|
|
#include "../vtr/fvarRefinement.h"
|
|
#include "../vtr/maskInterfaces.h"
|
|
#include "../far/types.h"
|
|
#include "../far/error.h"
|
|
|
|
#include <vector>
|
|
#include <cassert>
|
|
#include <cstdio>
|
|
|
|
namespace OpenSubdiv {
|
|
namespace OPENSUBDIV_VERSION {
|
|
|
|
namespace Vtr { class SparseSelector; }
|
|
|
|
namespace Far {
|
|
|
|
template <class MESH> class TopologyRefinerFactory;
|
|
|
|
///
|
|
/// \brief Stores topology data for a specified set of refinement options.
|
|
///
|
|
class TopologyRefiner {
|
|
|
|
public:
|
|
|
|
/// \brief Constructor
|
|
TopologyRefiner(Sdc::SchemeType type, Sdc::Options options = Sdc::Options());
|
|
|
|
/// \brief Destructor
|
|
~TopologyRefiner();
|
|
|
|
/// \brief Returns the subdivision scheme
|
|
Sdc::SchemeType GetSchemeType() const { return _subdivType; }
|
|
|
|
/// \brief Returns the subdivision options
|
|
Sdc::Options GetSchemeOptions() const { return _subdivOptions; }
|
|
|
|
/// \brief Returns true if uniform subdivision has been applied
|
|
bool IsUniform() const { return _isUniform; }
|
|
|
|
/// \brief Returns the number of refinement levels
|
|
int GetNumLevels() const { return (int)_levels.size(); }
|
|
|
|
/// \brief Returns the highest level of refinement
|
|
int GetMaxLevel() const { return _maxLevel; }
|
|
|
|
/// \brief Returns the maximum vertex valence in all levels
|
|
int GetMaxValence() const { return _maxValence; }
|
|
|
|
/// \ brief Returns true if faces have been tagged as holes
|
|
bool HasHoles() const { return _hasHoles; }
|
|
|
|
/// \brief Returns the total number of vertices in all levels
|
|
int GetNumVerticesTotal() const { return _totalVertices; }
|
|
|
|
/// \brief Returns the total number of edges in all levels
|
|
int GetNumEdgesTotal() const { return _totalEdges; }
|
|
|
|
/// \brief Returns the total number of edges in all levels
|
|
int GetNumFacesTotal() const { return _totalFaces; }
|
|
|
|
/// \brief Returns the total number of face vertices in all levels
|
|
int GetNumFaceVerticesTotal() const { return _totalFaceVertices; }
|
|
|
|
//@{
|
|
/// @name High-level refinement and related methods
|
|
///
|
|
|
|
//
|
|
// Uniform refinement
|
|
//
|
|
|
|
/// \brief Uniform refinement options
|
|
struct UniformOptions {
|
|
|
|
UniformOptions(int level) :
|
|
refinementLevel(level),
|
|
applyBaseFacePerFace(false),
|
|
orderVerticesFromFacesFirst(false),
|
|
fullTopologyInLastLevel(false) { }
|
|
|
|
unsigned int refinementLevel:4, ///< Number of refinement iterations
|
|
applyBaseFacePerFace:1, ///< For each refined face, record the index
|
|
///< of the base face from which it originates
|
|
orderVerticesFromFacesFirst:1, ///< Order child vertices from faces first
|
|
///< instead of child vertices of vertices
|
|
fullTopologyInLastLevel:1; ///< Skip topological relationships in the last
|
|
///< level of refinement that are not needed for
|
|
///< interpolation (keep false if using limit).
|
|
};
|
|
|
|
/// \brief Refine the topology uniformly
|
|
///
|
|
/// @param options Options controlling uniform refinement
|
|
///
|
|
void RefineUniform(UniformOptions options);
|
|
|
|
/// \brief Returns the options specified on refinement
|
|
UniformOptions GetUniformOptions() const { return _uniformOptions; }
|
|
|
|
//
|
|
// Adaptive refinement
|
|
//
|
|
|
|
/// \brief Adaptive refinement options
|
|
struct AdaptiveOptions {
|
|
|
|
AdaptiveOptions(int level) :
|
|
isolationLevel(level),
|
|
useSingleCreasePatch(false),
|
|
applyBaseFacePerFace(false),
|
|
orderVerticesFromFacesFirst(false) { }
|
|
|
|
unsigned int isolationLevel:4, ///< Number of iterations applied to isolate
|
|
///< extraordinary vertices and creases
|
|
useSingleCreasePatch:1, ///< Use 'single-crease' patch and stop
|
|
///< isolation where applicable
|
|
applyBaseFacePerFace:1, ///< For each refined face, record the index
|
|
///< of the base face from which it originates
|
|
orderVerticesFromFacesFirst:1; ///< Order child vertices from faces first
|
|
///< instead of child vertices of vertices
|
|
};
|
|
|
|
/// \brief Feature Adaptive topology refinement
|
|
///
|
|
/// @param options Options controlling adaptive refinement
|
|
///
|
|
void RefineAdaptive(AdaptiveOptions options);
|
|
|
|
/// \brief Returns the options specified on refinement
|
|
AdaptiveOptions GetAdaptiveOptions() const { return _adaptiveOptions; }
|
|
|
|
/// \brief Unrefine the topology (keep control cage)
|
|
void Unrefine();
|
|
|
|
//@{
|
|
/// @name Primvar data interpolation
|
|
///
|
|
/// \anchor templating
|
|
///
|
|
/// \note Interpolation methods template both the source and destination
|
|
/// data buffer classes. Client-code is expected to provide interfaces
|
|
/// that implement the functions specific to its primitive variable
|
|
/// data layout. Template APIs must implement the following:
|
|
/// <br><br> \code{.cpp}
|
|
///
|
|
/// class MySource {
|
|
/// MySource & operator[](int index);
|
|
/// };
|
|
///
|
|
/// class MyDestination {
|
|
/// void Clear();
|
|
/// void AddWithWeight(MySource const & value, float weight);
|
|
/// void AddWithWeight(MyDestination const & value, float weight);
|
|
///
|
|
/// // optional
|
|
/// void AddVaryingWithWeight(MySource const & value, float weight);
|
|
/// };
|
|
///
|
|
/// \endcode
|
|
/// <br>
|
|
/// It is possible to implement a single interface only and use it as
|
|
/// both source and destination.
|
|
/// <br><br>
|
|
/// Primitive variable buffers are expected to be arrays of instances,
|
|
/// passed either as direct pointers or with a container
|
|
/// (ex. std::vector<MyVertex>).
|
|
/// Some interpolation methods however allow passing the buffers by
|
|
/// reference: this allows to work transparently with arrays and
|
|
/// containers (or other scheme that overload the '[]' operator)
|
|
/// <br><br>
|
|
/// See the <a href=http://graphics.pixar.com/opensubdiv/docs/tutorials.html>
|
|
/// Far tutorials</a> for code examples.
|
|
///
|
|
|
|
/// \brief Apply vertex and varying interpolation weights to a primvar
|
|
/// buffer
|
|
///
|
|
/// The destination buffer must allocate an array of data for all the
|
|
/// refined vertices (at least GetNumVerticesTotal()-GetNumVertices(0))
|
|
///
|
|
/// @param src Source primvar buffer (\ref templating control vertex data)
|
|
///
|
|
/// @param dst Destination primvar buffer (\ref templating refined vertex data)
|
|
///
|
|
template <class T, class U> void Interpolate(T const * src, U * dst) const;
|
|
|
|
/// \brief Apply vertex and varying interpolation weights to a primvar
|
|
/// buffer for a single level
|
|
/// level of refinement.
|
|
///
|
|
/// The destination buffer must allocate an array of data for all the
|
|
/// refined vertices (at least GetNumVertices(level))
|
|
///
|
|
/// @param level The refinement level
|
|
///
|
|
/// @param src Source primvar buffer (\ref templating control vertex data)
|
|
///
|
|
/// @param dst Destination primvar buffer (\ref templating refined vertex data)
|
|
///
|
|
template <class T, class U> void Interpolate(int level, T const & src, U & dst) const;
|
|
|
|
|
|
/// \brief Apply only varying interpolation weights to a primvar buffer
|
|
///
|
|
/// This method can be a useful alternative if the varying primvar data
|
|
/// does not need to be re-computed over time.
|
|
///
|
|
/// The destination buffer must allocate an array of data for all the
|
|
/// refined vertices (at least GetNumVerticesTotal()-GetNumVertices(0))
|
|
///
|
|
/// @param src Source primvar buffer (\ref templating control vertex data)
|
|
///
|
|
/// @param dst Destination primvar buffer (\ref templating refined vertex data)
|
|
///
|
|
template <class T, class U> void InterpolateVarying(T const * src, U * dst) const;
|
|
|
|
/// \brief Apply only varying interpolation weights to a primvar buffer
|
|
/// for a single level level of refinement.
|
|
///
|
|
/// This method can be a useful alternative if the varying primvar data
|
|
/// does not need to be re-computed over time.
