OpenSubdiv/examples/dxPtexViewer/dxPtexViewer.cpp
Takahito Tejima 33bfbf699b Refurbish osd layer API.
In OpenSubdiv 2.x, we encapsulated subdivision tables into
compute context in osd layer since those tables are order-dependent
and have to be applied in a certain manner. In 3.0, we adopted stencil
table based refinement. It's more simple and such an encapsulation is
no longer needed. Also 2.0 API has several ownership issues of GPU
kernel caching, and forces unnecessary instantiation of controllers
even though the cpu kernels typically don't need instances unlike GPU ones.

This change completely revisit osd client facing APIs. All contexts and
controllers were replaced with device-specific tables and evaluators.
While we can still use consistent API across various device backends,
unnecessary complexities have been removed. For example, cpu evaluator
is just a set of static functions and also there's no need to replicate
FarStencilTables to ComputeContext.

Also the new API delegates the ownership of compiled GPU kernels
to clients, for the better management of resources especially in multiple
GPU environment.

In addition to integrating ComputeController and EvalStencilController into
a single function Evaluator::EvalStencils(), EvalLimit API is also added
into Evaluator. This is working but still in progress, and we'll make a followup
change for the complete implementation.

-some naming convention changes:
GLSLTransformFeedback to GLXFBEvaluator
GLSLCompute to GLComputeEvaluator

-move LimitLocation struct into examples/glEvalLimit.
We're still discussing patch evaluation interface. Basically we'd like
to tease all ptex-specific parametrization out of far/osd layer.

TODO:
-implments EvalPatches() in the right way
-derivative evaluation API is still interim.
-VertexBufferDescriptor needs a better API to advance its location
-synchronization mechanism is not ideal (too global).
-OsdMesh class is hacky. need to fix it.
2015-05-08 17:31:26 -07:00

1772 lines
59 KiB
C++

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#include <D3D11.h>
#include <D3Dcompiler.h>
#include <osd/d3d11DrawContext.h>
#include <osd/d3d11DrawRegistry.h>
#include <far/error.h>
#include <osd/cpuD3D11VertexBuffer.h>
#include <osd/cpuEvaluator.h>
#ifdef OPENSUBDIV_HAS_OPENMP
#include <osd/ompEvaluator.h>
#endif
#ifdef OPENSUBDIV_HAS_OPENCL
#include <osd/clD3D11VertexBuffer.h>
#include <osd/clEvaluator.h>
#include "../common/clDeviceContext.h"
CLD3D11DeviceContext g_clDeviceContext;
#endif
#ifdef OPENSUBDIV_HAS_CUDA
#include <osd/cudaD3D11VertexBuffer.h>
#include <osd/cudaEvaluator.h>
#include "../common/cudaDeviceContext.h"
CudaDeviceContext g_cudaDeviceContext;
#endif
#include <osd/d3d11VertexBuffer.h>
#include <osd/d3d11ComputeEvaluator.h>
#include <osd/d3d11Mesh.h>
OpenSubdiv::Osd::D3D11MeshInterface *g_mesh;
#include "Ptexture.h"
#include "PtexUtils.h"
#include <common/vtr_utils.h>
#include "../common/stopwatch.h"
#include "../common/simple_math.h"
#include "../common/d3d11_hud.h"
#include "../common/d3d11PtexMipmapTexture.h"
static const char *g_shaderSource =
#include "shader.gen.h"
;
#include <algorithm>
#include <cfloat>
#include <fstream>
#include <string>
#include <iostream>
#include <iterator>
#include <sstream>
#include <vector>
#define SAFE_RELEASE(p) { if(p) { (p)->Release(); (p)=NULL; } }
enum KernelType { kCPU = 0,
kOPENMP = 1,
kCUDA = 2,
kCL = 3,
kDirectCompute = 4 };
enum HudCheckBox { HUD_CB_ADAPTIVE,
HUD_CB_DISPLAY_OCCLUSION,
HUD_CB_DISPLAY_NORMALMAP,
HUD_CB_DISPLAY_SPECULAR,
HUD_CB_ANIMATE_VERTICES,
HUD_CB_VIEW_LOD,
HUD_CB_FRACTIONAL_SPACING,
HUD_CB_PATCH_CULL,
HUD_CB_IBL,
HUD_CB_BLOOM,
HUD_CB_SEAMLESS_MIPMAP,
HUD_CB_FREEZE };
enum HudRadioGroup { HUD_RB_KERNEL,
HUD_RB_LEVEL,
HUD_RB_SCHEME,
HUD_RB_WIRE,
HUD_RB_COLOR,
HUD_RB_DISPLACEMENT,
HUD_RB_NORMAL };
enum DisplayType { DISPLAY_WIRE,
DISPLAY_SHADED,
DISPLAY_WIRE_ON_SHADED };
enum ColorType { COLOR_NONE,
COLOR_PTEX_NEAREST,
COLOR_PTEX_HW_BILINEAR,
COLOR_PTEX_BILINEAR,
COLOR_PTEX_BIQUADRATIC,
COLOR_PATCHTYPE,
COLOR_PATCHCOORD,
COLOR_NORMAL };
enum DisplacementType { DISPLACEMENT_NONE,
DISPLACEMENT_HW_BILINEAR,
DISPLACEMENT_BILINEAR,
DISPLACEMENT_BIQUADRATIC };
enum NormalType { NORMAL_SURFACE,
NORMAL_FACET,
NORMAL_HW_SCREENSPACE,
NORMAL_SCREENSPACE,
NORMAL_BIQUADRATIC,
NORMAL_BIQUADRATIC_WG };
//-----------------------------------------------------------------------------
int g_frame = 0,
g_repeatCount = 0;
// GUI variables
int g_fullscreen = 0,
g_wire = DISPLAY_SHADED,
g_drawNormals = 0,
g_mbutton[3] = {0, 0, 0},
g_level = 2,
g_tessLevel = 2,
g_kernel = kCPU,
g_scheme = 0,
g_running = 1,
g_maxMipmapLevels = 10,
g_color = COLOR_PTEX_BILINEAR,
g_displacement = DISPLACEMENT_NONE,
g_normal = NORMAL_SURFACE;
float g_moveScale = 0.0f,
g_displacementScale = 1.0f,
g_mipmapBias = 0.0;
bool g_adaptive = true,
g_yup = false,
g_patchCull = true,
g_screenSpaceTess = true,
g_fractionalSpacing = true,
g_ibl = false,
g_bloom = false,
g_freeze = false;
// ptex switch
bool g_occlusion = false,
g_specular = false;
bool g_seamless = true;
// camera
float g_rotate[2] = {0, 0},
g_prev_x = 0,
g_prev_y = 0,
g_dolly = 5,
g_pan[2] = {0, 0},
g_center[3] = {0, 0, 0},
g_size = 0;
// viewport
int g_width = 1024,
g_height = 1024;
D3D11hud *g_hud = NULL;
// performance
float g_cpuTime = 0;
float g_gpuTime = 0;
#define NUM_FPS_TIME_SAMPLES 6
float g_fpsTimeSamples[NUM_FPS_TIME_SAMPLES] = {0, 0, 0, 0, 0, 0};
int g_currentFpsTimeSample = 0;
Stopwatch g_fpsTimer;
float g_animTime = 0;
// geometry
std::vector<float> g_positions,
g_normals;
D3D11PtexMipmapTexture * g_osdPTexImage = 0;
D3D11PtexMipmapTexture * g_osdPTexDisplacement = 0;
D3D11PtexMipmapTexture * g_osdPTexOcclusion = 0;
D3D11PtexMipmapTexture * g_osdPTexSpecular = 0;
const char * g_ptexColorFilename;
ID3D11Device * g_pd3dDevice = NULL;
ID3D11DeviceContext * g_pd3dDeviceContext = NULL;
IDXGISwapChain * g_pSwapChain = NULL;
ID3D11RenderTargetView * g_pSwapChainRTV = NULL;
ID3D11RasterizerState* g_pRasterizerState = NULL;
ID3D11InputLayout* g_pInputLayout = NULL;
ID3D11DepthStencilState* g_pDepthStencilState = NULL;
ID3D11Texture2D * g_pDepthStencilBuffer = NULL;
ID3D11Buffer* g_pcbPerFrame = NULL;
ID3D11Buffer* g_pcbTessellation = NULL;
