OpenSubdiv/opensubdiv/osd/cudaKernel.cu

706 lines
30 KiB
Plaintext

//
// Copyright (C) Pixar. All rights reserved.
//
// This license governs use of the accompanying software. If you
// use the software, you accept this license. If you do not accept
// the license, do not use the software.
//
// 1. Definitions
// The terms "reproduce," "reproduction," "derivative works," and
// "distribution" have the same meaning here as under U.S.
// copyright law. A "contribution" is the original software, or
// any additions or changes to the software.
// A "contributor" is any person or entity that distributes its
// contribution under this license.
// "Licensed patents" are a contributor's patent claims that read
// directly on its contribution.
//
// 2. Grant of Rights
// (A) Copyright Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free copyright license to reproduce its contribution,
// prepare derivative works of its contribution, and distribute
// its contribution or any derivative works that you create.
// (B) Patent Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free license under its licensed patents to make, have
// made, use, sell, offer for sale, import, and/or otherwise
// dispose of its contribution in the software or derivative works
// of the contribution in the software.
//
// 3. Conditions and Limitations
// (A) No Trademark License- This license does not grant you
// rights to use any contributor's name, logo, or trademarks.
// (B) If you bring a patent claim against any contributor over
// patents that you claim are infringed by the software, your
// patent license from such contributor to the software ends
// automatically.
// (C) If you distribute any portion of the software, you must
// retain all copyright, patent, trademark, and attribution
// notices that are present in the software.
// (D) If you distribute any portion of the software in source
// code form, you may do so only under this license by including a
// complete copy of this license with your distribution. If you
// distribute any portion of the software in compiled or object
// code form, you may only do so under a license that complies
// with this license.
// (E) The software is licensed "as-is." You bear the risk of
// using it. The contributors give no express warranties,
// guarantees or conditions. You may have additional consumer
// rights under your local laws which this license cannot change.
// To the extent permitted under your local laws, the contributors
// exclude the implied warranties of merchantability, fitness for
// a particular purpose and non-infringement.
//
#include <stdio.h>
#include <assert.h>
template<int N> struct DeviceVertex
{
float pos[3];
float userVertexData[N];
__device__ void addWithWeight(const DeviceVertex<N> *src, float weight) {
pos[0] += src->pos[0] * weight;
pos[1] += src->pos[1] * weight;
pos[2] += src->pos[2] * weight;
for(int i = 0; i < N; ++i){
userVertexData[i] += src->userVertexData[i] * weight;
}
}
__device__ void clear() {
pos[0] = pos[1] = pos[2] = 0.0f;
for(int i = 0; i < N; ++i){
userVertexData[i] = 0.0f;
}
}
};
template<int N> struct DeviceVarying
{
float v[N];
__device__ void addVaryingWithWeight(const DeviceVarying<N> *src, float weight) {
for(int i = 0; i < N; ++i){
v[i] += src->v[i] * weight;
}
}
__device__ void clear() {
for(int i = 0; i < N; ++i){
v[i] = 0.0f;
}
}
};
// Specialize DeviceVarying for N=0 to avoid compile error:
// "flexible array member in otherwise empty struct"
template<> struct DeviceVarying<0>
{
__device__ void addVaryingWithWeight(const DeviceVarying<0> *src, float weight) {
}
__device__ void clear() {
}
};
struct DeviceTable
{
void **tables;
int *F0_IT;
int *F0_ITa;
int *E0_IT;
int *V0_IT;
int *V0_ITa;
float *E0_S;
float *V0_S;
};
__device__ void clear(float *dst, int count)
{
for(int i = 0; i < count; ++i) dst[i] = 0;
}
__device__ void addWithWeight(float *dst, float *src, float weight, int count)
{
for(int i = 0; i < count; ++i) dst[i] += src[i] * weight;
}
__device__ void addVaryingWithWeight(float *dst, float *src, float weight, int count)
{
for(int i = 0; i < count; ++i) dst[i] += src[i] * weight;
}
template <int NUM_USER_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeFace(float *fVertex, float *fVaryings, int *F0_IT, int *F0_ITa, int offset, int start, int end)
{
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_USER_VERTEX_ELEMENTS>*)fVertex;
DeviceVarying<NUM_VARYING_ELEMENTS> *varyings = (DeviceVarying<NUM_VARYING_ELEMENTS>*)fVaryings;
for(int i = start + threadIdx.x + blockIdx.x*blockDim.x; i < end; i += blockDim.x * gridDim.x){
int h = F0_ITa[2*i];
int n = F0_ITa[2*i+1];
float weight = 1.0f/n;
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> dst;
dst.clear();
if(NUM_VARYING_ELEMENTS > 0){
DeviceVarying<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
for(int j=0; j<n; ++j){
int index = F0_IT[h+j];
dst.addWithWeight(&vertex[index], weight);
dstVarying.addVaryingWithWeight(&varyings[index], weight);
}
vertex[offset + i] = dst;
varyings[offset + i] = dstVarying;
}else{
for(int j=0; j<n; ++j){
int index = F0_IT[h+j];
dst.addWithWeight(&vertex[index], weight);
}
vertex[offset + i] = dst;
}
}
}
__global__ void
computeFace(float *fVertex, int numVertexElements, float *fVaryings, int numVaryingElements,
int *F0_IT, int *F0_ITa, int offset, int start, int end)
{
for(int i = start + threadIdx.x + blockIdx.x*blockDim.x; i < end; i += blockDim.x * gridDim.x){
int h = F0_ITa[2*i];
int n = F0_ITa[2*i+1];
float weight = 1.0f/n;
// XXX: can we use local stack like alloca?