|
|
///
|
|
/// The destination buffer must allocate an array of data for all the
|
|
/// refined vertices (at least GetNumVertices(level))
|
|
///
|
|
/// @param level The refinement level
|
|
///
|
|
/// @param src Source primvar buffer (\ref templating control vertex data)
|
|
///
|
|
/// @param dst Destination primvar buffer (\ref templating refined vertex data)
|
|
///
|
|
template <class T, class U> void InterpolateVarying(int level, T const & src, U & dst) const;
|
|
|
|
/// \brief Apply face-varying interpolation weights to a primvar buffer
|
|
// associated with a particular face-varying channel
|
|
///
|
|
template <class T, class U> void InterpolateFaceVarying(T const * src, U * dst, int channel = 0) const;
|
|
|
|
template <class T, class U> void InterpolateFaceVarying(int level, T const & src, U & dst, int channel = 0) const;
|
|
|
|
template <class T, class U> void LimitFaceVarying(T const & src, U * dst, int channel = 0) const;
|
|
|
|
|
|
/// \brief Apply vertex interpolation limit weights to a primvar buffer
|
|
///
|
|
/// The source buffer must refer to an array of previously interpolated
|
|
/// vertex data for the last refinement level. The destination buffer
|
|
/// must allocate an array for all vertices at the last refinement level
|
|
/// (at least GetNumVertices(GetMaxLevel()))
|
|
///
|
|
/// @param src Source primvar buffer (refined vertex data) for last level
|
|
///
|
|
/// @param dst Destination primvar buffer (vertex data at the limit)
|
|
///
|
|
template <class T, class U> void Limit(T const & src, U * dst) const;
|
|
|
|
//@}
|
|
|
|
//@{
|
|
/// @name Inspection of components per level
|
|
///
|
|
|
|
|
|
/// \brief Returns the number of vertices at a given level of refinement
|
|
int GetNumVertices(int level) const {
|
|
return _levels[level]->getNumVertices();
|
|
}
|
|
|
|
/// \brief Returns the number of edges at a given level of refinement
|
|
int GetNumEdges(int level) const {
|
|
return _levels[level]->getNumEdges();
|
|
}
|
|
|
|
/// \brief Returns the number of face vertex indices at a given level of refinement
|
|
int GetNumFaces(int level) const {
|
|
return _levels[level]->getNumFaces();
|
|
}
|
|
|
|
/// \brief Returns the number of faces marked as holes at the given level
|
|
int GetNumHoles(int level) const;
|
|
|
|
/// \brief Returns the number of faces at a given level of refinement
|
|
int GetNumFaceVertices(int level) const {
|
|
return _levels[level]->getNumFaceVerticesTotal();
|
|
}
|
|
|
|
/// \brief Returns the sharpness of a given edge (at 'level' of refinement)
|
|
float GetEdgeSharpness(int level, Index edge) const {
|
|
return _levels[level]->getEdgeSharpness(edge);
|
|
}
|
|
|
|
/// \brief Returns the sharpness of a given vertex (at 'level' of refinement)
|
|
float GetVertexSharpness(int level, Index vert) const {
|
|
return _levels[level]->getVertexSharpness(vert);
|
|
}
|
|
|
|
/// \brief Returns the subdivision rule of a given vertex (at 'level' of refinement)
|
|
Sdc::Crease::Rule GetVertexRule(int level, Index vert) const {
|
|
return _levels[level]->getVertexRule(vert);
|
|
}
|
|
|
|
//@}
|
|
|
|
//@{
|
|
/// @name Topological relations -- incident/adjacent components
|
|
///
|
|
|
|
|
|
/// \brief Returns the vertices of a 'face' at 'level'
|
|
ConstIndexArray GetFaceVertices(int level, Index face) const {
|
|
return _levels[level]->getFaceVertices(face);
|
|
}
|
|
|
|
/// \brief Returns the edges of a 'face' at 'level'
|
|
ConstIndexArray GetFaceEdges(int level, Index face) const {
|
|
return _levels[level]->getFaceEdges(face);
|
|
}
|
|
|
|
/// \brief Returns true if 'face' at 'level' is tagged as a hole
|
|
bool IsFaceHole(int level, Index face) const {
|
|
return _levels[level]->isFaceHole(face);
|
|
}
|
|
|
|
/// \brief Returns the vertices of an 'edge' at 'level' (2 of them)
|
|
ConstIndexArray GetEdgeVertices(int level, Index edge) const {
|
|
return _levels[level]->getEdgeVertices(edge);
|
|
}
|
|
|
|
/// \brief Returns the faces incident to 'edge' at 'level'
|
|
ConstIndexArray GetEdgeFaces(int level, Index edge) const {
|
|
return _levels[level]->getEdgeFaces(edge);
|
|
}
|
|
|
|
/// \brief Returns the faces incident to 'vertex' at 'level'
|
|
ConstIndexArray GetVertexFaces(int level, Index vert) const {
|
|
return _levels[level]->getVertexFaces(vert);
|
|
}
|
|
|
|
/// \brief Returns the edges incident to 'vertex' at 'level'
|
|
ConstIndexArray GetVertexEdges(int level, Index vert) const {
|
|
return _levels[level]->getVertexEdges(vert);
|
|
}
|
|
|
|
/// \brief Returns the local face indices of edge 'edge' at 'level'
|
|
ConstLocalIndexArray GetEdgeFaceLocalIndices(int level, Index edge) const {
|
|
return _levels[level]->getEdgeFaceLocalIndices(edge);
|
|
}
|
|
|
|
/// \brief Returns the local face indices of vertex 'vert' at 'level'
|
|
ConstLocalIndexArray GetVertexFaceLocalIndices(int level, Index vert) const {
|
|
return _levels[level]->getVertexFaceLocalIndices(vert);
|
|
}
|
|
|
|
/// \brief Returns the local edge indices of vertex 'vert' at 'level'
|
|
ConstLocalIndexArray GetVertexEdgeLocalIndices(int level, Index vert) const {
|
|
return _levels[level]->getVertexEdgeLocalIndices(vert);
|
|
}
|
|
|
|
/// \brief Returns true if the given face does not contain extraordinary vertices
|
|
bool FaceIsRegular(int level, Index face) const {
|
|
ConstIndexArray fVerts = _levels[level]->getFaceVertices(face);
|
|
Vtr::Level::VTag compFaceVertTag =
|
|
_levels[level]->getFaceCompositeVTag(fVerts);
|
|
return not compFaceVertTag._xordinary;
|
|
}
|
|
|
|
/// \brief Returns the edge with vertices 'v0' and 'v1' (or INDEX_INVALID if
|
|
/// they are not connected)
|
|
Index FindEdge(int level, Index v0, Index v1) const {
|
|
return _levels[level]->findEdge(v0, v1);
|
|
}
|
|
|
|
//@}
|
|
|
|
//@{
|
|
/// @name Inspection of face-varying channels and their contents:
|
|
///
|
|
|
|
|
|
/// \brief Returns the number of face-varying channels in the tables
|
|
int GetNumFVarChannels() const;
|
|
|
|
/// \brief Returns the face-varying interpolation rule-set for a given channel
|
|
Sdc::Options::FVarLinearInterpolation GetFVarLinearInterpolation(int channel = 0) const;
|
|
|
|
/// \brief Returns the total number of face-varying values in all levels
|
|
int GetNumFVarValuesTotal(int channel = 0) const;
|
|
|
|
/// \brief Returns the number of face-varying values at a given level of refinement
|
|
int GetNumFVarValues(int level, int channel = 0) const;
|
|
|
|
/// \brief Returns the face-varying values of a 'face' at 'level'
|
|
ConstIndexArray GetFVarFaceValues(int level, Index face, int channel = 0) const;
|
|
|
|
//@}
|
|
|
|
//@{
|
|
/// @name Parent-to-child relationships,
|
|
/// Relationships between components in one level
|
|
/// and the next (entries may be invalid if sparse):
|
|
///
|
|
|
|
|
|
/// \brief Returns the child faces of face 'f' at 'level'
|
|
ConstIndexArray GetFaceChildFaces(int level, Index f) const {
|
|
return _refinements[level]->getFaceChildFaces(f);
|
|
}
|
|
|
|
/// \brief Returns the child edges of face 'f' at 'level'
|
|
ConstIndexArray GetFaceChildEdges(int level, Index f) const {
|
|
return _refinements[level]->getFaceChildEdges(f);
|
|
}
|
|
|
|
/// \brief Returns the child edges of edge 'e' at 'level'
|
|
ConstIndexArray GetEdgeChildEdges(int level, Index e) const {
|
|
return _refinements[level]->getEdgeChildEdges(e);
|
|
}
|
|
|
|
/// \brief Returns the child vertex of face 'f' at 'level'
|
|
Index GetFaceChildVertex( int level, Index f) const {
|
|
return _refinements[level]->getFaceChildVertex(f);
|
|
}
|
|
|
|
/// \brief Returns the child vertex of edge 'e' at 'level'
|
|
Index GetEdgeChildVertex( int level, Index e) const {
|
|