ID3D11Buffer* g_pcbLighting = NULL;
ID3D11Buffer* g_pcbConfig = NULL;
ID3D11DepthStencilView* g_pDepthStencilView = NULL;
bool g_bDone = false;
//------------------------------------------------------------------------------
static void
calcNormals(OpenSubdiv::Far::TopologyRefiner * refiner,
std::vector<float> const & pos, std::vector<float> & result ) {
typedef OpenSubdiv::Far::ConstIndexArray IndexArray;
// calc normal vectors
int nverts = refiner->GetNumVertices(0),
nfaces = refiner->GetNumFaces(0);
for (int face = 0; face < nfaces; ++face) {
IndexArray fverts = refiner->GetFaceVertices(0, face);
float const * p0 = &pos[fverts[0]*3],
* p1 = &pos[fverts[1]*3],
* p2 = &pos[fverts[2]*3];
float n[3];
cross(n, p0, p1, p2);
for (int vert = 0; vert < fverts.size(); ++vert) {
int idx = fverts[vert] * 3;
result[idx ] += n[0];
result[idx+1] += n[1];
result[idx+2] += n[2];
}
}
for (int i = 0; i < nverts; ++i)
normalize(&result[i*3]);
}
//------------------------------------------------------------------------------
static void
updateGeom() {
int nverts = (int)g_positions.size() / 3;
std::vector<float> vertex;
vertex.reserve(nverts*6);
const float *p = &g_positions[0];
const float *n = &g_normals[0];
for (int i = 0; i < nverts; ++i) {
float move = g_size*0.005f*cosf(p[0]*100/g_size+g_frame*0.01f);
vertex.push_back(p[0]);
vertex.push_back(p[1]+g_moveScale*move);
vertex.push_back(p[2]);
p += 3;
// if (g_adaptive == false)
{
vertex.push_back(n[0]);
vertex.push_back(n[1]);
vertex.push_back(n[2]);
n += 3;
}
}
g_mesh->UpdateVertexBuffer(&vertex[0], 0, nverts);
Stopwatch s;
s.Start();
g_mesh->Refine();
s.Stop();
g_cpuTime = float(s.GetElapsed() * 1000.0f);
s.Start();
g_mesh->Synchronize();
s.Stop();
g_gpuTime = float(s.GetElapsed() * 1000.0f);
}
//-------------------------------------------------------------------------------
static void
fitFrame() {
g_pan[0] = g_pan[1] = 0;
g_dolly = g_size;
}
//-------------------------------------------------------------------------------
Shape *
createPTexGeo(PtexTexture * r) {
PtexMetaData* meta = r->getMetaData();
if (meta->numKeys() < 3) {
return NULL;
}
float const * vp;
int const *vi, *vc;
int nvp, nvi, nvc;
meta->getValue("PtexFaceVertCounts", vc, nvc);
if (nvc == 0) {
return NULL;
}
meta->getValue("PtexVertPositions", vp, nvp);
if (nvp == 0) {
return NULL;
}
meta->getValue("PtexFaceVertIndices", vi, nvi);
if (nvi == 0) {
return NULL;
}
Shape * shape = new Shape;
shape->scheme = kCatmark;
shape->verts.resize(nvp);
for (int i=0; i<nvp; ++i) {
shape->verts[i] = vp[i];
}
shape->nvertsPerFace.resize(nvc);
for (int i=0; i<nvc; ++i) {
shape->nvertsPerFace[i] = vc[i];
}
shape->faceverts.resize(nvi);
for (int i=0; i<nvi; ++i) {
shape->faceverts[i] = vi[i];
}
// compute model bounding
float min[3] = {vp[0], vp[1], vp[2]};
float max[3] = {vp[0], vp[1], vp[2]};
for (int i = 0; i < nvp/3; ++i) {
for (int j = 0; j < 3; ++j) {
float v = vp[i*3+j];
min[j] = std::min(min[j], v);
max[j] = std::max(max[j], v);
}
}
for (int j = 0; j < 3; ++j) {
g_center[j] = (min[j] + max[j]) * 0.5f;
g_size += (max[j]-min[j])*(max[j]-min[j]);
}
g_size = sqrtf(g_size);
return shape;
}
//------------------------------------------------------------------------------
static const char *
getKernelName(int kernel) {
if (kernel == kCPU)
return "CPU";
else if (kernel == kOPENMP)
return "OpenMP";
else if (kernel == kCUDA)
return "Cuda";
else if (kernel == kCL)
return "OpenCL";
else if (kernel == kDirectCompute)
return "DirectCompute";
return "Unknown";
}
//------------------------------------------------------------------------------
union Effect {
struct {
unsigned int wire:2;
unsigned int color:3;
unsigned int displacement:2;
unsigned int normal:3;
int occlusion:1;
int specular:1;
int patchCull:1;
int screenSpaceTess:1;
int fractionalSpacing:1;
int ibl:1;
int seamless:1;
};
int value;
bool operator < (const Effect &e) const {
return value < e.value;
}
};
typedef std::pair<OpenSubdiv::Osd::DrawContext::PatchDescriptor, Effect> EffectDesc;
class EffectDrawRegistry : public OpenSubdiv::Osd::D3D11DrawRegistry<EffectDesc> {
protected:
virtual ConfigType *
_CreateDrawConfig(DescType const & desc,
SourceConfigType const * sconfig,
ID3D11Device * pd3dDevice,
ID3D11InputLayout ** ppInputLayout,
D3D11_INPUT_ELEMENT_DESC const * pInputElementDescs,
int numInputElements);
virtual SourceConfigType *
_CreateDrawSourceConfig(DescType const & desc, ID3D11Device * pd3dDevice);
};
EffectDrawRegistry::SourceConfigType *
EffectDrawRegistry::_CreateDrawSourceConfig(DescType const & desc, ID3D11Device *pd3dDevice)
{
Effect effect = desc.second;
SourceConfigType * sconfig =
BaseRegistry::_CreateDrawSourceConfig(desc.first, pd3dDevice);
assert(sconfig);
// add ptex functions
sconfig->commonShader.source += D3D11PtexMipmapTexture::GetShaderSource();
if (effect.patchCull)
sconfig->commonShader.AddDefine("OSD_ENABLE_PATCH_CULL");
if (effect.screenSpaceTess)
sconfig->commonShader.AddDefine("OSD_ENABLE_SCREENSPACE_TESSELLATION");
if (effect.fractionalSpacing)
sconfig->commonShader.AddDefine("OSD_FRACTIONAL_ODD_SPACING");
bool quad = true;
if (desc.first.GetType() == OpenSubdiv::Far::PatchDescriptor::QUADS ||
desc.first.GetType() == OpenSubdiv::Far::PatchDescriptor::TRIANGLES) {
sconfig->vertexShader.source = g_shaderSource;
sconfig->vertexShader.target = "vs_5_0";
sconfig->vertexShader.entry = "vs_main";
if (effect.displacement) {
sconfig->geometryShader.AddDefine("FLAT_NORMALS");
}
} else {
quad = false;
sconfig->vertexShader.source = g_shaderSource + sconfig->vertexShader.source;
sconfig->domainShader.source = g_shaderSource + sconfig->domainShader.source;
sconfig->hullShader.source = g_shaderSource + sconfig->hullShader.source;
if (effect.displacement and (not effect.normal))
sconfig->geometryShader.AddDefine("FLAT_NORMALS");
}
sconfig->geometryShader.source = g_shaderSource;
sconfig->geometryShader.target = "gs_5_0";
sconfig->geometryShader.entry = "gs_main";
sconfig->pixelShader.source = g_shaderSource;
sconfig->pixelShader.target = "ps_5_0";
sconfig->pixelShader.entry = "ps_main";
switch (effect.color) {
case COLOR_NONE:
break;
case COLOR_PTEX_NEAREST:
sconfig->pixelShader.AddDefine("COLOR_PTEX_NEAREST");
break;
case COLOR_PTEX_HW_BILINEAR:
sconfig->pixelShader.AddDefine("COLOR_PTEX_HW_BILINEAR");
break;
case COLOR_PTEX_BILINEAR:
sconfig->pixelShader.AddDefine("COLOR_PTEX_BILINEAR");
break;
case COLOR_PTEX_BIQUADRATIC:
sconfig->pixelShader.AddDefine("COLOR_PTEX_BIQUADRATIC");
break;
case COLOR_PATCHTYPE:
sconfig->pixelShader.AddDefine("COLOR_PATCHTYPE");
break;
case COLOR_PATCHCOORD:
sconfig->pixelShader.AddDefine("COLOR_PATCHCOORD");
break;
case COLOR_NORMAL:
sconfig->pixelShader.AddDefine("COLOR_NORMAL");
break;
}
switch (effect.displacement) {
case DISPLACEMENT_NONE:
break;
case DISPLACEMENT_HW_BILINEAR:
sconfig->commonShader.AddDefine("DISPLACEMENT_HW_BILINEAR");
break;
case DISPLACEMENT_BILINEAR:
sconfig->commonShader.AddDefine("DISPLACEMENT_BILINEAR");
break;
case DISPLACEMENT_BIQUADRATIC:
sconfig->commonShader.AddDefine("DISPLACEMENT_BIQUADRATIC");
break;
}
switch (effect.normal) {
case NORMAL_FACET:
sconfig->commonShader.AddDefine("NORMAL_FACET");
break;
case NORMAL_HW_SCREENSPACE:
sconfig->commonShader.AddDefine("NORMAL_HW_SCREENSPACE");
break;
case NORMAL_SCREENSPACE:
sconfig->commonShader.AddDefine("NORMAL_SCREENSPACE");
break;
case NORMAL_BIQUADRATIC:
sconfig->commonShader.AddDefine("NORMAL_BIQUADRATIC");
break;
case NORMAL_BIQUADRATIC_WG:
sconfig->commonShader.AddDefine("OSD_COMPUTE_NORMAL_DERIVATIVES");
sconfig->commonShader.AddDefine("NORMAL_BIQUADRATIC_WG");
break;
}
if (effect.occlusion)
sconfig->pixelShader.AddDefine("USE_PTEX_OCCLUSION");
if (effect.specular)
sconfig->pixelShader.AddDefine("USE_PTEX_SPECULAR");
if (effect.ibl)
sconfig->pixelShader.AddDefine("USE_IBL");
if (quad) {
sconfig->geometryShader.AddDefine("PRIM_QUAD");
sconfig->pixelShader.AddDefine("PRIM_QUAD");
} else {
sconfig->geometryShader.AddDefine("PRIM_TRI");
sconfig->pixelShader.AddDefine("PRIM_TRI");
}
if (effect.seamless) {
sconfig->commonShader.AddDefine("SEAMLESS_MIPMAP");
}
if (effect.wire == 0) {
sconfig->geometryShader.AddDefine("GEOMETRY_OUT_WIRE");
sconfig->pixelShader.AddDefine("GEOMETRY_OUT_WIRE");
} else if (effect.wire == 1) {
sconfig->geometryShader.AddDefine("GEOMETRY_OUT_FILL");
sconfig->pixelShader.AddDefine("GEOMETRY_OUT_FILL");
} else if (effect.wire == 2) {
sconfig->geometryShader.AddDefine("GEOMETRY_OUT_LINE");
sconfig->pixelShader.AddDefine("GEOMETRY_OUT_LINE");
}
return sconfig;
}
EffectDrawRegistry::ConfigType *
EffectDrawRegistry::_CreateDrawConfig(
DescType const & desc,
SourceConfigType const * sconfig,
ID3D11Device * pd3dDevice,
ID3D11InputLayout ** ppInputLayout,
D3D11_INPUT_ELEMENT_DESC const * pInputElementDescs,
int numInputElements) {
ConfigType * config = BaseRegistry::_CreateDrawConfig(desc.first, sconfig,
pd3dDevice, ppInputLayout, pInputElementDescs, numInputElements);
assert(config);
return config;
}
EffectDrawRegistry effectRegistry;
//------------------------------------------------------------------------------
D3D11PtexMipmapTexture *
createPtex(const char *filename) {
Ptex::String ptexError;
printf("Loading ptex : %s\n", filename);
#define USE_PTEX_CACHE
#define PTEX_CACHE_SIZE (512*1024*1024)
#ifdef USE_PTEX_CACHE
PtexCache *cache = PtexCache::create(1, PTEX_CACHE_SIZE);
PtexTexture *ptex = cache->get(filename, ptexError);
#else
PtexTexture *ptex = PtexTexture::open(filename, ptexError, true);
#endif
if (ptex == NULL) {
printf("Error in reading %s\n", filename);
exit(1);
}
D3D11PtexMipmapTexture *osdPtex = D3D11PtexMipmapTexture::Create(
g_pd3dDeviceContext, ptex, g_maxMipmapLevels);
ptex->release();
#ifdef USE_PTEX_CACHE
cache->release();
#endif
return osdPtex;
}
//------------------------------------------------------------------------------
void
createOsdMesh(int level, int kernel) {
using namespace OpenSubdiv;
Ptex::String ptexError;
PtexTexture *ptexColor = PtexTexture::open(g_ptexColorFilename, ptexError, true);
if (ptexColor == NULL) {
printf("Error in reading %s\n", g_ptexColorFilename);
exit(1);
}
// generate Hbr representation from ptex
Shape * shape = createPTexGeo(ptexColor);
if (not shape) {
return;
}
g_positions=shape->verts;
typedef OpenSubdiv::Far::ConstIndexArray IndexArray;
// create Vtr mesh (topology)
OpenSubdiv::Sdc::SchemeType sdctype = GetSdcType(*shape);
OpenSubdiv::Sdc::Options sdcoptions = GetSdcOptions(*shape);
OpenSubdiv::Far::TopologyRefiner * refiner =
OpenSubdiv::Far::TopologyRefinerFactory<Shape>::Create(*shape,
OpenSubdiv::Far::TopologyRefinerFactory<Shape>::Options(sdctype, sdcoptions));
// save coarse topology (used for coarse mesh drawing)
// create cage edge index
int nedges = refiner->GetNumEdges(0);
std::vector<int> edgeIndices(nedges*2);
for(int i=0; i<nedges; ++i) {
IndexArray verts = refiner->GetEdgeVertices(0, i);
edgeIndices[i*2 ]=verts[0];
edgeIndices[i*2+1]=verts[1];
}
delete shape;
g_normals.resize(g_positions.size(), 0.0f);
calcNormals(refiner, g_positions, g_normals);
delete g_mesh;
g_mesh = NULL;
// Adaptive refinement currently supported only for catmull-clark scheme
bool doAdaptive = (g_adaptive != 0 and g_scheme == 0);
OpenSubdiv::Osd::MeshBitset bits;
bits.set(OpenSubdiv::Osd::MeshAdaptive, doAdaptive);
bits.set(OpenSubdiv::Osd::MeshPtexData, true);
// gregory basis hasn't supported yet in D3D11Mesh
bits.set(OpenSubdiv::Osd::MeshEndCapLegacyGregory, true);
int numVertexElements = 6; //g_adaptive ? 3 : 6;
int numVaryingElements = 0;
if (g_kernel == kCPU) {
g_mesh = new Osd::Mesh<Osd::CpuD3D11VertexBuffer,
Far::StencilTables,
Osd::CpuEvaluator,
Osd::D3D11DrawContext,
ID3D11DeviceContext>(
refiner,
numVertexElements,
numVaryingElements,
level, bits, NULL, g_pd3dDeviceContext);
#ifdef OPENSUBDIV_HAS_OPENMP
} else if (kernel == kOPENMP) {
g_mesh = new Osd::Mesh<Osd::CpuD3D11VertexBuffer,
Far::StencilTables,
Osd::OmpEvaluator,
Osd::D3D11DrawContext,
ID3D11DeviceContext>(
refiner,
numVertexElements,
numVaryingElements,
level, bits, NULL, g_pd3dDeviceContext);
#endif
#ifdef OPENSUBDIV_HAS_TBB
} else if (kernel == kTBB) {
g_mesh = new Osd::Mesh<Osd::CpuD3D11VertexBuffer,
Far::StencilTables,
Osd::TbbEvaluator,
Osd::D3D11DrawContext,
ID3D11DeviceContext>(
refiner,
numVertexElements,
numVaryingElements,
level, bits, NULL, g_pd3dDeviceContext);
#endif
#ifdef OPENSUBDIV_HAS_OPENCL
} else if(kernel == kCL) {
static Osd::EvaluatorCacheT<Osd::CLEvaluator> clEvaluatorCache;