float *dstVertex = fVertex + (i+offset)*numVertexElements;
clear(dstVertex, numVertexElements);
float *dstVarying = fVaryings + (i+offset)*numVaryingElements;
clear(dstVarying, numVaryingElements);
for(int j=0; j<n; ++j){
int index = F0_IT[h+j];
addWithWeight(dstVertex, fVertex + index*numVertexElements, weight, numVertexElements);
addVaryingWithWeight(dstVarying, fVaryings + index*numVaryingElements, weight, numVaryingElements);
}
}
}
template <int NUM_USER_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeEdge(float *fVertex, float *fVaryings, int *E0_IT, float *E0_S, int offset, int start, int end)
{
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_USER_VERTEX_ELEMENTS>*)fVertex;
DeviceVarying<NUM_VARYING_ELEMENTS> *varyings = (DeviceVarying<NUM_VARYING_ELEMENTS>*)fVaryings;
for(int i = start + threadIdx.x + blockIdx.x*blockDim.x; i < end; i+= blockDim.x * gridDim.x){
int eidx0 = E0_IT[4*i+0];
int eidx1 = E0_IT[4*i+1];
int eidx2 = E0_IT[4*i+2];
int eidx3 = E0_IT[4*i+3];
float vertWeight = E0_S[i*2+0];
// Fully sharp edge : vertWeight = 0.5f;
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> dst;
dst.clear();
dst.addWithWeight(&vertex[eidx0], vertWeight);
dst.addWithWeight(&vertex[eidx1], vertWeight);
if(eidx2 > -1){
float faceWeight = E0_S[i*2+1];
dst.addWithWeight(&vertex[eidx2], faceWeight);
dst.addWithWeight(&vertex[eidx3], faceWeight);
}
vertex[offset+i] = dst;
if(NUM_VARYING_ELEMENTS > 0){
DeviceVarying<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
dstVarying.addVaryingWithWeight(&varyings[eidx0], 0.5f);
dstVarying.addVaryingWithWeight(&varyings[eidx1], 0.5f);
varyings[offset+i] = dstVarying;
}
}
}
__global__ void
computeEdge(float *fVertex, int numVertexElements, float *fVarying, int numVaryingElements,
int *E0_IT, float *E0_S, int offset, int start, int end)
{
for(int i = start + threadIdx.x + blockIdx.x*blockDim.x; i < end; i+= blockDim.x * gridDim.x){
int eidx0 = E0_IT[4*i+0];
int eidx1 = E0_IT[4*i+1];
int eidx2 = E0_IT[4*i+2];
int eidx3 = E0_IT[4*i+3];
float vertWeight = E0_S[i*2+0];
// Fully sharp edge : vertWeight = 0.5f;
float *dstVertex = fVertex + (i+offset)*numVertexElements;
clear(dstVertex, numVertexElements);
addWithWeight(dstVertex, fVertex + eidx0*numVertexElements, vertWeight, numVertexElements);
addWithWeight(dstVertex, fVertex + eidx1*numVertexElements, vertWeight, numVertexElements);
if(eidx2 > -1){
float faceWeight = E0_S[i*2+1];
addWithWeight(dstVertex, fVertex + eidx2*numVertexElements, faceWeight, numVertexElements);
addWithWeight(dstVertex, fVertex + eidx3*numVertexElements, faceWeight, numVertexElements);
}
if(numVaryingElements > 0){
float *dstVarying = fVarying + i*numVaryingElements;
clear(dstVarying, numVaryingElements);
addVaryingWithWeight(dstVarying, fVarying + eidx0*numVaryingElements, 0.5f, numVaryingElements);
addVaryingWithWeight(dstVarying, fVarying + eidx1*numVaryingElements, 0.5f, numVaryingElements);
}
}
}
template <int NUM_USER_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeVertexA(float *fVertex, float *fVaryings, int *V0_ITa, float *V0_S, int offset, int start, int end, int pass)
{
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_USER_VERTEX_ELEMENTS>*)fVertex;
DeviceVarying<NUM_VARYING_ELEMENTS> *varyings = (DeviceVarying<NUM_VARYING_ELEMENTS>*)fVaryings;
