OpenSubdiv/examples/dxViewer/dxviewer.cpp
barry 20dcd24b9d Updated all example source for consistent inclusion of header files:
- prepend the opensubdiv directory to all library headers included
    - removed the opensubdiv directory from all declared include paths
2019-01-31 10:49:02 -08:00

1627 lines
54 KiB
C++

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#include <D3D11.h>
#include <D3Dcompiler.h>
#include <opensubdiv/far/error.h>
#include <opensubdiv/osd/cpuD3D11VertexBuffer.h>
#include <opensubdiv/osd/cpuEvaluator.h>
#ifdef OPENSUBDIV_HAS_OPENMP
#include <opensubdiv/osd/ompEvaluator.h>
#endif
#ifdef OPENSUBDIV_HAS_TBB
#include <opensubdiv/osd/tbbEvaluator.h>
#endif
#ifdef OPENSUBDIV_HAS_OPENCL_DX_INTEROP
#include <opensubdiv/osd/clD3D11VertexBuffer.h>
#include <opensubdiv/osd/clEvaluator.h>
#include "../common/clDeviceContext.h"
CLD3D11DeviceContext g_clDeviceContext;
#endif
#ifdef OPENSUBDIV_HAS_CUDA
#include <opensubdiv/osd/cudaD3D11VertexBuffer.h>
#include <opensubdiv/osd/cudaEvaluator.h>
#include "../common/cudaDeviceContext.h"
CudaDeviceContext g_cudaDeviceContext;
#endif
#include <opensubdiv/osd/d3d11VertexBuffer.h>
#include <opensubdiv/osd/d3d11ComputeEvaluator.h>
#include <opensubdiv/osd/d3d11Mesh.h>
#include <opensubdiv/osd/d3d11LegacyGregoryPatchTable.h>
OpenSubdiv::Osd::D3D11MeshInterface *g_mesh = NULL;
OpenSubdiv::Osd::D3D11LegacyGregoryPatchTable *g_legacyGregoryPatchTable = NULL;
#include "../../regression/common/far_utils.h"
#include "../common/stopwatch.h"
#include "../common/simple_math.h"
#include "../common/d3d11ControlMeshDisplay.h"
#include "../common/d3d11Hud.h"
#include "../common/d3d11Utils.h"
#include "../common/d3d11ShaderCache.h"
#include <opensubdiv/osd/hlslPatchShaderSource.h>
static const char *shaderSource =
#include "shader.gen.h"
;
#include <algorithm>
#include <cfloat>
#include <fstream>
#include <iostream>
#include <iterator>
#include <string>
#include <sstream>
#include <vector>
#define SAFE_RELEASE(p) { if(p) { (p)->Release(); (p)=NULL; } }
enum KernelType { kCPU = 0,
kOPENMP = 1,
kTBB = 2,
kCUDA = 3,
kCL = 4,
kDirectCompute = 5 };
enum DisplayStyle { kDisplayStyleWire = 0,
kDisplayStyleShaded,
kDisplayStyleWireOnShaded };
enum ShadingMode { kShadingMaterial,
kShadingPatchType,
kShadingPatchCoord,
kShadingNormal };
enum EndCap { kEndCapNone = 0,
kEndCapBSplineBasis,
kEndCapGregoryBasis,
kEndCapLegacyGregory };
enum HudCheckBox { kHUD_CB_DISPLAY_CONTROL_MESH_EDGES,
kHUD_CB_DISPLAY_CONTROL_MESH_VERTS,
kHUD_CB_ANIMATE_VERTICES,
kHUD_CB_DISPLAY_PATCH_COLOR,
kHUD_CB_DISPLAY_PATCH_CVs,
kHUD_CB_VIEW_LOD,
kHUD_CB_FRACTIONAL_SPACING,
kHUD_CB_PATCH_CULL,
kHUD_CB_FREEZE,
kHUD_CB_DISPLAY_PATCH_COUNTS };
int g_currentShape = 0;
int g_frame = 0,
g_repeatCount = 0;
// GUI variables
int g_freeze = 0,
g_shadingMode = kShadingPatchType,
g_displayStyle = kDisplayStyleWireOnShaded,
g_adaptive = 1,
g_endCap = kEndCapBSplineBasis,
g_singleCreasePatch = 1,
g_infSharpPatch = 0,
g_drawNormals = 0,
g_mbutton[3] = {0, 0, 0};
int g_screenSpaceTess = 1,
g_fractionalSpacing = 1,
g_patchCull = 1,
g_displayPatchCounts = 0;
float g_rotate[2] = {0, 0},
g_prev_x = 0,
g_prev_y = 0,
g_dolly = 5,
g_pan[2] = {0, 0},
g_center[3] = {0, 0, 0},
g_size = 0;