g_mesh = new Osd::Mesh<Osd::CLD3D11VertexBuffer,
Osd::CLStencilTables,
Osd::CLEvaluator,
Osd::D3D11DrawContext,
CLD3D11DeviceContext>(
refiner,
numVertexElements,
numVaryingElements,
level, bits,
&clEvaluatorCache,
&g_clDeviceContext);
#endif
#ifdef OPENSUBDIV_HAS_CUDA
} else if (g_kernel == kCUDA) {
g_mesh = new Osd::Mesh<Osd::CudaD3D11VertexBuffer,
Osd::CudaStencilTables,
Osd::CudaEvaluator,
Osd::D3D11DrawContext,
ID3D11DeviceContext>(
refiner,
numVertexElements,
numVaryingElements,
level, bits, NULL, g_pd3dDeviceContext);
#endif
} else if (g_kernel == kDirectCompute) {
static Osd::EvaluatorCacheT<Osd::D3D11ComputeEvaluator> d3d11ComputeEvaluatorCache;
g_mesh = new Osd::Mesh<Osd::D3D11VertexBuffer,
Osd::D3D11StencilTables,
Osd::D3D11ComputeEvaluator,
Osd::D3D11DrawContext,
ID3D11DeviceContext>(
refiner,
numVertexElements,
numVaryingElements,
level, bits,
&d3d11ComputeEvaluatorCache,
g_pd3dDeviceContext);
} else {
printf("Unsupported kernel %s\n", getKernelName(kernel));
}
updateGeom();
}
//------------------------------------------------------------------------------
static void
bindProgram(Effect effect, OpenSubdiv::Osd::DrawContext::PatchArray const & patch) {
EffectDesc effectDesc(patch.GetDescriptor(), effect);
// input layout
const D3D11_INPUT_ELEMENT_DESC hInElementDesc[] = {
{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 4*3, D3D11_INPUT_PER_VERTEX_DATA, 0 }
};
EffectDrawRegistry::ConfigType *
config = effectRegistry.GetDrawConfig(
effectDesc, g_pd3dDevice,
&g_pInputLayout, hInElementDesc, ARRAYSIZE(hInElementDesc));
assert(g_pInputLayout);
// Update transform state
{
__declspec(align(16))
struct CB_PER_FRAME_CONSTANTS
{
float ModelViewMatrix[16];
float ProjectionMatrix[16];
float ModelViewProjectionMatrix[16];
};
if (! g_pcbPerFrame) {
D3D11_BUFFER_DESC cbDesc;
ZeroMemory(&cbDesc, sizeof(cbDesc));
cbDesc.Usage = D3D11_USAGE_DYNAMIC;
cbDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
cbDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
cbDesc.MiscFlags = 0;
cbDesc.ByteWidth = sizeof(CB_PER_FRAME_CONSTANTS);
g_pd3dDevice->CreateBuffer(&cbDesc, NULL, &g_pcbPerFrame);
}
assert(g_pcbPerFrame);
D3D11_MAPPED_SUBRESOURCE MappedResource;
g_pd3dDeviceContext->Map(g_pcbPerFrame, 0, D3D11_MAP_WRITE_DISCARD, 0, &MappedResource);
CB_PER_FRAME_CONSTANTS* pData = ( CB_PER_FRAME_CONSTANTS* )MappedResource.pData;
float aspect = (g_height > 0) ? (float)g_width / g_height : 1.0f;
identity(pData->ModelViewMatrix);
translate(pData->ModelViewMatrix, -g_pan[0], -g_pan[1], -g_dolly);
rotate(pData->ModelViewMatrix, g_rotate[1], 1, 0, 0);
rotate(pData->ModelViewMatrix, g_rotate[0], 0, 1, 0);
translate(pData->ModelViewMatrix, -g_center[0], -g_center[1], -g_center[2]);
identity(pData->ProjectionMatrix);
perspective(pData->ProjectionMatrix, 45.0, aspect, 0.01f, 500.0);
multMatrix(pData->ModelViewProjectionMatrix, pData->ModelViewMatrix, pData->ProjectionMatrix);
g_pd3dDeviceContext->Unmap( g_pcbPerFrame, 0 );
}
// Update tessellation state
{
__declspec(align(16))
struct Tessellation {
float TessLevel;
int GregoryQuadOffsetBase;
int PrimitiveIdBase;
};
if (! g_pcbTessellation) {
D3D11_BUFFER_DESC cbDesc;
ZeroMemory(&cbDesc, sizeof(cbDesc));
cbDesc.Usage = D3D11_USAGE_DYNAMIC;
cbDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
cbDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
cbDesc.MiscFlags = 0;
cbDesc.ByteWidth = sizeof(Tessellation);
g_pd3dDevice->CreateBuffer(&cbDesc, NULL, &g_pcbTessellation);
}
assert(g_pcbTessellation);
D3D11_MAPPED_SUBRESOURCE MappedResource;
g_pd3dDeviceContext->Map(g_pcbTessellation, 0, D3D11_MAP_WRITE_DISCARD, 0, &MappedResource);
Tessellation * pData = ( Tessellation* )MappedResource.pData;
pData->TessLevel = static_cast<float>(1 << g_tessLevel);
pData->GregoryQuadOffsetBase = patch.GetQuadOffsetIndex();
pData->PrimitiveIdBase = patch.GetPatchIndex();
g_pd3dDeviceContext->Unmap( g_pcbTessellation, 0 );
}
// Update config state
{
__declspec(align(16))
struct Config {
float displacementScale;
float mipmapBias;
};
if (! g_pcbConfig) {
D3D11_BUFFER_DESC cbDesc;
ZeroMemory(&cbDesc, sizeof(cbDesc));
cbDesc.Usage = D3D11_USAGE_DYNAMIC;
cbDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
cbDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
cbDesc.MiscFlags = 0;
cbDesc.ByteWidth = sizeof(Config);
g_pd3dDevice->CreateBuffer(&cbDesc, NULL, &g_pcbConfig);
}
assert(g_pcbConfig);
D3D11_MAPPED_SUBRESOURCE MappedResource;
g_pd3dDeviceContext->Map(g_pcbConfig, 0, D3D11_MAP_WRITE_DISCARD, 0, &MappedResource);
Config * pData = ( Config* )MappedResource.pData;
pData->displacementScale = g_displacementScale;
pData->mipmapBias = g_mipmapBias;
g_pd3dDeviceContext->Unmap( g_pcbConfig, 0 );
}
g_pd3dDeviceContext->IASetInputLayout(g_pInputLayout);
g_pd3dDeviceContext->VSSetShader(config->vertexShader, NULL, 0);
g_pd3dDeviceContext->VSSetConstantBuffers(0, 1, &g_pcbPerFrame);
g_pd3dDeviceContext->HSSetShader(config->hullShader, NULL, 0);
g_pd3dDeviceContext->HSSetConstantBuffers(0, 1, &g_pcbPerFrame);
g_pd3dDeviceContext->HSSetConstantBuffers(1, 1, &g_pcbTessellation);
g_pd3dDeviceContext->DSSetShader(config->domainShader, NULL, 0);
g_pd3dDeviceContext->DSSetConstantBuffers(0, 1, &g_pcbPerFrame);
g_pd3dDeviceContext->DSSetConstantBuffers(3, 1, &g_pcbConfig);
g_pd3dDeviceContext->GSSetShader(config->geometryShader, NULL, 0);
g_pd3dDeviceContext->GSSetConstantBuffers(0, 1, &g_pcbPerFrame);
g_pd3dDeviceContext->PSSetShader(config->pixelShader, NULL, 0);
g_pd3dDeviceContext->PSSetConstantBuffers(0, 1, &g_pcbPerFrame);
g_pd3dDeviceContext->PSSetConstantBuffers(2, 1, &g_pcbLighting);
g_pd3dDeviceContext->PSSetConstantBuffers(3, 1, &g_pcbConfig);
if (g_mesh->GetDrawContext()->vertexBufferSRV) {
g_pd3dDeviceContext->VSSetShaderResources(0, 1, &g_mesh->GetDrawContext()->vertexBufferSRV);
}
if (g_mesh->GetDrawContext()->vertexValenceBufferSRV) {
g_pd3dDeviceContext->VSSetShaderResources(1, 1, &g_mesh->GetDrawContext()->vertexValenceBufferSRV);
}
if (g_mesh->GetDrawContext()->quadOffsetBufferSRV) {
g_pd3dDeviceContext->HSSetShaderResources(2, 1, &g_mesh->GetDrawContext()->quadOffsetBufferSRV);
}
if (g_mesh->GetDrawContext()->ptexCoordinateBufferSRV) {
g_pd3dDeviceContext->HSSetShaderResources(3, 1, &g_mesh->GetDrawContext()->ptexCoordinateBufferSRV);
