OpenSubdiv/opensubdiv/far/topologyRefinerFactory.cpp
barry 89c1765c73 Minor updates to tags for face-varying and inf-sharp topology:
- removed unused tag for inf-sharp features from Vtr::Level::VTag
    - added tags for inf-sharp features to Vtr::FVarLevel::ValueTag
    - updated the conversion from ValueTag to VTag
    - removed awkward and little used tagging methods from Vtr::FVarLevel
    - replaced obsolete methods in face-varying adaptive refinement
2016-09-15 23:03:48 -07:00

359 lines
15 KiB
C++

//
// Copyright 2014 DreamWorks Animation LLC.
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#include "../far/topologyRefinerFactory.h"
#include "../far/topologyRefiner.h"
#include "../sdc/types.h"
#include "../vtr/level.h"
#include <cstdio>
#ifdef _MSC_VER
#define snprintf _snprintf
#endif
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
namespace Far {
//
// Methods for the Factory base class -- general enough to warrant including in
// the base class rather than the subclass template (and so replicated for each
// usage)
//
//
bool
TopologyRefinerFactoryBase::prepareComponentTopologySizing(TopologyRefiner& refiner) {
Vtr::internal::Level& baseLevel = refiner.getLevel(0);
//
// At minimum we require face-vertices (the total count of which can be determined
// from the offsets accumulated during sizing pass) and we need to resize members
// related to them to be populated during assignment:
//
int vCount = baseLevel.getNumVertices();
int fCount = baseLevel.getNumFaces();
if (vCount == 0) {
Error(FAR_RUNTIME_ERROR, "Failure in TopologyRefinerFactory<>::Create() -- "
"mesh contains no vertices.");
return false;
}
if (fCount == 0) {
Error(FAR_RUNTIME_ERROR, "Failure in TopologyRefinerFactory<>::Create() -- "
"meshes without faces not yet supported.");
return false;
}
// Make sure no face was defined that would lead to a valence overflow -- the max
// valence has been initialized with the maximum number of face-vertices:
if (baseLevel.getMaxValence() > Vtr::VALENCE_LIMIT) {
char msg[1024];
snprintf(msg, 1024, "Failure in TopologyRefinerFactory<>::Create() -- "
"face with %d vertices > %d max.",
baseLevel.getMaxValence(), Vtr::VALENCE_LIMIT);
Error(FAR_RUNTIME_ERROR, msg);
return false;
}
int fVertCount = baseLevel.getNumFaceVertices(fCount - 1) +
baseLevel.getOffsetOfFaceVertices(fCount - 1);
if (fVertCount == 0) {
Error(FAR_RUNTIME_ERROR, "Failure in TopologyRefinerFactory<>::Create() -- "
"mesh contains no face-vertices.");
return false;
}
if ((refiner.GetSchemeType() == Sdc::SCHEME_LOOP) && (fVertCount != (3 * fCount))) {
Error(FAR_RUNTIME_ERROR, "Failure in TopologyRefinerFactory<>::Create() -- "
"non-triangular faces not supported by Loop scheme.");
return false;
}
baseLevel.resizeFaceVertices(fVertCount);
//
// If edges were sized, all other topological relations must be sized with it, in
// which case we allocate those members to be populated. Otherwise, sizing of the
// other topology members is deferred until the face-vertices are assigned and the
// resulting relationships determined:
//
int eCount = baseLevel.getNumEdges();
if (eCount > 0) {
baseLevel.resizeFaceEdges(baseLevel.getNumFaceVerticesTotal());
baseLevel.resizeEdgeVertices();
baseLevel.resizeEdgeFaces( baseLevel.getNumEdgeFaces(eCount-1) + baseLevel.getOffsetOfEdgeFaces(eCount-1));
baseLevel.resizeVertexFaces(baseLevel.getNumVertexFaces(vCount-1) + baseLevel.getOffsetOfVertexFaces(vCount-1));
baseLevel.resizeVertexEdges(baseLevel.getNumVertexEdges(vCount-1) + baseLevel.getOffsetOfVertexEdges(vCount-1));
assert(baseLevel.getNumFaceEdgesTotal() > 0);
assert(baseLevel.getNumEdgeVerticesTotal() > 0);
assert(baseLevel.getNumEdgeFacesTotal() > 0);
assert(baseLevel.getNumVertexFacesTotal() > 0);
assert(baseLevel.getNumVertexEdgesTotal() > 0);
}
return true;
}
bool
TopologyRefinerFactoryBase::prepareComponentTopologyAssignment(TopologyRefiner& refiner, bool fullValidation,
TopologyCallback callback, void const * callbackData) {
Vtr::internal::Level& baseLevel = refiner.getLevel(0);
bool completeMissingTopology = (baseLevel.getNumEdges() == 0);
if (completeMissingTopology) {
if (! baseLevel.completeTopologyFromFaceVertices()) {
char msg[1024];
snprintf(msg, 1024, "Failure in TopologyRefinerFactory<>::Create() -- "
"vertex with valence %d > %d max.",
baseLevel.getMaxValence(), Vtr::VALENCE_LIMIT);
Error(FAR_RUNTIME_ERROR, msg);
return false;
}
} else {
if (baseLevel.getMaxValence() == 0) {
Error(FAR_RUNTIME_ERROR, "Failure in TopologyRefinerFactory<>::Create() -- "
"maximum valence not assigned.");
return false;
}
}
if (fullValidation) {
if (! baseLevel.validateTopology(callback, callbackData)) {
if (completeMissingTopology) {
Error(FAR_RUNTIME_ERROR, "Failure in TopologyRefinerFactory<>::Create() -- "
"invalid topology detected from partial specification.");
} else {
Error(FAR_RUNTIME_ERROR, "Failure in TopologyRefinerFactory<>::Create() -- "
"invalid topology detected as fully specified.");
}
return false;
}
}
// Now that we have a valid base level, initialize the Refiner's component inventory:
refiner.initializeInventory();
return true;
}
bool
TopologyRefinerFactoryBase::prepareComponentTagsAndSharpness(TopologyRefiner& refiner) {
//
// This method combines the initialization of internal component tags with the sharpening
// of edges and vertices according to the given boundary interpolation rule in the Options.
