OpenSubdiv/examples/glPtexViewer/shader_gl3.glsl
Takahito Tejima 4a4322983f Osd drawing API refactoring.
Remove DrawRegistry from osd layer and put a simple shader caching
utility into examples/common. osd layer only provides patch shader
snippet and let client configure and compile the code. Clients also
maintain the lifetime of shader object, which is preferable for the
actual application integration.

update all examples to use the new scheme.
2015-05-13 17:35:46 -07:00

546 lines
17 KiB
GLSL

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#define NUM_LIGHTS 2
struct LightSource {
vec4 position;
vec4 ambient;
vec4 diffuse;
vec4 specular;
};
layout(std140) uniform Constant {
mat4 ModelViewMatrix;
mat4 ProjectionMatrix;
mat4 ModelViewProjectionMatrix;
mat4 ModelViewInverseMatrix;
LightSource lightSource[NUM_LIGHTS];
float TessLevel;
float displacementScale;
float mipmapBias;
};
uniform int PrimitiveIdBase;
int OsdPrimitiveIdBase()
{
return PrimitiveIdBase;
}
//--------------------------------------------------------------
// Common
//--------------------------------------------------------------
#if defined(DISPLACEMENT_HW_BILINEAR) \
|| defined(DISPLACEMENT_BILINEAR) \
|| defined(DISPLACEMENT_BIQUADRATIC) \
|| defined(NORMAL_HW_SCREENSPACE) \
|| defined(NORMAL_SCREENSPACE) \
|| defined(NORMAL_BIQUADRATIC) \
|| defined(NORMAL_BIQUADRATIC_WG)
uniform sampler2DArray textureDisplace_Data;
uniform isamplerBuffer textureDisplace_Packing;
#endif
vec4 displacement(vec4 position, vec3 normal, vec4 patchCoord)
{
#if defined(DISPLACEMENT_HW_BILINEAR)
float disp = PtexLookupFast(patchCoord,
textureDisplace_Data,
textureDisplace_Packing).x;
#elif defined(DISPLACEMENT_BILINEAR)
float disp = PtexMipmapLookup(patchCoord,
mipmapBias,
textureDisplace_Data,
textureDisplace_Packing).x;
#elif defined(DISPLACEMENT_BIQUADRATIC)
float disp = PtexMipmapLookupQuadratic(patchCoord,
mipmapBias,
textureDisplace_Data,
textureDisplace_Packing).x;
#else
float disp = 0.0;
#endif
return position + vec4(disp * normal, 0) * displacementScale;
}
//--------------------------------------------------------------
// Vertex Shader
//--------------------------------------------------------------
#ifdef VERTEX_SHADER
layout (location=0) in vec4 position;
layout (location=1) in vec3 normal;
out vec4 vPosition;
out vec3 vNormal;
void main()
{
vPosition = ModelViewMatrix * position;
vNormal = (ModelViewMatrix * vec4(normal, 0)).xyz;
}
#endif
//--------------------------------------------------------------
// Geometry Shader
//--------------------------------------------------------------
#ifdef GEOMETRY_SHADER
#ifdef PRIM_QUAD
layout(lines_adjacency) in;
layout(triangle_strip, max_vertices = 4) out;
#define EDGE_VERTS 4
in vec4 vPosition[4];
in vec3 vNormal[4];
#endif // PRIM_QUAD
#ifdef PRIM_TRI
layout(triangles) in;