return _refinements[level]->getEdgeChildVertex(e);
|
|
}
|
|
|
|
/// \brief Returns the child vertex of vertex 'v' at 'level'
|
|
Index GetVertexChildVertex(int level, Index v) const {
|
|
return _refinements[level]->getVertexChildVertex(v);
|
|
}
|
|
|
|
//@}
|
|
|
|
//@{
|
|
/// @name Child-to-parent or child-to-base relationships,
|
|
/// Relationships between components in one level and the
|
|
/// previous or base level (to be called with level > 0):
|
|
///
|
|
|
|
/// \brief Returns the parent face of face 'f' at 'level'
|
|
Index GetFaceParentFace(int level, Index f) const {
|
|
return _refinements[level-1]->getChildFaceParentFace(f);
|
|
}
|
|
|
|
/// \brief Returns the base face of face 'f' at 'level'
|
|
Index GetFaceBaseFace(int level, Index f) const {
|
|
return _refinements[level-1]->getChildFaceBaseFace(f);
|
|
}
|
|
|
|
//@}
|
|
|
|
|
|
//@{
|
|
/// @name Debugging aides
|
|
///
|
|
|
|
/// \brief Returns true if the topology of 'level' is valid
|
|
bool ValidateTopology(int level) const {
|
|
return _levels[level]->validateTopology();
|
|
}
|
|
|
|
/// \brief Prints topology information to console
|
|
void PrintTopology(int level, bool children = true) const {
|
|
_levels[level]->print((children && ((int)_refinements.size() > level)) ? _refinements[level] : 0);
|
|
}
|
|
|
|
//@}
|
|
|
|
protected:
|
|
|
|
//
|
|
// For use by the TopologyRefinerFactory<MESH> subclasses to construct the base level:
|
|
//
|
|
template <class MESH>
|
|
friend class TopologyRefinerFactory;
|
|
|
|
// Topology sizing methods required before allocation:
|
|
void setNumBaseFaces( int count) { _levels[0]->resizeFaces(count); }
|
|
void setNumBaseEdges( int count) { _levels[0]->resizeEdges(count); }
|
|
void setNumBaseVertices(int count) { _levels[0]->resizeVertices(count); }
|
|
|
|
void setNumBaseFaceVertices(Index f, int count) { _levels[0]->resizeFaceVertices(f, count); }
|
|
void setNumBaseEdgeFaces( Index e, int count) { _levels[0]->resizeEdgeFaces(e, count); }
|
|
void setNumBaseVertexFaces( Index v, int count) { _levels[0]->resizeVertexFaces(v, count); }
|
|
void setNumBaseVertexEdges( Index v, int count) { _levels[0]->resizeVertexEdges(v, count); }
|
|
|
|
// Topology assignment methods to populate base level after allocation:
|
|
IndexArray setBaseFaceVertices(Index f) { return _levels[0]->getFaceVertices(f); }
|
|
IndexArray setBaseFaceEdges( Index f) { return _levels[0]->getFaceEdges(f); }
|
|
IndexArray setBaseEdgeVertices(Index e) { return _levels[0]->getEdgeVertices(e); }
|
|
IndexArray setBaseEdgeFaces( Index e) { return _levels[0]->getEdgeFaces(e); }
|
|
IndexArray setBaseVertexFaces( Index v) { return _levels[0]->getVertexFaces(v); }
|
|
IndexArray setBaseVertexEdges( Index v) { return _levels[0]->getVertexEdges(v); }
|
|
|
|
LocalIndexArray setBaseEdgeFaceLocalIndices(Index e) { return _levels[0]->getEdgeFaceLocalIndices(e); }
|
|
LocalIndexArray setBaseVertexFaceLocalIndices(Index v) { return _levels[0]->getVertexFaceLocalIndices(v); }
|
|
LocalIndexArray setBaseVertexEdgeLocalIndices(Index v) { return _levels[0]->getVertexEdgeLocalIndices(v); }
|
|
|
|
void populateBaseLocalIndices() { _levels[0]->populateLocalIndices(); }
|
|
|
|
void setBaseEdgeNonManifold(Index e, bool b) { _levels[0]->setEdgeNonManifold(e, b); }
|
|
void setBaseVertexNonManifold(Index v, bool b) { _levels[0]->setVertexNonManifold(v, b); }
|
|
|
|
// Optional feature tagging methods for setting sharpness, holes, etc.:
|
|
void setBaseEdgeSharpness(Index e, float s) { _levels[0]->getEdgeSharpness(e) = s; }
|
|
void setBaseVertexSharpness(Index v, float s) { _levels[0]->getVertexSharpness(v) = s; }
|
|
|
|
void setBaseFaceHole(Index f, bool b) { _levels[0]->setFaceHole(f, b); _hasHoles |= b; }
|
|
|
|
// Optional methods for creating and assigning face-varying data channels:
|
|
int createBaseFVarChannel(int numValues);
|
|
int createBaseFVarChannel(int numValues, Sdc::Options const& options);
|
|
|
|
IndexArray setBaseFVarFaceValues(Index face, int channel = 0);
|
|
|
|
void setBaseMaxValence(int valence) { _levels[0]->setMaxValence(valence); }
|
|
void initializeBaseInventory() { initializeInventory(); }
|
|
|
|
protected:
|
|
|
|
//
|
|
// Lower level protected methods intended strictly for internal use:
|
|
//
|
|
friend class TopologyRefinerFactoryBase;
|
|
friend class PatchTablesFactoryBase;
|
|
template <class T> friend class Far::PatchTablesFactoryT;
|
|
friend class EndCapLegacyGregoryPatchFactory;
|
|
friend class EndCapGregoryBasisPatchFactory;
|
|
friend class EndCapRegularPatchFactory;
|
|
friend class PtexIndices;
|
|
|
|
Vtr::Level & getLevel(int l) { return *_levels[l]; }
|
|
Vtr::Level const & getLevel(int l) const { return *_levels[l]; }
|
|
|
|
Vtr::Refinement & getRefinement(int l) { return *_refinements[l]; }
|
|
Vtr::Refinement const & getRefinement(int l) const { return *_refinements[l]; }
|
|
|
|
private:
|
|
void selectFeatureAdaptiveComponents(Vtr::SparseSelector& selector);
|
|
|
|
template <Sdc::SchemeType SCHEME, class T, class U> void interpolateChildVertsFromFaces(Vtr::Refinement const &, T const & src, U & dst) const;
|
|
template <Sdc::SchemeType SCHEME, class T, class U> void interpolateChildVertsFromEdges(Vtr::Refinement const &, T const & src, U & dst) const;
|
|
template <Sdc::SchemeType SCHEME, class T, class U> void interpolateChildVertsFromVerts(Vtr::Refinement const &, T const & src, U & dst) const;
|
|
|
|
template <class T, class U> void varyingInterpolateChildVertsFromFaces(Vtr::Refinement const &, T const & src, U & dst) const;
|
|
template <class T, class U> void varyingInterpolateChildVertsFromEdges(Vtr::Refinement const &, T const & src, U & dst) const;
|
|
template <class T, class U> void varyingInterpolateChildVertsFromVerts(Vtr::Refinement const &, T const & src, U & dst) const;
|
|
|
|
template <Sdc::SchemeType SCHEME, class T, class U> void faceVaryingInterpolateChildVertsFromFaces(Vtr::Refinement const &, T const & src, U & dst, int channel) const;
|
|
template <Sdc::SchemeType SCHEME, class T, class U> void faceVaryingInterpolateChildVertsFromEdges(Vtr::Refinement const &, T const & src, U & dst, int channel) const;
|
|
template <Sdc::SchemeType SCHEME, class T, class U> void faceVaryingInterpolateChildVertsFromVerts(Vtr::Refinement const &, T const & src, U & dst, int channel) const;
|
|
|
|
template <Sdc::SchemeType SCHEME, class T, class U> void limit(T const & src, U * dst) const;
|
|
|
|
template <Sdc::SchemeType SCHEME, class T, class U> void faceVaryingLimit(T const & src, U * dst, int channel) const;
|
|
|
|
|
|
void initializeInventory();
|
|
void updateInventory(Vtr::Level const & newLevel);
|
|
|
|
void appendLevel(Vtr::Level & newLevel);
|
|
void appendRefinement(Vtr::Refinement & newRefinement);
|
|
|
|
private:
|
|
|
|
Sdc::SchemeType _subdivType;
|
|
Sdc::Options _subdivOptions;
|
|
|
|
unsigned int _isUniform : 1,
|
|
_hasHoles : 1,
|
|
_maxLevel : 4;
|
|
|
|
// Options assigned on refinement:
|
|
UniformOptions _uniformOptions;
|
|
AdaptiveOptions _adaptiveOptions;
|
|
|
|
// Cumulative properties of all levels:
|
|
int _totalVertices;
|
|
int _totalEdges;
|
|
int _totalFaces;
|
|
int _totalFaceVertices;
|
|
int _maxValence;
|
|
|
|
std::vector<Vtr::Level *> _levels;
|
|
std::vector<Vtr::Refinement *> _refinements;
|
|
};
|
|
|
|
|
|
inline int
|
|
TopologyRefiner::GetNumFVarChannels() const {
|
|
|
|
return _levels[0]->getNumFVarChannels();
|
|
}
|
|
inline Sdc::Options::FVarLinearInterpolation
|
|
TopologyRefiner::GetFVarLinearInterpolation(int channel) const {
|
|
|
|
return _levels[0]->getFVarOptions(channel).GetFVarLinearInterpolation();
|
|
}
|
|
inline int
|
|
TopologyRefiner::GetNumFVarValues(int level, int channel) const {
|
|
|