g_pd3dDeviceContext->DSSetShaderResources(3, 1, &g_mesh->GetDrawContext()->ptexCoordinateBufferSRV);
g_pd3dDeviceContext->GSSetShaderResources(3, 1, &g_mesh->GetDrawContext()->ptexCoordinateBufferSRV);
}
g_pd3dDeviceContext->PSSetShaderResources(4, 1, g_osdPTexImage->GetTexelsSRV());
g_pd3dDeviceContext->PSSetShaderResources(5, 1, g_osdPTexImage->GetLayoutSRV());
if (g_osdPTexDisplacement) {
g_pd3dDeviceContext->DSSetShaderResources(6, 1, g_osdPTexDisplacement->GetTexelsSRV());
g_pd3dDeviceContext->DSSetShaderResources(7, 1, g_osdPTexDisplacement->GetLayoutSRV());
g_pd3dDeviceContext->PSSetShaderResources(6, 1, g_osdPTexDisplacement->GetTexelsSRV());
g_pd3dDeviceContext->PSSetShaderResources(7, 1, g_osdPTexDisplacement->GetLayoutSRV());
}
if (g_osdPTexOcclusion) {
g_pd3dDeviceContext->PSSetShaderResources(8, 1, g_osdPTexOcclusion->GetTexelsSRV());
g_pd3dDeviceContext->PSSetShaderResources(9, 1, g_osdPTexOcclusion->GetLayoutSRV());
}
if (g_osdPTexSpecular) {
g_pd3dDeviceContext->PSSetShaderResources(10, 1, g_osdPTexSpecular->GetTexelsSRV());
g_pd3dDeviceContext->PSSetShaderResources(11, 1, g_osdPTexSpecular->GetLayoutSRV());
}
}
//------------------------------------------------------------------------------
static void
drawModel() {
ID3D11Buffer *buffer = g_mesh->BindVertexBuffer();
assert(buffer);
UINT hStrides = 6*sizeof(float);
UINT hOffsets = 0;
g_pd3dDeviceContext->IASetVertexBuffers(0, 1, &buffer, &hStrides, &hOffsets);
OpenSubdiv::Osd::DrawContext::PatchArrayVector const & patches =
g_mesh->GetDrawContext()->GetPatchArrays();
g_pd3dDeviceContext->IASetIndexBuffer(g_mesh->GetDrawContext()->patchIndexBuffer,
DXGI_FORMAT_R32_UINT, 0);
// patch drawing
for (int i = 0; i < (int)patches.size(); ++i) {
OpenSubdiv::Osd::DrawContext::PatchArray const & patch = patches[i];
D3D11_PRIMITIVE_TOPOLOGY topology;
// if (patch.GetDescriptor().GetType() != OpenSubdiv::Far::PatchTables::REGULAR) continue;
if (g_mesh->GetDrawContext()->IsAdaptive()) {
switch (patch.GetDescriptor().GetNumControlVertices()) {
case 4:
topology = D3D11_PRIMITIVE_TOPOLOGY_4_CONTROL_POINT_PATCHLIST;
break;
case 9:
topology = D3D11_PRIMITIVE_TOPOLOGY_9_CONTROL_POINT_PATCHLIST;
break;
case 12:
topology = D3D11_PRIMITIVE_TOPOLOGY_12_CONTROL_POINT_PATCHLIST;
break;
case 16:
topology = D3D11_PRIMITIVE_TOPOLOGY_16_CONTROL_POINT_PATCHLIST;
break;
default:
assert(false);
break;
}
} else {
if (g_scheme == kLoop) {
topology = D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST;
} else {
topology = D3D11_PRIMITIVE_TOPOLOGY_LINELIST_ADJ;
}
}
Effect effect;
effect.value = 0;
effect.color = g_color;
effect.displacement = g_displacement;
effect.occlusion = g_occlusion;
effect.normal = g_normal;
effect.specular = g_specular;
effect.patchCull = g_patchCull;
effect.screenSpaceTess = g_screenSpaceTess;
effect.fractionalSpacing = g_fractionalSpacing;
effect.ibl = g_ibl;
effect.wire = g_wire;
effect.seamless = g_seamless;
bindProgram(effect, patch);
g_pd3dDeviceContext->IASetPrimitiveTopology(topology);
g_pd3dDeviceContext->DrawIndexed(patch.GetNumIndices(),
patch.GetVertIndex(), 0);
}
}
//------------------------------------------------------------------------------
static void
display() {
float color[4] = {0.006f, 0.006f, 0.006f, 1.0f};
g_pd3dDeviceContext->ClearRenderTargetView(g_pSwapChainRTV, color);
// Clear the depth buffer.
g_pd3dDeviceContext->ClearDepthStencilView(g_pDepthStencilView, D3D11_CLEAR_DEPTH, 1.0f, 0);
g_pd3dDeviceContext->OMSetDepthStencilState(g_pDepthStencilState, 1);
g_pd3dDeviceContext->RSSetState(g_pRasterizerState);
drawModel();
if (g_hud->IsVisible()) {
g_fpsTimer.Stop();
double fps = 1.0/g_fpsTimer.GetElapsed();
g_fpsTimer.Start();
g_hud->DrawString(10, -100, "# of Vertices = %d", g_mesh->GetNumVertices());
g_hud->DrawString(10, -60, "GPU TIME = %.3f ms", g_gpuTime);
g_hud->DrawString(10, -40, "CPU TIME = %.3f ms", g_cpuTime);
g_hud->DrawString(10, -20, "FPS = %3.1f", fps);
}
g_hud->Flush();
g_pSwapChain->Present(0, 0);
}
//------------------------------------------------------------------------------
static void
mouse(int button, int state, int x, int y) {
if (state == 0)
g_hud->MouseRelease();
if (button == 0 && state == 1 && g_hud->MouseClick(x, y)) return;
if (button < 3) {
g_prev_x = float(x);
g_prev_y = float(y);
g_mbutton[button] = state;
}
}
//------------------------------------------------------------------------------
static void
motion(int x, int y) {
if (g_hud->MouseCapture()) {
// check gui
g_hud->MouseMotion(x, y);
} else if (g_mbutton[0] && !g_mbutton[1] && !g_mbutton[2]) {
// orbit
g_rotate[0] += x - g_prev_x;
g_rotate[1] += y - g_prev_y;
} else if (!g_mbutton[0] && g_mbutton[1] && !g_mbutton[2]) {
// pan
g_pan[0] -= g_dolly*(x - g_prev_x)/g_width;
g_pan[1] += g_dolly*(y - g_prev_y)/g_height;
} else if ((g_mbutton[0] && g_mbutton[1] && !g_mbutton[2]) or
(!g_mbutton[0] && !g_mbutton[1] && g_mbutton[2])) {
// dolly
g_dolly -= g_dolly*0.01f*(x - g_prev_x);
if(g_dolly <= 0.01) g_dolly = 0.01f;
}
g_prev_x = float(x);
g_prev_y = float(y);
}
//-----------------------------------------------------------------------------
static void
quit() {
g_bDone = true;
if (g_osdPTexImage) delete g_osdPTexImage;
if (g_osdPTexDisplacement) delete g_osdPTexDisplacement;
if (g_osdPTexOcclusion) delete g_osdPTexOcclusion;
if (g_osdPTexSpecular) delete g_osdPTexSpecular;
if (g_mesh) delete g_mesh;
if (g_hud) delete g_hud;
SAFE_RELEASE(g_pRasterizerState);
SAFE_RELEASE(g_pInputLayout);
SAFE_RELEASE(g_pDepthStencilState);
SAFE_RELEASE(g_pcbPerFrame);
SAFE_RELEASE(g_pcbTessellation);
SAFE_RELEASE(g_pcbLighting);
SAFE_RELEASE(g_pcbConfig);
SAFE_RELEASE(g_pDepthStencilView);
SAFE_RELEASE(g_pSwapChainRTV);
SAFE_RELEASE(g_pSwapChain);
SAFE_RELEASE(g_pd3dDeviceContext);
SAFE_RELEASE(g_pd3dDevice);
PostQuitMessage(0);
exit(0);
}
//------------------------------------------------------------------------------
static void
keyboard(char key) {
if (g_hud->KeyDown((int)tolower(key))) return;
switch (key) {
case 'Q': quit();
case 'F': fitFrame(); break;
case '+':
case '=': g_tessLevel++; break;
case '-': g_tessLevel = std::max(1, g_tessLevel-1); break;
case 0x1b: g_hud->SetVisible(!g_hud->IsVisible()); break;
}
}