layout(triangle_strip, max_vertices = 3) out;
#define EDGE_VERTS 3
in vec4 vPosition[3];
in vec3 vNormal[3];
#endif // PRIM_TRI
out vec4 gPosition;
out vec4 gPatchCoord;
out vec3 gNormal;
noperspective out vec4 gEdgeDistance;
// --------------------------------------
void emit(int index, vec4 position, vec3 normal, vec4 patchCoord)
{
gPosition = position;
gPatchCoord = patchCoord;
gNormal = normal;
gl_Position = ProjectionMatrix * gPosition;
EmitVertex();
}
const float VIEWPORT_SCALE = 1024.0; // XXXdyu
float edgeDistance(vec4 p, vec4 p0, vec4 p1)
{
return VIEWPORT_SCALE *
abs((p.x - p0.x) * (p1.y - p0.y) -
(p.y - p0.y) * (p1.x - p0.x)) / length(p1.xy - p0.xy);
}
#if defined(GEOMETRY_OUT_WIRE) || defined(GEOMETRY_OUT_LINE)
void emit(int index, vec4 position, vec3 normal, vec4 patchCoord, vec4 edgeVerts[EDGE_VERTS])
{
gEdgeDistance[0] =
edgeDistance(edgeVerts[index], edgeVerts[0], edgeVerts[1]);
gEdgeDistance[1] =
edgeDistance(edgeVerts[index], edgeVerts[1], edgeVerts[2]);
#ifdef PRIM_TRI
gEdgeDistance[2] =
edgeDistance(edgeVerts[index], edgeVerts[2], edgeVerts[0]);
#endif
#ifdef PRIM_QUAD
gEdgeDistance[2] =
edgeDistance(edgeVerts[index], edgeVerts[2], edgeVerts[3]);
gEdgeDistance[3] =
edgeDistance(edgeVerts[index], edgeVerts[3], edgeVerts[0]);
#endif
emit(index, position, normal, patchCoord);
}
#endif
// --------------------------------------
vec4 GeneratePatchCoord(vec2 uv, int primitiveID) // for non-adaptive
{
ivec3 patchParam = OsdGetPatchParam(OsdGetPatchIndex(primitiveID));
return OsdInterpolatePatchCoord(uv, OsdGetPatchCoord(patchParam));
}
void main()
{
gl_PrimitiveID = gl_PrimitiveIDIn;
#ifdef PRIM_QUAD
vec4 patchCoord[4];
vec4 position[4];
vec3 normal[4];
// need to generate patch coord for non-patch quads
patchCoord[0] = GeneratePatchCoord(vec2(0, 0), gl_PrimitiveID);
patchCoord[1] = GeneratePatchCoord(vec2(1, 0), gl_PrimitiveID);
patchCoord[2] = GeneratePatchCoord(vec2(1, 1), gl_PrimitiveID);
patchCoord[3] = GeneratePatchCoord(vec2(0, 1), gl_PrimitiveID);
#if defined(DISPLACEMENT_HW_BILINEAR) || defined(DISPLACEMENT_BILINEAR) || defined(DISPLACEMENT_BIQUADRATIC)
position[0] = displacement(vPosition[0], vNormal[0], patchCoord[0]);
position[1] = displacement(vPosition[1], vNormal[1], patchCoord[1]);
position[2] = displacement(vPosition[2], vNormal[2], patchCoord[2]);
position[3] = displacement(vPosition[3], vNormal[3], patchCoord[3]);
#else
position[0] = vPosition[0];
position[1] = vPosition[1];
position[2] = vPosition[2];
position[3] = vPosition[3];
#endif
#ifdef NORMAL_FACET
// emit flat normals for displaced surface
vec3 A = (position[0] - position[1]).xyz;
vec3 B = (position[2] - position[1]).xyz;
normal[0] = normalize(cross(B, A));
normal[1] = normal[0];
normal[2] = normal[0];
normal[3] = normal[0];
#else
normal[0] = vNormal[0];
normal[1] = vNormal[1];
normal[2] = vNormal[2];
normal[3] = vNormal[3];
#endif