for(int i = start + threadIdx.x + blockIdx.x*blockDim.x; i < end; i += blockDim.x * gridDim.x){
int n = V0_ITa[5*i+1];
int p = V0_ITa[5*i+2];
int eidx0 = V0_ITa[5*i+3];
int eidx1 = V0_ITa[5*i+4];
float weight = (pass==1) ? V0_S[i] : 1.0f - V0_S[i];
// In the case of fractional weight, the weight must be inverted since
// the value is shared with the k_Smooth kernel (statistically the
// k_Smooth kernel runs much more often than this one)
if (weight>0.0f && weight<1.0f && n > 0)
weight=1.0f-weight;
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> dst;
if (not pass) {
dst.clear();
} else {
dst = vertex[i+offset];
}
if (eidx0==-1 || (pass==0 && (n==-1)) ) {
dst.addWithWeight(&vertex[p], weight);
} else {
dst.addWithWeight(&vertex[p], weight * 0.75f);
dst.addWithWeight(&vertex[eidx0], weight * 0.125f);
dst.addWithWeight(&vertex[eidx1], weight * 0.125f);
}
vertex[i+offset] = dst;
if(NUM_VARYING_ELEMENTS > 0){
if(not pass){
DeviceVarying<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
dstVarying.addVaryingWithWeight(&varyings[p], 1.0f);
varyings[i+offset] = dstVarying;
}
}
}
}
__global__ void
computeVertexA(float *fVertex, int numVertexElements, float *fVaryings, int numVaryingElements,
int *V0_ITa, float *V0_S, int offset, int start, int end, int pass)
{
for(int i = start + threadIdx.x + blockIdx.x*blockDim.x; i < end; i += blockDim.x * gridDim.x){
int n = V0_ITa[5*i+1];
int p = V0_ITa[5*i+2];
int eidx0 = V0_ITa[5*i+3];
int eidx1 = V0_ITa[5*i+4];
float weight = (pass==1) ? V0_S[i] : 1.0f - V0_S[i];
// In the case of fractional weight, the weight must be inverted since
// the value is shared with the k_Smooth kernel (statistically the
// k_Smooth kernel runs much more often than this one)
if (weight>0.0f && weight<1.0f && n > 0)
weight=1.0f-weight;
float *dstVertex = fVertex + (i+offset)*numVertexElements;
if (not pass) {
clear(dstVertex, numVertexElements);
}
if (eidx0==-1 || (pass==0 && (n==-1)) ) {
addWithWeight(dstVertex, fVertex + p*numVertexElements, weight, numVertexElements);
} else {
addWithWeight(dstVertex, fVertex + p*numVertexElements, weight*0.75f, numVertexElements);
addWithWeight(dstVertex, fVertex + eidx0*numVertexElements, weight*0.125f, numVertexElements);
addWithWeight(dstVertex, fVertex + eidx1*numVertexElements, weight*0.125f, numVertexElements);
}
if(numVaryingElements > 0){
if(not pass){
float *dstVarying = fVaryings + i*numVaryingElements;
clear(dstVarying, numVaryingElements);
addVaryingWithWeight(dstVarying, fVaryings + p*numVaryingElements, 1.0f, numVaryingElements);
}
}
}
}
//texture <int, 1> texV0_IT;
template <int NUM_USER_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeVertexB(float *fVertex, float *fVaryings,
const int *V0_ITa, const int *V0_IT, const float *V0_S, int offset, int start, int end)
{
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_USER_VERTEX_ELEMENTS>*)fVertex;
DeviceVarying<NUM_VARYING_ELEMENTS> *varyings = (DeviceVarying<NUM_VARYING_ELEMENTS>*)fVaryings;
for(int i = start + threadIdx.x + blockIdx.x*blockDim.x; i < end; i += blockDim.x * gridDim.x){
int h = V0_ITa[5*i];
int n = V0_ITa[5*i+1];
int p = V0_ITa[5*i+2];
float weight = V0_S[i];
float wp = 1.0f/float(n*n);
float wv = (n-2.0f) * n * wp;
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> dst;
dst.clear();
dst.addWithWeight(&vertex[p], weight * wv);