// Since both involve traversing the edge and vertex lists and noting the presence of
// boundaries -- best to do both at once...
//
Vtr::internal::Level& baseLevel = refiner.getLevel(0);
Sdc::Options options = refiner.GetSchemeOptions();
Sdc::Crease creasing(options);
bool makeBoundaryFacesHoles = (options.GetVtxBoundaryInterpolation() == Sdc::Options::VTX_BOUNDARY_NONE
&& Sdc::SchemeTypeTraits::GetLocalNeighborhoodSize(refiner.GetSchemeType()) > 0);
bool sharpenCornerVerts = (options.GetVtxBoundaryInterpolation() == Sdc::Options::VTX_BOUNDARY_EDGE_AND_CORNER);
bool sharpenNonManFeatures = true; //(options.GetNonManifoldInterpolation() == Sdc::Options::NON_MANIFOLD_SHARP);
//
// Process the Edge tags first, as Vertex tags (notably the Rule) are dependent on
// properties of their incident edges.
//
for (Vtr::Index eIndex = 0; eIndex < baseLevel.getNumEdges(); ++eIndex) {
Vtr::internal::Level::ETag& eTag = baseLevel.getEdgeTag(eIndex);
float& eSharpness = baseLevel.getEdgeSharpness(eIndex);
eTag._boundary = (baseLevel.getNumEdgeFaces(eIndex) < 2);
if (eTag._boundary || (eTag._nonManifold && sharpenNonManFeatures)) {
eSharpness = Sdc::Crease::SHARPNESS_INFINITE;
}
eTag._infSharp = Sdc::Crease::IsInfinite(eSharpness);
eTag._semiSharp = Sdc::Crease::IsSharp(eSharpness) && !eTag._infSharp;
}
//
// Process the Vertex tags now -- for some tags (semi-sharp and its rule) we need
// to inspect all incident edges:
//
int schemeRegularInteriorValence = Sdc::SchemeTypeTraits::GetRegularVertexValence(refiner.GetSchemeType());
int schemeRegularBoundaryValence = schemeRegularInteriorValence / 2;
for (Vtr::Index vIndex = 0; vIndex < baseLevel.getNumVertices(); ++vIndex) {
Vtr::internal::Level::VTag& vTag = baseLevel.getVertexTag(vIndex);
float& vSharpness = baseLevel.getVertexSharpness(vIndex);
Vtr::ConstIndexArray vEdges = baseLevel.getVertexEdges(vIndex);
Vtr::ConstIndexArray vFaces = baseLevel.getVertexFaces(vIndex);
//
// Take inventory of properties of incident edges that affect this vertex:
//
int boundaryEdgeCount = 0;
int infSharpEdgeCount = 0;
int semiSharpEdgeCount = 0;
int nonManifoldEdgeCount = 0;
for (int i = 0; i < vEdges.size(); ++i) {
Vtr::internal::Level::ETag const& eTag = baseLevel.getEdgeTag(vEdges[i]);
boundaryEdgeCount += eTag._boundary;
infSharpEdgeCount += eTag._infSharp;
semiSharpEdgeCount += eTag._semiSharp;
nonManifoldEdgeCount += eTag._nonManifold;
}
int sharpEdgeCount = infSharpEdgeCount + semiSharpEdgeCount;
//
// Sharpen the vertex before using it in conjunction with incident edge
// properties to determine the semi-sharp tag and rule:
//
bool isTopologicalCorner = (vFaces.size() == 1) && (vEdges.size() == 2);
bool isSharpenedCorner = isTopologicalCorner && sharpenCornerVerts;
if (isSharpenedCorner) {
vSharpness = Sdc::Crease::SHARPNESS_INFINITE;
} else if (vTag._nonManifold && sharpenNonManFeatures) {
//
// We avoid sharpening non-manifold vertices when they occur on interior
// non-manifold creases, i.e. a pair of opposing non-manifold edges with
// more than two incident faces. In these cases there are more incident
// faces than edges (1 more for each additional "fin") and no boundaries.