#if defined(GEOMETRY_OUT_WIRE) || defined(GEOMETRY_OUT_LINE)
vec4 edgeVerts[EDGE_VERTS];
edgeVerts[0] = ProjectionMatrix * vPosition[0];
edgeVerts[1] = ProjectionMatrix * vPosition[1];
edgeVerts[2] = ProjectionMatrix * vPosition[2];
edgeVerts[3] = ProjectionMatrix * vPosition[3];
edgeVerts[0].xy /= edgeVerts[0].w;
edgeVerts[1].xy /= edgeVerts[1].w;
edgeVerts[2].xy /= edgeVerts[2].w;
edgeVerts[3].xy /= edgeVerts[3].w;
emit(0, position[0], normal[0], patchCoord[0], edgeVerts);
emit(1, position[1], normal[1], patchCoord[1], edgeVerts);
emit(3, position[3], normal[3], patchCoord[3], edgeVerts);
emit(2, position[2], normal[2], patchCoord[2], edgeVerts);
#else
gEdgeDistance = vec4(0);
emit(0, position[0], normal[0], patchCoord[0]);
emit(1, position[1], normal[1], patchCoord[1]);
emit(3, position[3], normal[3], patchCoord[3]);
emit(2, position[2], normal[2], patchCoord[2]);
#endif
#endif // PRIM_QUAD
#ifdef PRIM_TRI
vec4 position[3];
vec4 patchCoord[3];
vec3 normal[3];
// patch coords are computed in tessellation shader
patchCoord[0] = vPatchCoord[0];
patchCoord[1] = vPatchCoord[1];
patchCoord[2] = vPatchCoord[2];
#if defined(DISPLACEMENT_HW_BILINEAR) || defined(DISPLACEMENT_BILINEAR) || defined(DISPLACEMENT_BIQUADRATIC)
position[0] = displacement(vPosition[0], vNormal[0], patchCoord[0]);
position[1] = displacement(vPosition[1], vNormal[1], patchCoord[1]);
position[2] = displacement(vPosition[2], vNormal[2], patchCoord[2]);
#else
position[0] = vPosition[0];
position[1] = vPosition[1];
position[2] = vPosition[2];
#endif
#ifdef NORMAL_FACET
// emit flat normals for displaced surface
vec3 A = (position[0] - position[1]).xyz;
vec3 B = (position[2] - position[1]).xyz;
normal[0] = normalize(cross(B, A));
normal[1] = normal[0];
normal[2] = normal[0];
#else
normal[0] = vNormal[0];
normal[1] = vNormal[1];
normal[2] = vNormal[2];
#endif
#if defined(GEOMETRY_OUT_WIRE) || defined(GEOMETRY_OUT_LINE)
vec4 edgeVerts[EDGE_VERTS];
edgeVerts[0] = ProjectionMatrix * vPosition[0];
edgeVerts[1] = ProjectionMatrix * vPosition[1];
edgeVerts[2] = ProjectionMatrix * vPosition[2];
edgeVerts[0].xy /= edgeVerts[0].w;
edgeVerts[1].xy /= edgeVerts[1].w;
edgeVerts[2].xy /= edgeVerts[2].w;
emit(0, position[0], normal[0], patchCoord[0], edgeVerts);
emit(1, position[1], normal[1], patchCoord[1], edgeVerts);
emit(2, position[2], normal[2], patchCoord[2], edgeVerts);
#else
gEdgeDistance = vec4(0);
emit(0, position[0], normal[0], patchCoord[0]);
emit(1, position[1], normal[1], patchCoord[1]);
emit(2, position[2], normal[2], patchCoord[2]);
#endif
#endif // PRIM_TRI
EndPrimitive();
}
#endif
//--------------------------------------------------------------
// Fragment Shader
//--------------------------------------------------------------
#ifdef FRAGMENT_SHADER
in vec4 gPosition;
in vec3 gNormal;
in vec4 gPatchCoord;
noperspective in vec4 gEdgeDistance;