for(int j = 0; j < n; ++j){
dst.addWithWeight(&vertex[V0_IT[h+j*2]], weight * wp);
dst.addWithWeight(&vertex[V0_IT[h+j*2+1]], weight * wp);
// int idx0 = tex1Dfetch(texV0_IT, h+j*2);
// int idx1 = tex1Dfetch(texV0_IT, h+j*2+1);
// dst.addWithWeight(&vertex[idx0], weight * wp);
// dst.addWithWeight(&vertex[idx1], weight * wp);
}
vertex[i+offset] = dst;
if(NUM_VARYING_ELEMENTS > 0){
DeviceVarying<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
dstVarying.addVaryingWithWeight(&varyings[p], 1.0f);
varyings[i+offset] = dstVarying;
}
}
}
__global__ void
computeVertexB(float *fVertex, int numVertexElements, float *fVaryings, int numVaryingElements,
const int *V0_ITa, const int *V0_IT, const float *V0_S, int offset, int start, int end)
{
for(int i = start + threadIdx.x + blockIdx.x*blockDim.x; i < end; i += blockDim.x * gridDim.x){
int h = V0_ITa[5*i];
int n = V0_ITa[5*i+1];
int p = V0_ITa[5*i+2];
float weight = V0_S[i];
float wp = 1.0f/float(n*n);
float wv = (n-2.0f) * n * wp;
float *dstVertex = fVertex + (i+offset)*numVertexElements;
clear(dstVertex, numVertexElements);
addWithWeight(dstVertex, fVertex + p*numVertexElements, weight*wv, numVertexElements);
for(int j = 0; j < n; ++j){
addWithWeight(dstVertex, fVertex + V0_IT[h+j*2]*numVertexElements, weight*wp, numVertexElements);
addWithWeight(dstVertex, fVertex + V0_IT[h+j*2+1]*numVertexElements, weight*wp, numVertexElements);
}
if(numVaryingElements > 0){
float *dstVarying = fVaryings + i*numVaryingElements;
clear(dstVarying, numVaryingElements);
addVaryingWithWeight(dstVarying, fVaryings + p*numVaryingElements, 1.0f, numVaryingElements);
}
}
}
// --------------------------------------------------------------------------------------------
template <int NUM_USER_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeLoopVertexB(float *fVertex, float *fVaryings, int *V0_ITa, int *V0_IT, float *V0_S, int offset, int start, int end)
{
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_USER_VERTEX_ELEMENTS>*)fVertex;
DeviceVarying<NUM_VARYING_ELEMENTS> *varyings = (DeviceVarying<NUM_VARYING_ELEMENTS>*)fVaryings;
for(int i = start + threadIdx.x + blockIdx.x*blockDim.x; i < end; i += blockDim.x * gridDim.x){
int h = V0_ITa[5*i];
int n = V0_ITa[5*i+1];
int p = V0_ITa[5*i+2];
float weight = V0_S[i];
float wp = 1.0f/float(n);
float beta = 0.25f * __cosf(float(M_PI) * 2.0f * wp) + 0.375f;
beta = beta * beta;
beta = (0.625f - beta) * wp;
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> dst;
dst.clear();
dst.addWithWeight(&vertex[p], weight * (1.0f - (beta * n)));
for(int j = 0; j < n; ++j){
dst.addWithWeight(&vertex[V0_IT[h+j]], weight * beta);
}
vertex[i+offset] = dst;
if(NUM_VARYING_ELEMENTS > 0){
DeviceVarying<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
dstVarying.addVaryingWithWeight(&varyings[p], 1.0f);
varyings[i+offset] = dstVarying;
}
}
}
__global__ void
computeLoopVertexB(float *fVertex, int numVertexElements, float *fVaryings, int numVaryingElements,
const int *V0_ITa, const int *V0_IT, const float *V0_S, int offset, int start, int end)
{
for(int i = start + threadIdx.x + blockIdx.x*blockDim.x; i < end; i += blockDim.x * gridDim.x){
int h = V0_ITa[5*i];
int n = V0_ITa[5*i+1];
int p = V0_ITa[5*i+2];
float weight = V0_S[i];
float wp = 1.0f/float(n);
float beta = 0.25f * __cosf(float(M_PI) * 2.0f * wp) + 0.375f;