|
return _levels[level]->getNumFVarValues(channel);
|
|
}
|
|
inline ConstIndexArray
|
|
TopologyRefiner::GetFVarFaceValues(int level, Index face, int channel) const {
|
|
|
|
return _levels[level]->getFVarFaceValues(face, channel);
|
|
}
|
|
inline int
|
|
TopologyRefiner::createBaseFVarChannel(int numValues) {
|
|
|
|
return _levels[0]->createFVarChannel(numValues, _subdivOptions);
|
|
}
|
|
inline int
|
|
TopologyRefiner::createBaseFVarChannel(int numValues, Sdc::Options const& fvarOptions) {
|
|
|
|
Sdc::Options options = _subdivOptions;
|
|
options.SetFVarLinearInterpolation(fvarOptions.GetFVarLinearInterpolation());
|
|
return _levels[0]->createFVarChannel(numValues, options);
|
|
}
|
|
inline IndexArray
|
|
TopologyRefiner::setBaseFVarFaceValues(Index face, int channel) {
|
|
|
|
return _levels[0]->getFVarFaceValues(face, channel);
|
|
}
|
|
|
|
|
|
template <class T, class U>
|
|
inline void
|
|
TopologyRefiner::Interpolate(T const * src, U * dst) const {
|
|
|
|
for (int level=1; level<=GetMaxLevel(); ++level) {
|
|
|
|
Interpolate(level, src, dst);
|
|
|
|
src = dst;
|
|
dst += GetNumVertices(level);
|
|
}
|
|
}
|
|
|
|
template <class T, class U>
|
|
inline void
|
|
TopologyRefiner::Interpolate(int level, T const & src, U & dst) const {
|
|
|
|
assert(level>0 and level<=(int)_refinements.size());
|
|
|
|
Vtr::Refinement const & refinement = getRefinement(level-1);
|
|
|
|
switch (_subdivType) {
|
|
case Sdc::SCHEME_CATMARK:
|
|
interpolateChildVertsFromFaces<Sdc::SCHEME_CATMARK>(refinement, src, dst);
|
|
interpolateChildVertsFromEdges<Sdc::SCHEME_CATMARK>(refinement, src, dst);
|
|
interpolateChildVertsFromVerts<Sdc::SCHEME_CATMARK>(refinement, src, dst);
|
|
break;
|
|
case Sdc::SCHEME_LOOP:
|
|
interpolateChildVertsFromFaces<Sdc::SCHEME_LOOP>(refinement, src, dst);
|
|
interpolateChildVertsFromEdges<Sdc::SCHEME_LOOP>(refinement, src, dst);
|
|
interpolateChildVertsFromVerts<Sdc::SCHEME_LOOP>(refinement, src, dst);
|
|
break;
|
|
case Sdc::SCHEME_BILINEAR:
|
|
interpolateChildVertsFromFaces<Sdc::SCHEME_BILINEAR>(refinement, src, dst);
|
|
interpolateChildVertsFromEdges<Sdc::SCHEME_BILINEAR>(refinement, src, dst);
|
|
interpolateChildVertsFromVerts<Sdc::SCHEME_BILINEAR>(refinement, src, dst);
|
|
break;
|
|
}
|
|
}
|
|
|
|
template <Sdc::SchemeType SCHEME, class T, class U>
|
|
inline void
|
|
TopologyRefiner::interpolateChildVertsFromFaces(
|
|
Vtr::Refinement const & refinement, T const & src, U & dst) const {
|
|
|
|
if (refinement.getNumChildVerticesFromFaces() == 0) return;
|
|
|
|
Sdc::Scheme<SCHEME> scheme(_subdivOptions);
|
|
|
|
const Vtr::Level& parent = refinement.parent();
|
|
|
|
float * fVertWeights = (float *)alloca(parent.getMaxValence()*sizeof(float));
|
|
|
|
for (int face = 0; face < parent.getNumFaces(); ++face) {
|
|
|
|
Vtr::Index cVert = refinement.getFaceChildVertex(face);
|
|
if (!Vtr::IndexIsValid(cVert))
|
|
continue;
|
|
|
|
// Declare and compute mask weights for this vertex relative to its parent face:
|
|
ConstIndexArray fVerts = parent.getFaceVertices(face);
|
|
|
|
float fVaryingWeight = 1.0f / (float) fVerts.size();
|
|
|
|
Vtr::MaskInterface fMask(fVertWeights, 0, 0);
|
|
Vtr::FaceInterface fHood(fVerts.size());
|
|
|
|
scheme.ComputeFaceVertexMask(fHood, fMask);
|
|
|
|
// Apply the weights to the parent face's vertices:
|
|
dst[cVert].Clear();
|
|
|
|
for (int i = 0; i < fVerts.size(); ++i) {
|
|
|
|
dst[cVert].AddWithWeight(src[fVerts[i]], fVertWeights[i]);
|
|
|
|
dst[cVert].AddVaryingWithWeight(src[fVerts[i]], fVaryingWeight);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <Sdc::SchemeType SCHEME, class T, class U>
|
|
inline void
|
|
TopologyRefiner::interpolateChildVertsFromEdges(
|
|
Vtr::Refinement const & refinement, T const & src, U & dst) const {
|
|
|
|
Sdc::Scheme<SCHEME> scheme(_subdivOptions);
|
|
|
|
const Vtr::Level& parent = refinement.parent();
|
|
const Vtr::Level& child = refinement.child();
|
|
|
|
Vtr::EdgeInterface eHood(parent);
|
|
|
|
float eVertWeights[2],
|
|
* eFaceWeights = (float *)alloca(parent.getMaxEdgeFaces()*sizeof(float));
|
|
|
|
for (int edge = 0; edge < parent.getNumEdges(); ++edge) {
|
|
|
|
Vtr::Index cVert = refinement.getEdgeChildVertex(edge);
|
|
if (!Vtr::IndexIsValid(cVert))
|
|
continue;
|
|
|
|
// Declare and compute mask weights for this vertex relative to its parent edge:
|
|
ConstIndexArray eVerts = parent.getEdgeVertices(edge),
|
|
eFaces = parent.getEdgeFaces(edge);
|
|
|
|
Vtr::MaskInterface eMask(eVertWeights, 0, eFaceWeights);
|
|
|
|
eHood.SetIndex(edge);
|
|
|
|
Sdc::Crease::Rule pRule = (parent.getEdgeSharpness(edge) > 0.0f) ? Sdc::Crease::RULE_CREASE : Sdc::Crease::RULE_SMOOTH;
|
|
Sdc::Crease::Rule cRule = child.getVertexRule(cVert);
|
|
|
|
scheme.ComputeEdgeVertexMask(eHood, eMask, pRule, cRule);
|
|
|
|
// Apply the weights to the parent edges's vertices and (if applicable) to
|
|
// the child vertices of its incident faces:
|
|
dst[cVert].Clear();
|
|
dst[cVert].AddWithWeight(src[eVerts[0]], eVertWeights[0]);
|
|
dst[cVert].AddWithWeight(src[eVerts[1]], eVertWeights[1]);
|
|
|
|
dst[cVert].AddVaryingWithWeight(src[eVerts[0]], 0.5f);
|
|
dst[cVert].AddVaryingWithWeight(src[eVerts[1]], 0.5f);
|
|
|
|
if (eMask.GetNumFaceWeights() > 0) {
|
|
|
|
for (int i = 0; i < eFaces.size(); ++i) {
|
|
|
|
if (eMask.AreFaceWeightsForFaceCenters()) {
|
|
assert(refinement.getNumChildVerticesFromFaces() > 0);
|
|
Vtr::Index cVertOfFace = refinement.getFaceChildVertex(eFaces[i]);
|
|
|
|
assert(Vtr::IndexIsValid(cVertOfFace));
|
|
dst[cVert].AddWithWeight(dst[cVertOfFace], eFaceWeights[i]);
|
|
} else {
|
|
Vtr::Index pFace = eFaces[i];
|
|
ConstIndexArray pFaceEdges = parent.getFaceEdges(pFace),
|
|
pFaceVerts = parent.getFaceVertices(pFace);
|
|
|
|
int eInFace = 0;
|
|
for ( ; pFaceEdges[eInFace] != edge; ++eInFace ) ;
|
|
|
|
int vInFace = eInFace + 2;
|
|
if (vInFace >= pFaceVerts.size()) vInFace -= pFaceVerts.size();
|
|
|
|
Vtr::Index pVertNext = pFaceVerts[vInFace];
|
|
dst[cVert].AddWithWeight(src[pVertNext], eFaceWeights[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <Sdc::SchemeType SCHEME, class T, class U>
|
|
inline void
|
|
TopologyRefiner::interpolateChildVertsFromVerts(
|
|
Vtr::Refinement const & refinement, T const & src, U & dst) const {
|
|
|
|
Sdc::Scheme<SCHEME> scheme(_subdivOptions);
|
|
|
|
const Vtr::Level& parent = refinement.parent();
|
|
const Vtr::Level& child = refinement.child();
|
|
|
|
Vtr::VertexInterface vHood(parent, child);
|
|
|
|
float * weightBuffer = (float *)alloca(2*parent.getMaxValence()*sizeof(float));
|
|
|
|
for (int vert = 0; vert < parent.getNumVertices(); ++vert) {
|
|
|
|
Vtr::Index cVert = refinement.getVertexChildVertex(vert);
|
|
if (!Vtr::IndexIsValid(cVert))
|
|
continue;
|
|
|
|
// Declare and compute mask weights for this vertex relative to its parent edge:
|
|
ConstIndexArray vEdges = parent.getVertexEdges(vert),
|
|
vFaces = parent.getVertexFaces(vert);
|
|
|
|
float vVertWeight,
|
|
* vEdgeWeights = weightBuffer,
|
|
* vFaceWeights = vEdgeWeights + vEdges.size();
|
|
|
|
Vtr::MaskInterface vMask(&vVertWeight, vEdgeWeights, vFaceWeights);
|
|
|
|
vHood.SetIndex(vert, cVert);
|
|
|
|
Sdc::Crease::Rule pRule = parent.getVertexRule(vert);
|
|
Sdc::Crease::Rule cRule = child.getVertexRule(cVert);
|
|
|
|
scheme.ComputeVertexVertexMask(vHood, vMask, pRule, cRule);
|
|
|
|
// Apply the weights to the parent vertex, the vertices opposite its incident
|
|
// edges, and the child vertices of its incident faces:
|
|
//
|
|
// In order to improve numerical precision, its better to apply smaller weights
|
|
// first, so begin with the face-weights followed by the edge-weights and the
|
|
// vertex weight last.