out vec4 outColor;
#if defined(COLOR_PTEX_NEAREST) || defined(COLOR_PTEX_HW_BILINEAR) || \
defined(COLOR_PTEX_BILINEAR) || defined(COLOR_PTEX_BIQUADRATIC)
uniform sampler2DArray textureImage_Data;
uniform isamplerBuffer textureImage_Packing;
#endif
#ifdef USE_PTEX_OCCLUSION
uniform sampler2DArray textureOcclusion_Data;
uniform samplerBuffer textureOcclusion_Packing;
#endif
#ifdef USE_PTEX_SPECULAR
uniform sampler2DArray textureSpecular_Data;
uniform samplerBuffer textureSpecular_Packing;
#endif
uniform bool overrideColorEnable = false;
uniform vec4 overrideColor;
#if defined(NORMAL_HW_SCREENSPACE) || defined(NORMAL_SCREENSPACE)
vec3
perturbNormalFromDisplacement(vec3 position, vec3 normal, vec4 patchCoord)
{
// by Morten S. Mikkelsen
// http://jbit.net/~sparky/sfgrad_bump/mm_sfgrad_bump.pdf
// slightly modified for ptex guttering
vec3 vSigmaS = dFdx(position);
vec3 vSigmaT = dFdy(position);
vec3 vN = normal;
vec3 vR1 = cross(vSigmaT, vN);
vec3 vR2 = cross(vN, vSigmaS);
float fDet = dot(vSigmaS, vR1);
#if 0
// not work well with ptex
float dBs = dFdx(disp);
float dBt = dFdy(disp);
#else
vec2 texDx = dFdx(patchCoord.xy);
vec2 texDy = dFdy(patchCoord.xy);
// limit forward differencing to the width of ptex gutter
const float resolution = 128.0;
float d = min(1, (0.5/resolution)/max(length(texDx), length(texDy)));
vec4 STll = patchCoord;
vec4 STlr = patchCoord + d * vec4(texDx.x, texDx.y, 0, 0);
vec4 STul = patchCoord + d * vec4(texDy.x, texDy.y, 0, 0);
#if defined NORMAL_HW_SCREENSPACE
float Hll = PtexLookupFast(STll, textureDisplace_Data, textureDisplace_Packing).x * displacementScale;
float Hlr = PtexLookupFast(STlr, textureDisplace_Data, textureDisplace_Packing).x * displacementScale;
float Hul = PtexLookupFast(STul, textureDisplace_Data, textureDisplace_Packing).x * displacementScale;
#elif defined NORMAL_SCREENSPACE
float Hll = PtexMipmapLookup(STll, mipmapBias, textureDisplace_Data, textureDisplace_Packing).x * displacementScale;
float Hlr = PtexMipmapLookup(STlr, mipmapBias, textureDisplace_Data, textureDisplace_Packing).x * displacementScale;
float Hul = PtexMipmapLookup(STul, mipmapBias, textureDisplace_Data, textureDisplace_Packing).x * displacementScale;
#endif
float dBs = (Hlr - Hll)/d;
float dBt = (Hul - Hll)/d;
#endif
vec3 vSurfGrad = sign(fDet) * (dBs * vR1 + dBt * vR2);
return normalize(abs(fDet) * vN - vSurfGrad);
}
#endif // USE_PTEX_NORMAL
uniform sampler2D diffuseEnvironmentMap;
uniform sampler2D specularEnvironmentMap;
vec4 getEnvironmentHDR(sampler2D sampler, vec3 dir)
{
dir = (ModelViewInverseMatrix * vec4(dir, 0)).xyz;
vec2 uv = vec2((atan(dir.x,dir.z)/3.1415926535897+1)*0.5, (1-dir.y)*0.5);
vec4 tex = texture(sampler, uv);
tex = vec4(pow(tex.xyz, vec3(0.4545)), 1);
return tex;
}
vec4
lighting(vec4 texColor, vec3 Peye, vec3 Neye, float spec, float occ)
{
vec4 color = vec4(0);