beta = beta * beta;
beta = (0.625f - beta) * wp;
float *dstVertex = fVertex + (i+offset)*numVertexElements;
clear(dstVertex, numVertexElements);
addWithWeight(dstVertex, fVertex + p*numVertexElements, weight*(1.0f-(beta*n)), numVertexElements);
for(int j = 0; j < n; ++j){
addWithWeight(dstVertex, fVertex + V0_IT[h+j]*numVertexElements, weight*beta, numVertexElements);
}
if(numVaryingElements > 0){
float *dstVarying = fVaryings + i*numVaryingElements;
clear(dstVarying, numVaryingElements);
addVaryingWithWeight(dstVarying, fVaryings + p*numVaryingElements, 1.0f, numVaryingElements);
}
}
}
// --------------------------------------------------------------------------------------------
template <int NUM_USER_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeBilinearEdge(float *fVertex, float *fVaryings, int *E0_IT, int offset, int start, int end)
{
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_USER_VERTEX_ELEMENTS>*)fVertex;
DeviceVarying<NUM_VARYING_ELEMENTS> *varyings = (DeviceVarying<NUM_VARYING_ELEMENTS>*)fVaryings;
for(int i = start + threadIdx.x + blockIdx.x*blockDim.x; i < end; i+= blockDim.x * gridDim.x){
int eidx0 = E0_IT[2*i+0];
int eidx1 = E0_IT[2*i+1];
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> dst;
dst.clear();
dst.addWithWeight(&vertex[eidx0], 0.5f);
dst.addWithWeight(&vertex[eidx1], 0.5f);
vertex[offset+i] = dst;
if(NUM_VARYING_ELEMENTS > 0){
DeviceVarying<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
dstVarying.addVaryingWithWeight(&varyings[eidx0], 0.5f);
dstVarying.addVaryingWithWeight(&varyings[eidx1], 0.5f);
varyings[offset+i] = dstVarying;
}
}
}
__global__ void
computeBilinearEdge(float *fVertex, int numVertexElements, float *fVarying, int numVaryingElements,
int *E0_IT, int offset, int start, int end)
{
for(int i = start + threadIdx.x + blockIdx.x*blockDim.x; i < end; i+= blockDim.x * gridDim.x){
int eidx0 = E0_IT[2*i+0];
int eidx1 = E0_IT[2*i+1];
float *dstVertex = fVertex + (i+offset)*numVertexElements;
clear(dstVertex, numVertexElements);
addWithWeight(dstVertex, fVertex + eidx0*numVertexElements, 0.5f, numVertexElements);
addWithWeight(dstVertex, fVertex + eidx1*numVertexElements, 0.5f, numVertexElements);
if(numVaryingElements > 0){
float *dstVarying = fVarying + i*numVaryingElements;
clear(dstVarying, numVaryingElements);
addVaryingWithWeight(dstVarying, fVarying + eidx0*numVaryingElements, 0.5f, numVaryingElements);
addVaryingWithWeight(dstVarying, fVarying + eidx1*numVaryingElements, 0.5f, numVaryingElements);
}
}
}
template <int NUM_USER_VERTEX_ELEMENTS, int NUM_VARYING_ELEMENTS> __global__ void
computeBilinearVertex(float *fVertex, float *fVaryings, int *V0_ITa, int offset, int start, int end)
{
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> *vertex = (DeviceVertex<NUM_USER_VERTEX_ELEMENTS>*)fVertex;
DeviceVarying<NUM_VARYING_ELEMENTS> *varyings = (DeviceVarying<NUM_VARYING_ELEMENTS>*)fVaryings;
for(int i = start + threadIdx.x + blockIdx.x*blockDim.x; i < end; i += blockDim.x * gridDim.x){
int p = V0_ITa[i];
DeviceVertex<NUM_USER_VERTEX_ELEMENTS> dst;
dst.clear();
dst.addWithWeight(&vertex[p], 1.0f);
vertex[i+offset] = dst;
if(NUM_VARYING_ELEMENTS > 0){
DeviceVarying<NUM_VARYING_ELEMENTS> dstVarying;
dstVarying.clear();
dstVarying.addVaryingWithWeight(&varyings[p], 1.0f);
varyings[i+offset] = dstVarying;