|
|
dst[cVert].Clear();
|
|
|
|
if (vMask.GetNumFaceWeights() > 0) {
|
|
assert(vMask.AreFaceWeightsForFaceCenters());
|
|
|
|
for (int i = 0; i < vFaces.size(); ++i) {
|
|
|
|
Vtr::Index cVertOfFace = refinement.getFaceChildVertex(vFaces[i]);
|
|
assert(Vtr::IndexIsValid(cVertOfFace));
|
|
dst[cVert].AddWithWeight(dst[cVertOfFace], vFaceWeights[i]);
|
|
}
|
|
}
|
|
if (vMask.GetNumEdgeWeights() > 0) {
|
|
|
|
for (int i = 0; i < vEdges.size(); ++i) {
|
|
|
|
ConstIndexArray eVerts = parent.getEdgeVertices(vEdges[i]);
|
|
Vtr::Index pVertOppositeEdge = (eVerts[0] == vert) ? eVerts[1] : eVerts[0];
|
|
|
|
dst[cVert].AddWithWeight(src[pVertOppositeEdge], vEdgeWeights[i]);
|
|
}
|
|
}
|
|
dst[cVert].AddWithWeight(src[vert], vVertWeight);
|
|
|
|
dst[cVert].AddVaryingWithWeight(src[vert], 1.0f);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Varying only interpolation
|
|
//
|
|
|
|
template <class T, class U>
|
|
inline void
|
|
TopologyRefiner::InterpolateVarying(T const * src, U * dst) const {
|
|
|
|
for (int level=1; level<=GetMaxLevel(); ++level) {
|
|
|
|
InterpolateVarying(level, src, dst);
|
|
|
|
src = dst;
|
|
dst += GetNumVertices(level);
|
|
}
|
|
}
|
|
|
|
template <class T, class U>
|
|
inline void
|
|
TopologyRefiner::InterpolateVarying(int level, T const & src, U & dst) const {
|
|
|
|
assert(level>0 and level<=(int)_refinements.size());
|
|
|
|
Vtr::Refinement const & refinement = getRefinement(level-1);
|
|
|
|
varyingInterpolateChildVertsFromFaces(refinement, src, dst);
|
|
varyingInterpolateChildVertsFromEdges(refinement, src, dst);
|
|
varyingInterpolateChildVertsFromVerts(refinement, src, dst);
|
|
}
|
|
|
|
template <class T, class U>
|
|
inline void
|
|
TopologyRefiner::varyingInterpolateChildVertsFromFaces(
|
|
Vtr::Refinement const & refinement, T const & src, U & dst) const {
|
|
|
|
if (refinement.getNumChildVerticesFromFaces() == 0) return;
|
|
|
|
const Vtr::Level& parent = refinement.parent();
|
|
|
|
for (int face = 0; face < parent.getNumFaces(); ++face) {
|
|
|
|
Vtr::Index cVert = refinement.getFaceChildVertex(face);
|
|
if (!Vtr::IndexIsValid(cVert))
|
|
continue;
|
|
|
|
ConstIndexArray fVerts = parent.getFaceVertices(face);
|
|
|
|
float fVaryingWeight = 1.0f / (float) fVerts.size();
|
|
|
|
// Apply the weights to the parent face's vertices:
|
|
dst[cVert].Clear();
|
|
|
|
for (int i = 0; i < fVerts.size(); ++i) {
|
|
dst[cVert].AddVaryingWithWeight(src[fVerts[i]], fVaryingWeight);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class T, class U>
|
|
inline void
|
|
TopologyRefiner::varyingInterpolateChildVertsFromEdges(
|
|
Vtr::Refinement const & refinement, T const & src, U & dst) const {
|
|
|
|
const Vtr::Level& parent = refinement.parent();
|
|
|
|
for (int edge = 0; edge < parent.getNumEdges(); ++edge) {
|
|
|
|
Vtr::Index cVert = refinement.getEdgeChildVertex(edge);
|
|
if (!Vtr::IndexIsValid(cVert))
|
|
continue;
|
|
|
|
// Declare and compute mask weights for this vertex relative to its parent edge:
|
|
ConstIndexArray eVerts = parent.getEdgeVertices(edge);
|
|
|
|
// Apply the weights to the parent edges's vertices
|
|
dst[cVert].Clear();
|
|
|
|
dst[cVert].AddVaryingWithWeight(src[eVerts[0]], 0.5f);
|
|
dst[cVert].AddVaryingWithWeight(src[eVerts[1]], 0.5f);
|
|
}
|
|
}
|
|
|
|
template <class T, class U>
|
|
inline void
|
|
TopologyRefiner::varyingInterpolateChildVertsFromVerts(
|
|
Vtr::Refinement const & refinement, T const & src, U & dst) const {
|
|
|
|
const Vtr::Level& parent = refinement.parent();
|
|
|
|
for (int vert = 0; vert < parent.getNumVertices(); ++vert) {
|
|
|
|
Vtr::Index cVert = refinement.getVertexChildVertex(vert);
|
|
if (!Vtr::IndexIsValid(cVert))
|
|
continue;
|
|
|
|
// Apply the weights to the parent vertex
|
|
dst[cVert].Clear();
|
|
dst[cVert].AddVaryingWithWeight(src[vert], 1.0f);
|
|
}
|
|
}
|
|
|
|
|
|
//
|
|
// Face-varying only interpolation
|
|
//
|
|
|
|
template <class T, class U>
|
|
inline void
|
|
TopologyRefiner::InterpolateFaceVarying(T const * src, U * dst, int channel) const {
|
|
|
|
for (int level=1; level<=GetMaxLevel(); ++level) {
|
|
|
|
InterpolateFaceVarying(level, src, dst, channel);
|
|
|
|
src = dst;
|
|
dst += getLevel(level).getNumFVarValues();
|
|
}
|
|
}
|
|
|
|
template <class T, class U>
|
|
inline void
|
|
TopologyRefiner::InterpolateFaceVarying(int level, T const & src, U & dst, int channel) const {
|
|
|
|
assert(level>0 and level<=(int)_refinements.size());
|
|
|
|
Vtr::Refinement const & refinement = getRefinement(level-1);
|
|
|
|
switch (_subdivType) {
|
|
case Sdc::SCHEME_CATMARK:
|
|
faceVaryingInterpolateChildVertsFromFaces<Sdc::SCHEME_CATMARK>(refinement, src, dst, channel);
|
|
faceVaryingInterpolateChildVertsFromEdges<Sdc::SCHEME_CATMARK>(refinement, src, dst, channel);
|
|
faceVaryingInterpolateChildVertsFromVerts<Sdc::SCHEME_CATMARK>(refinement, src, dst, channel);
|
|
break;
|
|
case Sdc::SCHEME_LOOP:
|
|
faceVaryingInterpolateChildVertsFromFaces<Sdc::SCHEME_LOOP>(refinement, src, dst, channel);
|
|
faceVaryingInterpolateChildVertsFromEdges<Sdc::SCHEME_LOOP>(refinement, src, dst, channel);
|
|
faceVaryingInterpolateChildVertsFromVerts<Sdc::SCHEME_LOOP>(refinement, src, dst, channel);
|
|
break;
|
|
case Sdc::SCHEME_BILINEAR:
|
|
faceVaryingInterpolateChildVertsFromFaces<Sdc::SCHEME_BILINEAR>(refinement, src, dst, channel);
|
|
faceVaryingInterpolateChildVertsFromEdges<Sdc::SCHEME_BILINEAR>(refinement, src, dst, channel);
|
|
faceVaryingInterpolateChildVertsFromVerts<Sdc::SCHEME_BILINEAR>(refinement, src, dst, channel);
|
|
break;
|
|
}
|
|
}
|
|
|
|
template <Sdc::SchemeType SCHEME, class T, class U>
|
|
inline void
|
|
TopologyRefiner::faceVaryingInterpolateChildVertsFromFaces(
|
|
Vtr::Refinement const & refinement, T const & src, U & dst, int channel) const {
|
|
|
|
if (refinement.getNumChildVerticesFromFaces() == 0) return;
|
|
|
|
Sdc::Scheme<SCHEME> scheme(_subdivOptions);
|
|
|
|
const Vtr::Level& parentLevel = refinement.parent();
|
|
const Vtr::Level& childLevel = refinement.child();
|
|
|
|
const Vtr::FVarLevel& parentFVar = *parentLevel._fvarChannels[channel];
|
|
const Vtr::FVarLevel& childFVar = *childLevel._fvarChannels[channel];
|
|
|
|
float * fValueWeights = (float *)alloca(parentLevel.getMaxValence()*sizeof(float));
|
|
|
|
for (int face = 0; face < parentLevel.getNumFaces(); ++face) {
|
|
|
|
Vtr::Index cVert = refinement.getFaceChildVertex(face);
|
|
if (!Vtr::IndexIsValid(cVert))
|
|
continue;
|
|
|
|
Vtr::Index cVertValue = childFVar.getVertexValueOffset(cVert);
|
|
|
|
// The only difference for face-varying here is that we get the values associated
|
|
// with each face-vertex directly from the FVarLevel, rather than using the parent
|
|
// face-vertices directly. If any face-vertex has any sibling values, then we may
|
|
// get the wrong one using the face-vertex index directly.