//
if (! ((nonManifoldEdgeCount == 2) && (boundaryEdgeCount == 0) && (vFaces.size() > vEdges.size()))) {
vSharpness = Sdc::Crease::SHARPNESS_INFINITE;
}
}
vTag._infSharp = Sdc::Crease::IsInfinite(vSharpness);
vTag._semiSharp = Sdc::Crease::IsSemiSharp(vSharpness);
vTag._semiSharpEdges = (semiSharpEdgeCount > 0);
vTag._rule = (Vtr::internal::Level::VTag::VTagSize)creasing.DetermineVertexVertexRule(vSharpness, sharpEdgeCount);
//
// Assign topological tags -- note that the "xordinary" tag is not strictly
// correct (or relevant) if non-manifold:
//
vTag._boundary = (boundaryEdgeCount > 0);
vTag._corner = isSharpenedCorner;
if (vTag._corner) {
vTag._xordinary = false;
} else if (vTag._boundary) {
vTag._xordinary = (vFaces.size() != schemeRegularBoundaryValence);
} else {
vTag._xordinary = (vFaces.size() != schemeRegularInteriorValence);
}
vTag._incomplete = 0;
//
// Assign tags specific to inf-sharp features to identify regular topologies
// partitioned by inf-sharp creases -- must be no semi-sharp features here
// (and manifold for now):
//
vTag._infSharpEdges = (infSharpEdgeCount > 0);
vTag._infSharpCrease = false;
vTag._infIrregular = vTag._infSharp || vTag._infSharpEdges;
if (vTag._infSharpEdges) {
// Ignore semi-sharp vertex sharpness when computing the inf-sharp Rule:
Sdc::Crease::Rule infRule = creasing.DetermineVertexVertexRule(
(vTag._infSharp ? vSharpness : 0.0f), infSharpEdgeCount);
if (infRule == Sdc::Crease::RULE_CREASE) {
vTag._infSharpCrease = true;
// A "regular" inf-crease can only occur along a manifold regular boundary
// or by bisecting a manifold interior region (it is also possible along
// non-manifold vertices in some cases, but that requires much more effort
// to detect -- perhaps later...)
//
if (!vTag._xordinary && !vTag._nonManifold) {
if (vTag._boundary) {
vTag._infIrregular = false;
} else {
assert((schemeRegularInteriorValence == 4) || (schemeRegularInteriorValence == 6));
if (schemeRegularInteriorValence == 4) {
vTag._infIrregular = (baseLevel.getEdgeTag(vEdges[0])._infSharp !=
baseLevel.getEdgeTag(vEdges[2])._infSharp);
} else if (schemeRegularInteriorValence == 6) {
vTag._infIrregular = (baseLevel.getEdgeTag(vEdges[0])._infSharp !=
baseLevel.getEdgeTag(vEdges[3])._infSharp) ||
(baseLevel.getEdgeTag(vEdges[1])._infSharp !=
baseLevel.getEdgeTag(vEdges[4])._infSharp);
}
}
}
} else if (infRule == Sdc::Crease::RULE_CORNER) {
// A regular set of inf-corners occurs when all edges are sharp and not
// a smooth corner:
//
if ((infSharpEdgeCount == vEdges.size() && ((vEdges.size() > 2) || vTag._infSharp))) {
vTag._infIrregular = false;
}
}
}
//
// Having just decided if a vertex is on a boundary, and with its incident faces
// available, mark incident faces as holes.
//
if (makeBoundaryFacesHoles && vTag._boundary) {
for (int i = 0; i < vFaces.size(); ++i) {
baseLevel.getFaceTag(vFaces[i])._hole = true;
// Don't forget this -- but it will eventually move to the Level
refiner._hasHoles = true;
}
}
}
return true;
}
bool
TopologyRefinerFactoryBase::prepareFaceVaryingChannels(TopologyRefiner& refiner) {
Vtr::internal::Level& baseLevel = refiner.getLevel(0);
int regVertexValence = Sdc::SchemeTypeTraits::GetRegularVertexValence(refiner.GetSchemeType());
int regBoundaryValence = regVertexValence / 2;
for (int channel=0; channel<refiner.GetNumFVarChannels(); ++channel) {
if (baseLevel.getNumFVarValues(channel) == 0) {
char msg[1024];
snprintf(msg, 1024, "Failure in TopologyRefinerFactory<>::Create() -- "
"face-varying channel %d has no values.", channel);
Error(FAR_RUNTIME_ERROR, msg);
return false;
}
baseLevel.completeFVarChannelTopology(channel, regBoundaryValence);
}
return true;
}
} // end namespace Far
} // end namespace OPENSUBDIV_VERSION
} // end namespace OpenSubdiv