}
}
}
__global__ void
computeBilinearVertex(float *fVertex, int numVertexElements, float *fVaryings, int numVaryingElements,
const int *V0_ITa, int offset, int start, int end)
{
for(int i = start + threadIdx.x + blockIdx.x*blockDim.x; i < end; i += blockDim.x * gridDim.x){
int p = V0_ITa[i];
float *dstVertex = fVertex + (i+offset)*numVertexElements;
clear(dstVertex, numVertexElements);
addWithWeight(dstVertex, fVertex + p*numVertexElements, 1.0f, numVertexElements);
if(numVaryingElements > 0){
float *dstVarying = fVaryings + i*numVaryingElements;
clear(dstVarying, numVaryingElements);
addVaryingWithWeight(dstVarying, fVaryings + p*numVaryingElements, 1.0f, numVaryingElements);
}
}
}
// --------------------------------------------------------------------------------------------
#include "../version.h"
// XXX: this macro usage is tentative. Since cuda kernel can't be dynamically configured,
// still trying to find better way to have optimized kernel..
#define OPT_KERNEL(NUM_USER_VERTEX_ELEMENTS, NUM_VARYING_ELEMENTS, KERNEL, X, Y, ARG) \
if(numUserVertexElements == NUM_USER_VERTEX_ELEMENTS && \
numVaryingElements == NUM_VARYING_ELEMENTS) \
{ KERNEL<NUM_USER_VERTEX_ELEMENTS, NUM_VARYING_ELEMENTS><<<X,Y>>>ARG; \
return; }
extern "C" {
void OsdCudaComputeFace(float *vertex, float *varying,
int numUserVertexElements, int numVaryingElements,
int *F_IT, int *F_ITa, int offset, int start, int end)
{
//computeFace<3, 0><<<512,32>>>(vertex, varying, F_IT, F_ITa, offset, start, end);
OPT_KERNEL(0, 0, computeFace, 512, 32, (vertex, varying, F_IT, F_ITa, offset, start, end));
OPT_KERNEL(0, 3, computeFace, 512, 32, (vertex, varying, F_IT, F_ITa, offset, start, end));
OPT_KERNEL(3, 0, computeFace, 512, 32, (vertex, varying, F_IT, F_ITa, offset, start, end));
OPT_KERNEL(3, 3, computeFace, 512, 32, (vertex, varying, F_IT, F_ITa, offset, start, end));
// fallback kernel (slow)
computeFace<<<512, 32>>>(vertex, 3+numUserVertexElements, varying, numVaryingElements,
F_IT, F_ITa, offset, start, end);
}
void OsdCudaComputeEdge(float *vertex, float *varying,
int numUserVertexElements, int numVaryingElements,
int *E_IT, float *E_W, int offset, int start, int end)
{
//computeEdge<0, 3><<<512,32>>>(vertex, varying, E_IT, E_W, offset, start, end);
OPT_KERNEL(0, 0, computeEdge, 512, 32, (vertex, varying, E_IT, E_W, offset, start, end));
OPT_KERNEL(0, 3, computeEdge, 512, 32, (vertex, varying, E_IT, E_W, offset, start, end));
OPT_KERNEL(3, 0, computeEdge, 512, 32, (vertex, varying, E_IT, E_W, offset, start, end));
OPT_KERNEL(3, 3, computeEdge, 512, 32, (vertex, varying, E_IT, E_W, offset, start, end));
computeEdge<<<512, 32>>>(vertex, 3+numUserVertexElements, varying, numVaryingElements,
E_IT, E_W, offset, start, end);
}
void OsdCudaComputeVertexA(float *vertex, float *varying,
int numUserVertexElements, int numVaryingElements,
int *V_ITa, float *V_W, int offset, int start, int end, int pass)
{
// computeVertexA<0, 3><<<512,32>>>(vertex, varying, V_ITa, V_W, offset, start, end, pass);
OPT_KERNEL(0, 0, computeVertexA, 512, 32, (vertex, varying, V_ITa, V_W, offset, start, end, pass));
OPT_KERNEL(0, 3, computeVertexA, 512, 32, (vertex, varying, V_ITa, V_W, offset, start, end, pass));
OPT_KERNEL(3, 0, computeVertexA, 512, 32, (vertex, varying, V_ITa, V_W, offset, start, end, pass));