|
|
|
|
// Declare and compute mask weights for this vertex relative to its parent face:
|
|
ConstIndexArray fValues = parentFVar.getFaceValues(face);
|
|
|
|
Vtr::MaskInterface fMask(fValueWeights, 0, 0);
|
|
Vtr::FaceInterface fHood(fValues.size());
|
|
|
|
scheme.ComputeFaceVertexMask(fHood, fMask);
|
|
|
|
// Apply the weights to the parent face's vertices:
|
|
dst[cVertValue].Clear();
|
|
|
|
for (int i = 0; i < fValues.size(); ++i) {
|
|
dst[cVertValue].AddWithWeight(src[fValues[i]], fValueWeights[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <Sdc::SchemeType SCHEME, class T, class U>
|
|
inline void
|
|
TopologyRefiner::faceVaryingInterpolateChildVertsFromEdges(
|
|
Vtr::Refinement const & refinement, T const & src, U & dst, int channel) const {
|
|
|
|
Sdc::Scheme<SCHEME> scheme(_subdivOptions);
|
|
|
|
const Vtr::Level& parentLevel = refinement.parent();
|
|
const Vtr::Level& childLevel = refinement.child();
|
|
|
|
const Vtr::FVarRefinement& refineFVar = *refinement._fvarChannels[channel];
|
|
const Vtr::FVarLevel& parentFVar = *parentLevel._fvarChannels[channel];
|
|
const Vtr::FVarLevel& childFVar = *childLevel._fvarChannels[channel];
|
|
|
|
//
|
|
// Allocate and intialize (if linearly interpolated) interpolation weights for
|
|
// the edge mask:
|
|
//
|
|
float eVertWeights[2],
|
|
* eFaceWeights = (float *)alloca(parentLevel.getMaxEdgeFaces()*sizeof(float));
|
|
|
|
Vtr::MaskInterface eMask(eVertWeights, 0, eFaceWeights);
|
|
|
|
bool isLinearFVar = parentFVar._isLinear;
|
|
if (isLinearFVar) {
|
|
eMask.SetNumVertexWeights(2);
|
|
eMask.SetNumEdgeWeights(0);
|
|
eMask.SetNumFaceWeights(0);
|
|
|
|
eVertWeights[0] = 0.5f;
|
|
eVertWeights[1] = 0.5f;
|
|
}
|
|
|
|
Vtr::EdgeInterface eHood(parentLevel);
|
|
|
|
for (int edge = 0; edge < parentLevel.getNumEdges(); ++edge) {
|
|
|
|
Vtr::Index cVert = refinement.getEdgeChildVertex(edge);
|
|
if (!Vtr::IndexIsValid(cVert))
|
|
continue;
|
|
|
|
ConstIndexArray cVertValues = childFVar.getVertexValues(cVert);
|
|
|
|
bool fvarEdgeVertMatchesVertex = childFVar.valueTopologyMatches(cVertValues[0]);
|
|
if (fvarEdgeVertMatchesVertex) {
|
|
//
|
|
// If smoothly interpolated, compute new weights for the edge mask:
|
|
//
|
|
if (!isLinearFVar) {
|
|
eHood.SetIndex(edge);
|
|
|
|
Sdc::Crease::Rule pRule = (parentLevel.getEdgeSharpness(edge) > 0.0f)
|
|
? Sdc::Crease::RULE_CREASE : Sdc::Crease::RULE_SMOOTH;
|
|
Sdc::Crease::Rule cRule = childLevel.getVertexRule(cVert);
|
|
|
|
scheme.ComputeEdgeVertexMask(eHood, eMask, pRule, cRule);
|
|
}
|
|
|
|
// Apply the weights to the parent edges's vertices and (if applicable) to
|
|
// the child vertices of its incident faces:
|
|
//
|
|
// Even though the face-varying topology matches the vertex topology, we need
|
|
// to be careful here when getting values corresponding to the two end-vertices.
|
|
// While the edge may be continuous, the vertices at their ends may have
|
|
// discontinuities elsewhere in their neighborhood (i.e. on the "other side"
|
|
// of the end-vertex) and so have sibling values associated with them. In most
|
|
// cases the topology for an end-vertex will match and we can use it directly,
|
|
// but we must still check and retrieve as needed.
|
|
//
|
|
// Indices for values corresponding to face-vertices are guaranteed to match,
|
|
// so we can use the child-vertex indices directly.
|
|
//
|
|
// And by "directly", we always use getVertexValue(vertexIndex) to reference
|
|
// values in the "src" to account for the possible indirection that may exist at
|
|
// level 0 -- where there may be fewer values than vertices and an additional
|
|
// indirection is necessary. We can use a vertex index directly for "dst" when
|
|
// it matches.
|
|
//
|
|
Vtr::Index eVertValues[2];
|
|
|
|
parentFVar.getEdgeFaceValues(edge, 0, eVertValues);
|
|
|
|
Index cVertValue = cVertValues[0];
|
|
|
|
dst[cVertValue].Clear();
|
|
dst[cVertValue].AddWithWeight(src[eVertValues[0]], eVertWeights[0]);
|
|
dst[cVertValue].AddWithWeight(src[eVertValues[1]], eVertWeights[1]);
|
|
|
|
if (eMask.GetNumFaceWeights() > 0) {
|
|
|
|
ConstIndexArray eFaces = parentLevel.getEdgeFaces(edge);
|
|
|
|
for (int i = 0; i < eFaces.size(); ++i) {
|
|
if (eMask.AreFaceWeightsForFaceCenters()) {
|
|
|
|
Vtr::Index cVertOfFace = refinement.getFaceChildVertex(eFaces[i]);
|
|
assert(Vtr::IndexIsValid(cVertOfFace));
|
|
|
|
Vtr::Index cValueOfFace = childFVar.getVertexValueOffset(cVertOfFace);
|
|
dst[cVertValue].AddWithWeight(dst[cValueOfFace], eFaceWeights[i]);
|
|
} else {
|
|
Vtr::Index pFace = eFaces[i];
|
|
ConstIndexArray pFaceEdges = parentLevel.getFaceEdges(pFace),
|
|
pFaceVerts = parentLevel.getFaceVertices(pFace);
|
|
|
|
int eInFace = 0;
|
|
for ( ; pFaceEdges[eInFace] != edge; ++eInFace ) ;
|
|
|
|
// Edge "i" spans vertices [i,i+1] so we want i+2...
|
|
int vInFace = eInFace + 2;
|
|
if (vInFace >= pFaceVerts.size()) vInFace -= pFaceVerts.size();
|
|
|
|
Vtr::Index pValueNext = parentFVar.getFaceValues(pFace)[vInFace];
|
|
dst[cVertValue].AddWithWeight(src[pValueNext], eFaceWeights[i]);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
//
|
|
// Mismatched edge-verts should just be linearly interpolated between the pairs of
|
|
// values for each sibling of the child edge-vertex -- the question is: which face
|
|
// holds that pair of values for a given sibling?
|
|
//
|
|
// In the manifold case, the sibling and edge-face indices will correspond. We
|
|
// will eventually need to update this to account for > 3 incident faces.