vec3 n = Neye;
for (int i = 0; i < NUM_LIGHTS; ++i) {
vec4 Plight = lightSource[i].position;
vec3 l = (Plight.w == 0.0)
? normalize(Plight.xyz) : normalize(Plight.xyz - Peye);
vec3 h = normalize(l + vec3(0,0,1)); // directional viewer
float d = max(0.0, dot(n, l));
float s = pow(max(0.0, dot(n, h)), 64.0f);
color += (1.0-occ) * ((lightSource[i].ambient +
d * lightSource[i].diffuse) * texColor +
spec * s * lightSource[i].specular);
}
color.a = 1;
return color;
}
vec4
edgeColor(vec4 Cfill)
{
#if defined(GEOMETRY_OUT_WIRE) || defined(GEOMETRY_OUT_LINE)
#ifdef PRIM_TRI
float d =
min(gEdgeDistance[0], min(gEdgeDistance[1], gEdgeDistance[2]));
#endif
#ifdef PRIM_QUAD
float d =
min(min(gEdgeDistance[0], gEdgeDistance[1]),
min(gEdgeDistance[2], gEdgeDistance[3]));
#endif
#ifdef PRIM_LINE
float d = 0;
#endif
vec4 Cedge = vec4(1.0, 1.0, 0.0, 1.0);
float p = exp2(-2 * d * d);
#if defined(GEOMETRY_OUT_WIRE)
if (p < 0.25) discard;
#endif
Cfill.rgb = mix(Cfill.rgb, Cedge.rgb, p);
#endif
return Cfill;
}
void
main()
{
// ------------ normal ---------------
#if defined(NORMAL_HW_SCREENSPACE) || defined(NORMAL_SCREENSPACE)
vec3 normal = perturbNormalFromDisplacement(gPosition.xyz,
gNormal,
gPatchCoord);
#else
vec3 normal = gNormal;
#endif
// ------------ color ---------------
#if defined COLOR_PTEX_NEAREST
vec4 texColor = PtexLookupNearest(gPatchCoord,
textureImage_Data,
textureImage_Packing);
#elif defined COLOR_PTEX_HW_BILINEAR
vec4 texColor = PtexLookupFast(gPatchCoord,
textureImage_Data,
textureImage_Packing);
#elif defined COLOR_PTEX_BILINEAR
vec4 texColor = PtexMipmapLookup(gPatchCoord,
mipmapBias,
textureImage_Data,
textureImage_Packing);
#elif defined COLOR_PTEX_BIQUADRATIC
vec4 texColor = PtexMipmapLookupQuadratic(gPatchCoord,
mipmapBias,
textureImage_Data,
textureImage_Packing);
#elif defined COLOR_PATCHTYPE
vec4 texColor = edgeColor(lighting(GetOverrideColor(OsdGetPatchParam(OsdGetPatchIndex(gl_PrimitiveID))),
gPosition.xyz, normal, 1, 0));
outColor = texColor;
return;
#elif defined COLOR_PATCHCOORD
vec4 texColor = edgeColor(lighting(gPatchCoord, gPosition.xyz, normal, 1, 0));
outColor = texColor;
return;
#elif defined COLOR_NORMAL
vec4 texColor = edgeColor(vec4(normal, 1));
outColor = texColor;
return;
#else // COLOR_NONE
vec4 texColor = vec4(0.5);
#endif
// ------------ occlusion ---------------
#ifdef USE_PTEX_OCCLUSION
float occ = PtexMipmapLookup(gPatchCoord,
mipmapBias,
textureOcclusion_Data,
textureOcclusion_Packing).x;
#else
float occ = 0.0;
#endif
// ------------ specular ---------------
#ifdef USE_PTEX_SPECULAR
float specular = PtexMipmapLookup(gPatchCoord,
mipmapBias,
textureSpecular_Data,
textureSpecular_Packing).x;
#else
float specular = 1.0;
#endif
vec4 Cf = lighting(texColor, gPosition.xyz, normal, specular, occ);
// ------------ wireframe ---------------
outColor = edgeColor(Cf);
}
#endif