//------------------------------------------------------------------------------
static void
callbackWireframe(int b) {
g_wire = b;
}
static void
callbackKernel(int k) {
g_kernel = k;
#ifdef OPENSUBDIV_HAS_OPENCL
if (g_kernel == kCL and (not g_clDeviceContext.IsInitialized())) {
if (g_clDeviceContext.Initialize(g_pd3dDeviceContext) == false) {
printf("Error in initializing OpenCL\n");
exit(1);
}
}
#endif
#ifdef OPENSUBDIV_HAS_CUDA
if (g_kernel == kCUDA and (not g_cudaDeviceContext.IsInitialized())) {
if (g_cudaDeviceContext.Initialize(g_pd3dDevice) == false) {
printf("Error in initializing Cuda\n");
exit(1);
}
}
#endif
createOsdMesh(g_level, g_kernel);
}
static void
callbackScheme(int s) {
g_scheme = s;
createOsdMesh(g_level, g_kernel);
}
static void
callbackLevel(int l) {
g_level = l;
createOsdMesh(g_level, g_kernel);
}
static void
callbackColor(int c) {
g_color = c;
}
static void
callbackDisplacement(int d) {
g_displacement = d;
}
static void
callbackNormal(int n) {
g_normal = n;
}
static void
callbackCheckBox(bool checked, int button) {
bool rebuild = false;
switch (button) {
case HUD_CB_ADAPTIVE:
g_adaptive = checked;
rebuild = true;
break;
case HUD_CB_DISPLAY_OCCLUSION:
g_occlusion = checked;
break;
case HUD_CB_DISPLAY_SPECULAR:
g_specular = checked;
break;
case HUD_CB_ANIMATE_VERTICES:
g_moveScale = checked ? 1.0f : 0.0f;
g_animTime = 0;
break;
case HUD_CB_VIEW_LOD:
g_screenSpaceTess = checked;
break;
case HUD_CB_FRACTIONAL_SPACING:
g_fractionalSpacing = checked;
break;
case HUD_CB_PATCH_CULL:
g_patchCull = checked;
break;
case HUD_CB_IBL:
g_ibl = checked;
break;
case HUD_CB_SEAMLESS_MIPMAP:
g_seamless = checked;
break;
case HUD_CB_FREEZE:
g_freeze = checked;
break;
}
if (rebuild)
createOsdMesh(g_level, g_kernel);
}
static void
callbackSlider(float value, int data) {
switch (data) {
case 0:
g_mipmapBias = value;
break;
case 1:
g_displacementScale = value;
break;
}
}
static void
initHUD() {
g_hud = new D3D11hud(g_pd3dDeviceContext);
g_hud->Init(g_width, g_height);
g_hud->AddRadioButton(0, "CPU (K)", true, 10, 10, callbackKernel, kCPU, 'K');
#ifdef OPENSUBDIV_HAS_OPENMP
g_hud->AddRadioButton(0, "OPENMP", false, 10, 30, callbackKernel, kOPENMP, 'K');
#endif
#ifdef OPENSUBDIV_HAS_CUDA
g_hud->AddRadioButton(0, "CUDA", false, 10, 50, callbackKernel, kCUDA, 'K');
#endif
#ifdef OPENSUBDIV_HAS_OPENCL
if (CLDeviceContext::HAS_CL_VERSION_1_1()) {
g_hud->AddRadioButton(0, "OPENCL", false, 10, 70, callbackKernel, kCL, 'K');
}
#endif
g_hud->AddRadioButton(0, "DirectCompute", false, 10, 90, callbackKernel, kDirectCompute, 'K');
g_hud->AddCheckBox("Adaptive (`)", g_adaptive,
10, 150, callbackCheckBox, HUD_CB_ADAPTIVE, '`');
g_hud->AddRadioButton(HUD_RB_SCHEME, "CATMARK", true, 10, 190, callbackScheme, 0, 's');
g_hud->AddRadioButton(HUD_RB_SCHEME, "BILINEAR", false, 10, 210, callbackScheme, 1, 's');
for (int i = 1; i < 8; ++i) {
char level[16];
sprintf(level, "Lv. %d", i);
g_hud->AddRadioButton(HUD_RB_LEVEL, level, i == g_level,
10, 220+i*20, callbackLevel, i, '0'+i);
}
g_hud->AddRadioButton(HUD_RB_WIRE, "Wire (W)", (g_wire == DISPLAY_WIRE),
100, 10, callbackWireframe, 0, 'w');
g_hud->AddRadioButton(HUD_RB_WIRE, "Shaded", (g_wire == DISPLAY_SHADED),
100, 30, callbackWireframe, 1, 'w');
g_hud->AddRadioButton(HUD_RB_WIRE, "Wire on Shaded", (g_wire == DISPLAY_WIRE_ON_SHADED),
100, 50, callbackWireframe, 2, 'w');
g_hud->AddLabel("Color (C)", -200, 10);
g_hud->AddRadioButton(HUD_RB_COLOR, "None", (g_color == COLOR_NONE),
-200, 30, callbackColor, COLOR_NONE, 'c');
g_hud->AddRadioButton(HUD_RB_COLOR, "Ptex Nearest", (g_color == COLOR_PTEX_NEAREST),
-200, 50, callbackColor, COLOR_PTEX_NEAREST, 'c');
g_hud->AddRadioButton(HUD_RB_COLOR, "Ptex HW bilinear", (g_color == COLOR_PTEX_HW_BILINEAR),
-200, 70, callbackColor, COLOR_PTEX_HW_BILINEAR, 'c');
g_hud->AddRadioButton(HUD_RB_COLOR, "Ptex bilinear", (g_color == COLOR_PTEX_BILINEAR),
-200, 90, callbackColor, COLOR_PTEX_BILINEAR, 'c');
g_hud->AddRadioButton(HUD_RB_COLOR, "Ptex biquadratic", (g_color == COLOR_PTEX_BIQUADRATIC),
-200, 110, callbackColor, COLOR_PTEX_BIQUADRATIC, 'c');
g_hud->AddRadioButton(HUD_RB_COLOR, "Patch type", (g_color == COLOR_PATCHTYPE),
-200, 130, callbackColor, COLOR_PATCHTYPE, 'c');
g_hud->AddRadioButton(HUD_RB_COLOR, "Patch coord", (g_color == COLOR_PATCHCOORD),
-200, 150, callbackColor, COLOR_PATCHCOORD, 'c');
g_hud->AddRadioButton(HUD_RB_COLOR, "Normal", (g_color == COLOR_NORMAL),
-200, 170, callbackColor, COLOR_NORMAL, 'c');
if (g_osdPTexDisplacement != NULL) {
g_hud->AddLabel("Displacement (D)", -200, 200);
g_hud->AddRadioButton(HUD_RB_DISPLACEMENT, "None",
(g_displacement == DISPLACEMENT_NONE),
-200, 220, callbackDisplacement, DISPLACEMENT_NONE, 'd');
g_hud->AddRadioButton(HUD_RB_DISPLACEMENT, "HW bilinear",
(g_displacement == DISPLACEMENT_HW_BILINEAR),
-200, 240, callbackDisplacement, DISPLACEMENT_HW_BILINEAR, 'd');
g_hud->AddRadioButton(HUD_RB_DISPLACEMENT, "Bilinear",
(g_displacement == DISPLACEMENT_BILINEAR),
-200, 260, callbackDisplacement, DISPLACEMENT_BILINEAR, 'd');
g_hud->AddRadioButton(HUD_RB_DISPLACEMENT, "Biquadratic",
(g_displacement == DISPLACEMENT_BIQUADRATIC),
-200, 280, callbackDisplacement, DISPLACEMENT_BIQUADRATIC, 'd');
g_hud->AddLabel("Normal (N)", -200, 310);
g_hud->AddRadioButton(HUD_RB_NORMAL, "Surface",
(g_normal == NORMAL_SURFACE),
-200, 330, callbackNormal, NORMAL_SURFACE, 'n');
g_hud->AddRadioButton(HUD_RB_NORMAL, "Facet",
(g_normal == NORMAL_FACET),
-200, 350, callbackNormal, NORMAL_FACET, 'n');
g_hud->AddRadioButton(HUD_RB_NORMAL, "HW Screen space",
(g_normal == NORMAL_HW_SCREENSPACE),
-200, 370, callbackNormal, NORMAL_HW_SCREENSPACE, 'n');
g_hud->AddRadioButton(HUD_RB_NORMAL, "Screen space",
(g_normal == NORMAL_SCREENSPACE),
-200, 390, callbackNormal, NORMAL_SCREENSPACE, 'n');
g_hud->AddRadioButton(HUD_RB_NORMAL, "Biquadratic",
(g_normal == NORMAL_BIQUADRATIC),
-200, 410, callbackNormal, NORMAL_BIQUADRATIC, 'n');
g_hud->AddRadioButton(HUD_RB_NORMAL, "Biquadratic WG",
(g_normal == NORMAL_BIQUADRATIC_WG),
-200, 430, callbackNormal, NORMAL_BIQUADRATIC_WG, 'n');
}
g_hud->AddSlider("Mipmap Bias", 0, 5, 0,
-200, 450, 20, false, callbackSlider, 0);
g_hud->AddSlider("Displacement", 0, 5, 1,
-200, 490, 20, false, callbackSlider, 1);