|
|
//
|
|
for (int i = 0; i < cVertValues.size(); ++i) {
|
|
Vtr::Index eVertValues[2];
|
|
int eFaceIndex = refineFVar.getChildValueParentSource(cVert, i);
|
|
assert(eFaceIndex == i);
|
|
|
|
parentFVar.getEdgeFaceValues(edge, eFaceIndex, eVertValues);
|
|
|
|
Index cVertValue = cVertValues[i];
|
|
|
|
dst[cVertValue].Clear();
|
|
dst[cVertValue].AddWithWeight(src[eVertValues[0]], 0.5);
|
|
dst[cVertValue].AddWithWeight(src[eVertValues[1]], 0.5);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <Sdc::SchemeType SCHEME, class T, class U>
|
|
inline void
|
|
TopologyRefiner::faceVaryingInterpolateChildVertsFromVerts(
|
|
Vtr::Refinement const & refinement, T const & src, U & dst, int channel) const {
|
|
|
|
Sdc::Scheme<SCHEME> scheme(_subdivOptions);
|
|
|
|
const Vtr::Level& parentLevel = refinement.parent();
|
|
const Vtr::Level& childLevel = refinement.child();
|
|
|
|
const Vtr::FVarRefinement& refineFVar = *refinement._fvarChannels[channel];
|
|
const Vtr::FVarLevel& parentFVar = *parentLevel._fvarChannels[channel];
|
|
const Vtr::FVarLevel& childFVar = *childLevel._fvarChannels[channel];
|
|
|
|
bool isLinearFVar = parentFVar._isLinear;
|
|
|
|
float * weightBuffer = (float *)alloca(2*parentLevel.getMaxValence()*sizeof(float));
|
|
|
|
Vtr::Index * vEdgeValues = (Vtr::Index *)alloca(parentLevel.getMaxValence()*sizeof(Vtr::Index));
|
|
|
|
Vtr::VertexInterface vHood(parentLevel, childLevel);
|
|
|
|
for (int vert = 0; vert < parentLevel.getNumVertices(); ++vert) {
|
|
|
|
Vtr::Index cVert = refinement.getVertexChildVertex(vert);
|
|
if (!Vtr::IndexIsValid(cVert))
|
|
continue;
|
|
|
|
ConstIndexArray pVertValues = parentFVar.getVertexValues(vert),
|
|
cVertValues = childFVar.getVertexValues(cVert);
|
|
|
|
bool fvarVertVertMatchesVertex = childFVar.valueTopologyMatches(cVertValues[0]);
|
|
if (isLinearFVar && fvarVertVertMatchesVertex) {
|
|
dst[cVertValues[0]].Clear();
|
|
dst[cVertValues[0]].AddWithWeight(src[pVertValues[0]], 1.0f);
|
|
continue;
|
|
}
|
|
|
|
if (fvarVertVertMatchesVertex) {
|
|
//
|
|
// Declare and compute mask weights for this vertex relative to its parent edge:
|
|
//
|
|
// (We really need to encapsulate this somewhere else for use here and in the
|
|
// general case)
|
|
//
|
|
ConstIndexArray vEdges = parentLevel.getVertexEdges(vert);
|
|
|
|
float vVertWeight;
|
|
float * vEdgeWeights = weightBuffer;
|
|
float * vFaceWeights = vEdgeWeights + vEdges.size();
|
|
|
|
Vtr::MaskInterface vMask(&vVertWeight, vEdgeWeights, vFaceWeights);
|
|
|
|
vHood.SetIndex(vert, cVert);
|
|
|
|
Sdc::Crease::Rule pRule = parentLevel.getVertexRule(vert);
|
|
Sdc::Crease::Rule cRule = childLevel.getVertexRule(cVert);
|
|
|
|
scheme.ComputeVertexVertexMask(vHood, vMask, pRule, cRule);
|
|
|
|
// Apply the weights to the parent vertex, the vertices opposite its incident
|
|
// edges, and the child vertices of its incident faces:
|
|
//
|
|
// Even though the face-varying topology matches the vertex topology, we need
|
|
// to be careful here when getting values corresponding to vertices at the
|
|
// ends of edges. While the edge may be continuous, the end vertex may have
|
|
// discontinuities elsewhere in their neighborhood (i.e. on the "other side"
|
|
// of the end-vertex) and so have sibling values associated with them. In most
|
|
// cases the topology for an end-vertex will match and we can use it directly,
|
|
// but we must still check and retrieve as needed.
|
|
//
|
|
// Indices for values corresponding to face-vertices are guaranteed to match,
|
|
// so we can use the child-vertex indices directly.
|
|
//
|
|
// And by "directly", we always use getVertexValue(vertexIndex) to reference
|
|
// values in the "src" to account for the possible indirection that may exist at
|
|
// level 0 -- where there may be fewer values than vertices and an additional
|
|
// indirection is necessary. We can use a vertex index directly for "dst" when
|
|
// it matches.
|
|
//
|
|
// As with applying the mask to vertex data, in order to improve numerical
|
|
// precision, its better to apply smaller weights first, so begin with the
|
|
// face-weights followed by the edge-weights and the vertex weight last.
|
|
//
|
|
Vtr::Index pVertValue = pVertValues[0];
|
|
Vtr::Index cVertValue = cVertValues[0];
|
|
|
|
dst[cVertValue].Clear();
|
|
if (vMask.GetNumFaceWeights() > 0) {
|
|
assert(vMask.AreFaceWeightsForFaceCenters());
|
|
|
|
ConstIndexArray vFaces = parentLevel.getVertexFaces(vert);
|
|
|
|
for (int i = 0; i < vFaces.size(); ++i) {
|
|
|
|
Vtr::Index cVertOfFace = refinement.getFaceChildVertex(vFaces[i]);
|
|
assert(Vtr::IndexIsValid(cVertOfFace));
|
|
|
|
Vtr::Index cValueOfFace = childFVar.getVertexValueOffset(cVertOfFace);
|
|
dst[cVertValue].AddWithWeight(dst[cValueOfFace], vFaceWeights[i]);
|
|
}
|
|
}
|
|
if (vMask.GetNumEdgeWeights() > 0) {
|
|
|
|
parentFVar.getVertexEdgeValues(vert, vEdgeValues);
|
|
|
|
for (int i = 0; i < vEdges.size(); ++i) {
|
|
dst[cVertValue].AddWithWeight(src[vEdgeValues[i]], vEdgeWeights[i]);
|
|
}
|
|
}
|
|
dst[cVertValue].AddWithWeight(src[pVertValue], vVertWeight);
|
|
} else {
|
|
//
|
|
// Each FVar value associated with a vertex will be either a corner or a crease,
|
|
// or potentially in transition from corner to crease:
|
|
// - if the CHILD is a corner, there can be no transition so we have a corner
|
|
// - otherwise if the PARENT is a crease, both will be creases (no transition)
|
|
// - otherwise the parent must be a corner and the child a crease (transition)
|
|
//
|
|
Vtr::FVarLevel::ConstValueTagArray pValueTags = parentFVar.getVertexValueTags(vert);
|
|
Vtr::FVarLevel::ConstValueTagArray cValueTags = childFVar.getVertexValueTags(cVert);
|
|
|
|
for (int cSibling = 0; cSibling < cVertValues.size(); ++cSibling) {
|
|
int pSibling = refineFVar.getChildValueParentSource(cVert, cSibling);
|
|
assert(pSibling == cSibling);
|
|
|
|
Vtr::Index pVertValue = pVertValues[pSibling];
|
|
Vtr::Index cVertValue = cVertValues[cSibling];
|
|
|
|
dst[cVertValue].Clear();
|
|
if (cValueTags[cSibling].isCorner()) {
|
|
dst[cVertValue].AddWithWeight(src[pVertValue], 1.0f);
|
|
} else {
|
|
//
|
|
// We have either a crease or a transition from corner to crease -- in
|
|
// either case, we need the end values for the full/fractional crease:
|
|
//
|
|
Index pEndValues[2];
|
|
parentFVar.getVertexCreaseEndValues(vert, pSibling, pEndValues);
|
|
|
|
float vWeight = 0.75f;
|
|
float eWeight = 0.125f;
|
|
|
|
//
|
|
// If semisharp we need to apply fractional weighting -- if made sharp because
|
|
// of the other sibling (dependent-sharp) use the fractional weight from that
|
|
// other sibling (should only occur when there are 2):
|
|
//
|
|
if (pValueTags[pSibling].isSemiSharp()) {
|
|
float wCorner = pValueTags[pSibling].isDepSharp()
|
|
? refineFVar.getFractionalWeight(vert, !pSibling, cVert, !cSibling)
|
|
: refineFVar.getFractionalWeight(vert, pSibling, cVert, cSibling);
|
|
float wCrease = 1.0f - wCorner;
|
|
|
|
vWeight = wCrease * 0.75f + wCorner;
|
|
eWeight = wCrease * 0.125f;
|
|
}
|
|
dst[cVertValue].AddWithWeight(src[pEndValues[0]], eWeight);
|
|
dst[cVertValue].AddWithWeight(src[pEndValues[1]], eWeight);
|
|
dst[cVertValue].AddWithWeight(src[pVertValue], vWeight);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class T, class U>
|
|
inline void
|
|
TopologyRefiner::Limit(T const & src, U * dst) const {
|
|
|
|
if (getLevel(GetMaxLevel()).getNumVertexEdgesTotal() == 0) {
|
|
Error(FAR_RUNTIME_ERROR,
|
|
"Cannot compute limit points -- last level of refinement does not include full topology.");
|
|
return;
|
|
}
|
|
|
|
switch (_subdivType) {
|
|
case Sdc::SCHEME_CATMARK:
|
|
limit<Sdc::SCHEME_CATMARK>(src, dst);
|
|
break;
|
|
case Sdc::SCHEME_LOOP:
|
|
limit<Sdc::SCHEME_LOOP>(src, dst);
|
|
break;
|
|
case Sdc::SCHEME_BILINEAR:
|
|
limit<Sdc::SCHEME_BILINEAR>(src, dst);
|
|
break;
|
|
}
|
|
}
|
|
|
|
template <Sdc::SchemeType SCHEME, class T, class U>
|
|
inline void
|
|
TopologyRefiner::limit(T const & src, U * dst) const {
|
|
|
|
//
|
|
// Work in progress...