OPT_KERNEL(3, 3, computeVertexA, 512, 32, (vertex, varying, V_ITa, V_W, offset, start, end, pass));
computeVertexA<<<512, 32>>>(vertex, 3+numUserVertexElements, varying, numVaryingElements,
V_ITa, V_W, offset, start, end, pass);
}
void OsdCudaComputeVertexB(float *vertex, float *varying,
int numUserVertexElements, int numVaryingElements,
int *V_ITa, int *V_IT, float *V_W, int offset, int start, int end)
{
// computeVertexB<0, 3><<<512,32>>>(vertex, varying, V_ITa, V_IT, V_W, offset, start, end);
OPT_KERNEL(0, 0, computeVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, start, end));
OPT_KERNEL(0, 3, computeVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, start, end));
OPT_KERNEL(3, 0, computeVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, start, end));
OPT_KERNEL(3, 3, computeVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, start, end));
computeVertexB<<<512, 32>>>(vertex, 3+numUserVertexElements, varying, numVaryingElements,
V_ITa, V_IT, V_W, offset, start, end);
}
void OsdCudaComputeLoopVertexB(float *vertex, float *varying,
int numUserVertexElements, int numVaryingElements,
int *V_ITa, int *V_IT, float *V_W, int offset, int start, int end)
{
// computeLoopVertexB<0, 3><<<512,32>>>(vertex, varying, V_ITa, V_IT, V_W, offset, start, end);
OPT_KERNEL(0, 0, computeLoopVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, start, end));
OPT_KERNEL(0, 3, computeLoopVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, start, end));
OPT_KERNEL(3, 0, computeLoopVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, start, end));
OPT_KERNEL(3, 3, computeLoopVertexB, 512, 32, (vertex, varying, V_ITa, V_IT, V_W, offset, start, end));
computeLoopVertexB<<<512, 32>>>(vertex, 3+numUserVertexElements, varying, numVaryingElements,
V_ITa, V_IT, V_W, offset, start, end);
}
void OsdCudaComputeBilinearEdge(float *vertex, float *varying,
int numUserVertexElements, int numVaryingElements,
int *E_IT, int offset, int start, int end)
{
//computeBilinearEdge<0, 3><<<512,32>>>(vertex, varying, E_IT, offset, start, end);
OPT_KERNEL(0, 0, computeBilinearEdge, 512, 32, (vertex, varying, E_IT, offset, start, end));
OPT_KERNEL(0, 3, computeBilinearEdge, 512, 32, (vertex, varying, E_IT, offset, start, end));
OPT_KERNEL(3, 0, computeBilinearEdge, 512, 32, (vertex, varying, E_IT, offset, start, end));
OPT_KERNEL(3, 3, computeBilinearEdge, 512, 32, (vertex, varying, E_IT, offset, start, end));
computeBilinearEdge<<<512, 32>>>(vertex, 3+numUserVertexElements, varying, numVaryingElements,
E_IT, offset, start, end);
}
void OsdCudaComputeBilinearVertex(float *vertex, float *varying,
int numUserVertexElements, int numVaryingElements,
int *V_ITa, int offset, int start, int end)
{
// computeBilinearVertex<0, 3><<<512,32>>>(vertex, varying, V_ITa, offset, start, end);
OPT_KERNEL(0, 0, computeBilinearVertex, 512, 32, (vertex, varying, V_ITa, offset, start, end));
OPT_KERNEL(0, 3, computeBilinearVertex, 512, 32, (vertex, varying, V_ITa, offset, start, end));
OPT_KERNEL(3, 0, computeBilinearVertex, 512, 32, (vertex, varying, V_ITa, offset, start, end));
OPT_KERNEL(3, 3, computeBilinearVertex, 512, 32, (vertex, varying, V_ITa, offset, start, end));
computeBilinearVertex<<<512, 32>>>(vertex, 3+numUserVertexElements, varying, numVaryingElements,
V_ITa, offset, start, end);
}
}