g_hud->AddCheckBox("Seamless Mipmap", g_seamless,
-200, 530, callbackCheckBox, HUD_CB_SEAMLESS_MIPMAP, 'j');
if (g_osdPTexOcclusion != NULL) {
g_hud->AddCheckBox("Ambient Occlusion (A)", g_occlusion,
250, 10, callbackCheckBox, HUD_CB_DISPLAY_OCCLUSION, 'a');
}
if (g_osdPTexSpecular != NULL)
g_hud->AddCheckBox("Specular (S)", g_specular,
250, 30, callbackCheckBox, HUD_CB_DISPLAY_SPECULAR, 's');
g_hud->AddCheckBox("Animate vertices (M)", g_moveScale != 0.0,
450, 10, callbackCheckBox, HUD_CB_ANIMATE_VERTICES, 'm');
g_hud->AddCheckBox("Screen space LOD (V)", g_screenSpaceTess,
450, 30, callbackCheckBox, HUD_CB_VIEW_LOD, 'v');
g_hud->AddCheckBox("Fractional spacing (T)", g_fractionalSpacing,
450, 50, callbackCheckBox, HUD_CB_FRACTIONAL_SPACING, 't');
g_hud->AddCheckBox("Frustum Patch Culling (B)", g_patchCull,
450, 70, callbackCheckBox, HUD_CB_PATCH_CULL, 'b');
g_hud->AddCheckBox("Freeze (spc)", g_freeze,
450, 90, callbackCheckBox, HUD_CB_FREEZE, ' ');
}
//------------------------------------------------------------------------------
static bool
initD3D11(HWND hWnd) {
D3D_DRIVER_TYPE driverTypes[] = {
D3D_DRIVER_TYPE_HARDWARE,
D3D_DRIVER_TYPE_WARP,
D3D_DRIVER_TYPE_REFERENCE,
};
UINT numDriverTypes = ARRAYSIZE(driverTypes);
DXGI_SWAP_CHAIN_DESC hDXGISwapChainDesc;
hDXGISwapChainDesc.BufferDesc.Width = g_width;
hDXGISwapChainDesc.BufferDesc.Height = g_height;
hDXGISwapChainDesc.BufferDesc.RefreshRate.Numerator = 0;
hDXGISwapChainDesc.BufferDesc.RefreshRate.Denominator = 1;
hDXGISwapChainDesc.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM_SRGB;
hDXGISwapChainDesc.BufferDesc.ScanlineOrdering = DXGI_MODE_SCANLINE_ORDER_UNSPECIFIED;
hDXGISwapChainDesc.BufferDesc.Scaling = DXGI_MODE_SCALING_UNSPECIFIED;
hDXGISwapChainDesc.SampleDesc.Count = 1;
hDXGISwapChainDesc.SampleDesc.Quality = 0;
hDXGISwapChainDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;
hDXGISwapChainDesc.BufferCount = 1;
hDXGISwapChainDesc.OutputWindow = hWnd;
hDXGISwapChainDesc.Windowed = TRUE;
hDXGISwapChainDesc.SwapEffect = DXGI_SWAP_EFFECT_DISCARD;
hDXGISwapChainDesc.Flags = DXGI_SWAP_CHAIN_FLAG_ALLOW_MODE_SWITCH;
// create device and swap chain
HRESULT hr;
D3D_DRIVER_TYPE hDriverType = D3D_DRIVER_TYPE_NULL;
D3D_FEATURE_LEVEL hFeatureLevel = D3D_FEATURE_LEVEL_11_0;
for(UINT driverTypeIndex=0; driverTypeIndex < numDriverTypes; driverTypeIndex++){
hDriverType = driverTypes[driverTypeIndex];
unsigned int deviceFlags = 0;
#ifndef NDEBUG
deviceFlags |= D3D11_CREATE_DEVICE_DEBUG;
#endif
hr = D3D11CreateDeviceAndSwapChain(NULL,
hDriverType, NULL, deviceFlags, NULL, 0,
D3D11_SDK_VERSION, &hDXGISwapChainDesc,
&g_pSwapChain, &g_pd3dDevice,
&hFeatureLevel, &g_pd3dDeviceContext);
if(SUCCEEDED(hr)){
break;
}
}
if(FAILED(hr)){
MessageBoxW(hWnd, L"D3D11CreateDeviceAndSwapChain", L"Err", MB_ICONSTOP);
return false;
}
#ifndef NDEBUG
// set break points on directx errors
ID3D11Debug *d3dDebug = nullptr;
hr = g_pd3dDevice->QueryInterface(__uuidof(ID3D11Debug), (void**)&d3dDebug);
if (SUCCEEDED(hr)) {
ID3D11InfoQueue *d3dInfoQueue = nullptr;
hr = d3dDebug->QueryInterface(__uuidof(ID3D11InfoQueue), (void**)&d3dInfoQueue);
if (SUCCEEDED(hr)) {
d3dInfoQueue->SetBreakOnSeverity(D3D11_MESSAGE_SEVERITY_CORRUPTION, true);
d3dInfoQueue->SetBreakOnSeverity(D3D11_MESSAGE_SEVERITY_ERROR, true);
d3dInfoQueue->SetBreakOnSeverity(D3D11_MESSAGE_SEVERITY_WARNING, true);
D3D11_MESSAGE_ID denied[] = { D3D11_MESSAGE_ID_SETPRIVATEDATA_CHANGINGPARAMS };
D3D11_INFO_QUEUE_FILTER filter;
memset(&filter, 0, sizeof(filter));
filter.DenyList.NumIDs = _countof(denied);
filter.DenyList.pIDList = denied;
d3dInfoQueue->AddStorageFilterEntries(&filter);
d3dInfoQueue->Release();
}
d3dDebug->Release();
}
#endif
// create rasterizer
D3D11_RASTERIZER_DESC rasterDesc;
ZeroMemory(&rasterDesc, sizeof(rasterDesc));
rasterDesc.AntialiasedLineEnable = false;
rasterDesc.CullMode = D3D11_CULL_NONE; // XXX
rasterDesc.DepthBias = 0;
rasterDesc.DepthBiasClamp = 0.0f;
rasterDesc.DepthClipEnable = true;
rasterDesc.FillMode = D3D11_FILL_SOLID;
rasterDesc.FrontCounterClockwise = true;
rasterDesc.MultisampleEnable = false;
rasterDesc.ScissorEnable = false;
rasterDesc.SlopeScaledDepthBias = 0.0f;
g_pd3dDevice->CreateRasterizerState(&rasterDesc, &g_pRasterizerState);
assert(g_pRasterizerState);
__declspec(align(16))
struct Lighting {
struct Light {
float position[4];
float ambient[4];
float diffuse[4];
float specular[4];
} lightSource[2];
} lightingData = {
0.5, 0.2f, 1.0f, 0.0f,
0.1f, 0.1f, 0.1f, 1.0f,
0.7f, 0.7f, 0.7f, 1.0f,
0.8f, 0.8f, 0.8f, 1.0f,
-0.8f, 0.4f, -1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f,
0.5f, 0.5f, 0.5f, 1.0f,
0.8f, 0.8f, 0.8f, 1.0f,
};
D3D11_BUFFER_DESC cbDesc;
ZeroMemory(&cbDesc, sizeof(cbDesc));
cbDesc.Usage = D3D11_USAGE_DYNAMIC;
cbDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
cbDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
cbDesc.MiscFlags = 0;
cbDesc.ByteWidth = sizeof(lightingData);
D3D11_SUBRESOURCE_DATA initData;
initData.pSysMem = &lightingData;
g_pd3dDevice->CreateBuffer(&cbDesc, &initData, &g_pcbLighting);
assert(g_pcbLighting);
// create depth stencil state
D3D11_DEPTH_STENCIL_DESC depthStencilDesc;
ZeroMemory(&depthStencilDesc, sizeof(depthStencilDesc));
depthStencilDesc.DepthEnable = true;
depthStencilDesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ALL;
depthStencilDesc.DepthFunc = D3D11_COMPARISON_LESS_EQUAL;
depthStencilDesc.StencilEnable = false;
g_pd3dDevice->CreateDepthStencilState(&depthStencilDesc, &g_pDepthStencilState);
assert(g_pDepthStencilState);
return true;
}
static bool
updateRenderTarget(HWND hWnd) {
RECT rc;
GetClientRect(hWnd, &rc);
UINT width = rc.right - rc.left;
UINT height = rc.bottom - rc.top;
if (g_pSwapChainRTV && (g_width == width) && (g_height == height)) {
return true;
}
g_width = width;
g_height = height;
g_hud->Rebuild(g_width, g_height);
SAFE_RELEASE(g_pSwapChainRTV);
g_pSwapChain->ResizeBuffers(0, g_width, g_height, DXGI_FORMAT_UNKNOWN, 0);
// get backbuffer of swap chain
ID3D11Texture2D* hpBackBuffer = NULL;
if(FAILED(g_pSwapChain->GetBuffer(0, __uuidof(ID3D11Texture2D), (void**)&hpBackBuffer))){
MessageBoxW(hWnd, L"SwpChain GetBuffer", L"Err", MB_ICONSTOP);
return false;
}
// create render target from the back buffer