|
|
// - does not support tangents yet (unclear how)
|
|
// - need to verify that each vertex is "limitable", i.e.:
|
|
// - is not semi-sharp, inf-sharp or non-manifold
|
|
// - is "complete" wrt its parent (if refinement is sparse)
|
|
// - copy (or weight by 1.0) src to dst when not "limitable"
|
|
// - currently requires one refinement to get rid of N-sided faces:
|
|
// - could limit regular vertices from level 0
|
|
//
|
|
Sdc::Scheme<SCHEME> scheme(_subdivOptions);
|
|
|
|
Vtr::Level const & level = getLevel(GetMaxLevel());
|
|
|
|
int maxWeightsPerMask = 1 + 2 * level.getMaxValence();
|
|
|
|
float * weightBuffer = (float *)alloca(maxWeightsPerMask * sizeof(float));
|
|
|
|
// This is a bit obscure -- assign both parent and child as last level
|
|
Vtr::VertexInterface vHood(level, level);
|
|
|
|
for (int vert = 0; vert < level.getNumVertices(); ++vert) {
|
|
ConstIndexArray vEdges = level.getVertexEdges(vert);
|
|
|
|
// Incomplete vertices (present in sparse refinement) do not have their full
|
|
// topological neighborhood to determine a proper limit -- just leave the
|
|
// vertex at the refined location and continue to the next:
|
|
//
|
|
if (level._vertTags[vert]._incomplete || (vEdges.size() == 0)) {
|
|
dst[vert].Clear();
|
|
dst[vert].AddWithWeight(src[vert], 1.0);
|
|
continue;
|
|
}
|
|
|
|
// Assign the mask weights to the common buffer and compute the mask:
|
|
//
|
|
float * vWeights = weightBuffer,
|
|
* eWeights = vWeights + 1,
|
|
* fWeights = eWeights + vEdges.size();
|
|
|
|
Vtr::MaskInterface vMask(vWeights, eWeights, fWeights);
|
|
|
|
// This is a bit obscure -- child vertex index will be ignored here
|
|
vHood.SetIndex(vert, vert);
|
|
|
|
scheme.ComputeVertexLimitMask(vHood, vMask, level.getVertexRule(vert));
|
|
|
|
// Apply the weights to the vertex, the vertices opposite its incident
|
|
// edges, and the opposite vertices of its incident faces:
|
|
//
|
|
// As with applying refinment masks to vertex data, in order to improve
|
|
// numerical precision, its better to apply smaller weights first, so
|
|
// begin with the face-weights followed by the edge-weights and the vertex
|
|
// weight last.
|
|
|
|
dst[vert].Clear();
|
|
if (vMask.GetNumFaceWeights() > 0) {
|
|
assert(!vMask.AreFaceWeightsForFaceCenters());
|
|
|
|
ConstIndexArray vFaces = level.getVertexFaces(vert);
|
|
ConstLocalIndexArray vInFace = level.getVertexFaceLocalIndices(vert);
|
|
for (int i = 0; i < vFaces.size(); ++i) {
|
|
ConstIndexArray fVerts = level.getFaceVertices(vFaces[i]);
|
|
|
|
LocalIndex vOppInFace = (vInFace[i] + 2);
|
|
if (vOppInFace >= fVerts.size()) vOppInFace -= (LocalIndex)fVerts.size();
|
|
Index vertOppositeFace = level.getFaceVertices(vFaces[i])[vOppInFace];
|
|
|
|
dst[vert].AddWithWeight(src[vertOppositeFace], fWeights[i]);
|
|
}
|
|
}
|
|
if (vMask.GetNumEdgeWeights() > 0) {
|
|
for (int i = 0; i < vEdges.size(); ++i) {
|
|
ConstIndexArray eVerts = level.getEdgeVertices(vEdges[i]);
|
|
Index vertOppositeEdge = (eVerts[0] == vert) ? eVerts[1] : eVerts[0];
|
|
|
|
dst[vert].AddWithWeight(src[vertOppositeEdge], eWeights[i]);
|
|
}
|
|
}
|
|
dst[vert].AddWithWeight(src[vert], vWeights[0]);
|
|
}
|
|
}
|
|
|
|
template <class T, class U>
|
|
inline void
|
|
TopologyRefiner::LimitFaceVarying(T const & src, U * dst, int channel) const {
|
|
|
|
if (getLevel(GetMaxLevel()).getNumVertexEdgesTotal() == 0) {
|
|
Error(FAR_RUNTIME_ERROR,
|
|
"Cannot compute limit points -- last level of refinement does not include full topology.");
|
|
return;
|
|
}
|
|
|
|
switch (_subdivType) {
|
|
case Sdc::SCHEME_CATMARK:
|
|
faceVaryingLimit<Sdc::SCHEME_CATMARK>(src, dst, channel);
|
|
break;
|
|
case Sdc::SCHEME_LOOP:
|
|
faceVaryingLimit<Sdc::SCHEME_LOOP>(src, dst, channel);
|
|
break;
|
|
case Sdc::SCHEME_BILINEAR:
|
|
faceVaryingLimit<Sdc::SCHEME_BILINEAR>(src, dst, channel);
|
|
break;
|
|
}
|
|
}
|
|
|
|
template <Sdc::SchemeType SCHEME, class T, class U>
|
|
inline void
|
|
TopologyRefiner::faceVaryingLimit(T const & src, U * dst, int channel) const {
|
|
|
|
Sdc::Scheme<SCHEME> scheme(_subdivOptions);
|
|
|
|
Vtr::Level const & level = getLevel(GetMaxLevel());
|
|
Vtr::FVarLevel const & fvarChannel = *level._fvarChannels[channel];
|
|
|
|
int maxWeightsPerMask = 1 + 2 * level.getMaxValence();
|
|
|
|
float * weightBuffer = (float *)alloca(maxWeightsPerMask * sizeof(float));
|
|
Index * indexBuffer = (Index *)alloca(level.getMaxValence() * sizeof(Index));
|
|
|
|
// This is a bit obscure -- assign both parent and child as last level
|
|
Vtr::VertexInterface vHood(level, level);
|
|
|
|
for (int vert = 0; vert < level.getNumVertices(); ++vert) {
|
|
|
|
ConstIndexArray vEdges = level.getVertexEdges(vert);
|
|
ConstIndexArray vValues = fvarChannel.getVertexValues(vert);
|
|
|
|
// Incomplete vertices (present in sparse refinement) do not have their full
|
|
// topological neighborhood to determine a proper limit -- just leave the
|
|
// values (perhaps more than one per vertex) at the refined location.
|
|
//
|
|
// The same can be done if the face-varying channel is purely linear.
|
|
//
|
|
bool isIncomplete = (level._vertTags[vert]._incomplete || (vEdges.size() == 0));
|
|
if (isIncomplete || fvarChannel._isLinear) {
|
|
for (int i = 0; i < vValues.size(); ++i) {
|
|
Vtr::Index vValue = vValues[i];
|
|
|
|
dst[vValue].Clear();
|
|
dst[vValue].AddWithWeight(src[vValue], 1.0f);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
bool fvarVertMatchesVertex = fvarChannel.valueTopologyMatches(vValues[0]);
|
|
if (fvarVertMatchesVertex) {
|
|
|
|
// Assign the mask weights to the common buffer and compute the mask:
|
|
//
|
|
float * vWeights = weightBuffer,
|
|
* eWeights = vWeights + 1,
|
|
* fWeights = eWeights + vEdges.size();
|
|
|
|
Vtr::MaskInterface vMask(vWeights, eWeights, fWeights);
|
|
|
|
vHood.SetIndex(vert, vert);
|
|
|
|
scheme.ComputeVertexLimitMask(vHood, vMask, level.getVertexRule(vert));
|
|
|
|
//
|
|
// Apply mask to corresponding FVar values for neighboring vertices:
|
|
//
|
|
Vtr::Index vValue = vValues[0];
|
|
|
|
dst[vValue].Clear();
|
|
if (vMask.GetNumFaceWeights() > 0) {
|
|
assert(!vMask.AreFaceWeightsForFaceCenters());
|
|
|
|
ConstIndexArray vFaces = level.getVertexFaces(vert);
|
|
ConstLocalIndexArray vInFace = level.getVertexFaceLocalIndices(vert);
|
|
|
|
for (int i = 0; i < vFaces.size(); ++i) {
|
|
ConstIndexArray faceValues = fvarChannel.getFaceValues(vFaces[i]);
|
|
LocalIndex vOppInFace = vInFace[i] + 2;
|
|
if (vOppInFace >= faceValues.size()) vOppInFace -= faceValues.size();
|
|
|
|
Index vValueOppositeFace = faceValues[vOppInFace];
|
|
|
|
dst[vValue].AddWithWeight(src[vValueOppositeFace], fWeights[i]);
|
|
}
|
|
}
|
|
if (vMask.GetNumEdgeWeights() > 0) {
|
|
Index * vEdgeValues = indexBuffer;
|
|
fvarChannel.getVertexEdgeValues(vert, vEdgeValues);
|
|
|
|
for (int i = 0; i < vEdges.size(); ++i) {
|
|
dst[vValue].AddWithWeight(src[vEdgeValues[i]], eWeights[i]);
|
|
}
|
|
}
|
|
dst[vValue].AddWithWeight(src[vValue], vWeights[0]);
|
|
} else {
|
|
//
|
|
// Sibling FVar values associated with a vertex will be either a corner or a crease:
|
|
//
|
|
for (int i = 0; i < vValues.size(); ++i) {
|
|
Vtr::Index vValue = vValues[i];
|
|
|
|
dst[vValue].Clear();
|
|
if (fvarChannel.getValueTag(vValue).isCorner()) {
|
|
dst[vValue].AddWithWeight(src[vValue], 1.0f);
|
|
} else {
|
|
Index vEndValues[2];
|
|
fvarChannel.getVertexCreaseEndValues(vert, i, vEndValues);
|
|
|
|
dst[vValue].AddWithWeight(src[vEndValues[0]], 1.0f/6.0f);
|
|
dst[vValue].AddWithWeight(src[vEndValues[1]], 1.0f/6.0f);
|
|
dst[vValue].AddWithWeight(src[vValue], 2.0f/3.0f);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // end namespace Far
|
|
|
|
} // end namespace OPENSUBDIV_VERSION
|
|
using namespace OPENSUBDIV_VERSION;
|
|
} // end namespace OpenSubdiv
|
|
|
|
#endif /* FAR_TOPOLOGY_REFINER_H */
|