if(FAILED(g_pd3dDevice->CreateRenderTargetView(hpBackBuffer, NULL, &g_pSwapChainRTV))){
MessageBoxW(hWnd, L"CreateRenderTargetView", L"Err", MB_ICONSTOP);
return false;
}
SAFE_RELEASE(hpBackBuffer);
// create depth buffer
D3D11_TEXTURE2D_DESC depthBufferDesc;
ZeroMemory(&depthBufferDesc, sizeof(depthBufferDesc));
depthBufferDesc.Width = g_width;
depthBufferDesc.Height = g_height;
depthBufferDesc.MipLevels = 1;
depthBufferDesc.ArraySize = 1;
depthBufferDesc.Format = DXGI_FORMAT_D24_UNORM_S8_UINT;
depthBufferDesc.SampleDesc.Count = 1;
depthBufferDesc.SampleDesc.Quality = 0;
depthBufferDesc.Usage = D3D11_USAGE_DEFAULT;
depthBufferDesc.BindFlags = D3D11_BIND_DEPTH_STENCIL;
depthBufferDesc.CPUAccessFlags = 0;
depthBufferDesc.MiscFlags = 0;
g_pd3dDevice->CreateTexture2D(&depthBufferDesc, NULL, &g_pDepthStencilBuffer);
assert(g_pDepthStencilBuffer);
D3D11_DEPTH_STENCIL_VIEW_DESC depthStencilViewDesc;
ZeroMemory(&depthStencilViewDesc, sizeof(depthStencilViewDesc));
depthStencilViewDesc.Format = DXGI_FORMAT_D24_UNORM_S8_UINT;
depthStencilViewDesc.ViewDimension = D3D11_DSV_DIMENSION_TEXTURE2D;
depthStencilViewDesc.Texture2D.MipSlice = 0;
g_pd3dDevice->CreateDepthStencilView(g_pDepthStencilBuffer, &depthStencilViewDesc, &g_pDepthStencilView);
assert(g_pDepthStencilView);
// set device context to the render target
g_pd3dDeviceContext->OMSetRenderTargets(1, &g_pSwapChainRTV, g_pDepthStencilView);
// init viewport
D3D11_VIEWPORT vp;
vp.TopLeftX = 0;
vp.TopLeftY = 0;
vp.Width = (float)g_width;
vp.Height = (float)g_height;
vp.MinDepth = 0.0f;
vp.MaxDepth = 1.0f;
g_pd3dDeviceContext->RSSetViewports(1, &vp);
return true;
}
//------------------------------------------------------------------------------
static void
callbackError(OpenSubdiv::Far::ErrorType err, const char *message) {
std::ostringstream s;
s << "Error: " << err << "\n";
s << message;
OutputDebugString(s.str().c_str());
}
//------------------------------------------------------------------------------
static LRESULT WINAPI
msgProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam) {
switch(msg)
{
case WM_KEYDOWN:
keyboard(MapVirtualKey(UINT(wParam), MAPVK_VK_TO_CHAR));
break;
case WM_DESTROY:
quit();
return 0;
case WM_MOUSEMOVE:
motion(LOWORD(lParam), HIWORD(lParam));
return 0;
case WM_LBUTTONDOWN:
mouse(0, 1, LOWORD(lParam), HIWORD(lParam));
return 0;
case WM_LBUTTONUP:
mouse(0, 0, LOWORD(lParam), HIWORD(lParam));
return 0;
case WM_MBUTTONDOWN:
mouse(1, 1, LOWORD(lParam), HIWORD(lParam));
return 0;
case WM_MBUTTONUP:
mouse(1, 0, LOWORD(lParam), HIWORD(lParam));
return 0;
case WM_RBUTTONDOWN:
mouse(2, 1, LOWORD(lParam), HIWORD(lParam));
return 0;
case WM_RBUTTONUP:
mouse(2, 0, LOWORD(lParam), HIWORD(lParam));
return 0;
case WM_PAINT:
ValidateRect(hWnd, NULL);
return 0;
}
return DefWindowProc(hWnd, msg, wParam, lParam);
}
static std::vector<std::string>
tokenize(std::string const & src) {
std::vector<std::string> result;
std::stringstream input(src);
std::copy(std::istream_iterator<std::string>(input),
std::istream_iterator<std::string>(),
std::back_inserter< std::vector<std::string> >(result));
return result;
}
int WINAPI
WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow) {
// register window class
TCHAR szWindowClass[] = "OPENSUBDIV_EXAMPLE";
WNDCLASS wcex;
wcex.style = CS_HREDRAW | CS_VREDRAW;
wcex.lpfnWndProc = msgProc;
wcex.cbClsExtra = 0;
wcex.cbWndExtra = 0;
wcex.hInstance = hInstance;
wcex.hIcon = NULL;
wcex.hCursor = LoadCursor(NULL, IDC_ARROW);
wcex.hbrBackground = (HBRUSH)(COLOR_WINDOW+1);
wcex.lpszMenuName = NULL;
wcex.lpszClassName = szWindowClass;
RegisterClass(&wcex);
// crete window
RECT rect = { 0, 0, g_width, g_height };
AdjustWindowRect(&rect, WS_OVERLAPPEDWINDOW, FALSE);
static const char windowTitle[] = "OpenSubdiv dxPtexViewer " OPENSUBDIV_VERSION_STRING;
HWND hWnd = CreateWindow(szWindowClass,
windowTitle,
WS_OVERLAPPEDWINDOW | WS_VISIBLE,
CW_USEDEFAULT,
CW_USEDEFAULT,
rect.right - rect.left,
rect.bottom - rect.top,
NULL,
NULL,
hInstance,
NULL);
std::vector<std::string> argv = tokenize(lpCmdLine);
std::vector<std::string> animobjs;
const char *diffuseEnvironmentMap = NULL, *specularEnvironmentMap = NULL;
const char *colorFilename = NULL, *displacementFilename = NULL,
*occlusionFilename = NULL, *specularFilename = NULL;
for (int i = 0; i < (int)argv.size(); ++i) {
if (strstr(argv[i].c_str(), ".obj"))
animobjs.push_back(argv[i]);
else if (argv[i] == "-l")
g_level = atoi(argv[++i].c_str());
else if (argv[i] == "-c")
g_repeatCount = atoi(argv[++i].c_str());
else if (argv[i] == "-d")
diffuseEnvironmentMap = argv[++i].c_str();
else if (argv[i] == "-e")
specularEnvironmentMap = argv[++i].c_str();
else if (argv[i] == "-y")
g_yup = true;
else if (argv[i] == "-m")
g_maxMipmapLevels = atoi(argv[++i].c_str());
else if (argv[i] == "--disp")
g_displacementScale = (float)atof(argv[++i].c_str());
else if (colorFilename == NULL)
colorFilename = argv[i].c_str();
else if (displacementFilename == NULL) {
displacementFilename = argv[i].c_str();
g_displacement = DISPLACEMENT_BILINEAR;
g_normal = NORMAL_BIQUADRATIC;
} else if (occlusionFilename == NULL) {
occlusionFilename = argv[i].c_str();
g_occlusion = 1;
} else if (specularFilename == NULL) {
specularFilename = argv[i].c_str();
g_specular = 1;
}
}
OpenSubdiv::Far::SetErrorCallback(callbackError);
g_ptexColorFilename = colorFilename;
if (g_ptexColorFilename == NULL) {
printf("Usage: \n");
return 1;
}
initD3D11(hWnd);
createOsdMesh(g_level, g_kernel);
// load ptex files
g_osdPTexImage = createPtex(colorFilename);
if (displacementFilename)
g_osdPTexDisplacement = createPtex(displacementFilename);
if (occlusionFilename)
g_osdPTexOcclusion = createPtex(occlusionFilename);
if (specularFilename)
g_osdPTexSpecular = createPtex(specularFilename);
initHUD();
fitFrame();
// main loop
while (g_bDone == false) {
MSG msg;
ZeroMemory(&msg, sizeof(msg));
while (msg.message != WM_QUIT) {
while (PeekMessage(&msg, NULL, 0U, 0U, PM_REMOVE)) {
if (msg.message == WM_QUIT) goto end;
TranslateMessage(&msg);
DispatchMessage(&msg);
}
if (not g_freeze)
g_frame++;
updateGeom();
updateRenderTarget(hWnd);
display();
}
}
end:
quit();
return 0;
}
//------------------------------------------------------------------------------