int g_width = 1024,
g_height = 1024;
D3D11hud *g_hud = NULL;
D3D11ControlMeshDisplay *g_controlMeshDisplay = NULL;
float g_modelViewProjectionMatrix[16];
// performance
float g_cpuTime = 0;
float g_gpuTime = 0;
Stopwatch g_fpsTimer;
// geometry
std::vector<float> g_orgPositions,
g_positions;
Scheme g_scheme;
int g_level = 2;
int g_tessLevel = 1;
int g_tessLevelMin = 1;
int g_kernel = kCPU;
float g_moveScale = 0.0f;
ID3D11Device * g_pd3dDevice = NULL;
ID3D11DeviceContext * g_pd3dDeviceContext = NULL;
IDXGISwapChain * g_pSwapChain = NULL;
ID3D11RenderTargetView * g_pSwapChainRTV = NULL;
ID3D11RasterizerState* g_pRasterizerState = NULL;
ID3D11InputLayout* g_pInputLayout = NULL;
ID3D11DepthStencilState* g_pDepthStencilState = NULL;
ID3D11Texture2D * g_pDepthStencilBuffer = NULL;
ID3D11Buffer* g_pcbPerFrame = NULL;
ID3D11Buffer* g_pcbTessellation = NULL;
ID3D11Buffer* g_pcbLighting = NULL;
ID3D11Buffer* g_pcbMaterial = NULL;
ID3D11DepthStencilView* g_pDepthStencilView = NULL;
bool g_bDone;
//------------------------------------------------------------------------------
#include "init_shapes.h"
//------------------------------------------------------------------------------
static void
updateGeom() {
int nverts = (int)g_orgPositions.size() / 3;
std::vector<float> vertex;
vertex.reserve(nverts*6);
const float *p = &g_orgPositions[0];
float r = sin(g_frame*0.001f) * g_moveScale;
for (int i = 0; i < nverts; ++i) {
float move = 0.05f*cosf(p[0]*20+g_frame*0.01f);
float ct = cos(p[2] * r);
float st = sin(p[2] * r);
g_positions[i*3+0] = p[0]*ct + p[1]*st;
g_positions[i*3+1] = -p[0]*st + p[1]*ct;
g_positions[i*3+2] = p[2];
p += 3;
}
p = &g_positions[0];
for (int i = 0; i < nverts; ++i) {
vertex.push_back(p[0]);
vertex.push_back(p[1]);
vertex.push_back(p[2]);
vertex.push_back(0.0f); // normal
vertex.push_back(0.0f);
vertex.push_back(0.0f);
p += 3;
}
g_mesh->UpdateVertexBuffer(&vertex[0], 0, nverts);
Stopwatch s;
s.Start();
g_mesh->Refine();
s.Stop();
g_cpuTime = float(s.GetElapsed() * 1000.0f);
s.Start();
g_mesh->Synchronize();
s.Stop();
g_gpuTime = float(s.GetElapsed() * 1000.0f);
}
//------------------------------------------------------------------------------
static const char *
getKernelName(int kernel) {
if (kernel == kCPU)
return "CPU";
else if (kernel == kOPENMP)
return "OpenMP";
else if (kernel == kTBB)
return "TBB";
else if (kernel == kCUDA)
return "Cuda";
else if (kernel == kCL)
return "OpenCL";
else if (kernel == kDirectCompute)
return "DirectCompute";
return "Unknown";
}
//------------------------------------------------------------------------------
static void
createOsdMesh(ShapeDesc const & shapeDesc, int level, int kernel, Scheme scheme=kCatmark) {
using namespace OpenSubdiv;
typedef Far::ConstIndexArray IndexArray;
Shape * shape = Shape::parseObj(shapeDesc.data.c_str(), shapeDesc.scheme);
// create Far mesh (topology)
Sdc::SchemeType sdctype = GetSdcType(*shape);
Sdc::Options sdcoptions = GetSdcOptions(*shape);
Far::TopologyRefiner * refiner =
Far::TopologyRefinerFactory<Shape>::Create(*shape,
Far::TopologyRefinerFactory<Shape>::Options(sdctype, sdcoptions));
// save coarse topology (used for coarse mesh drawing)
Far::TopologyLevel const & refBaseLevel = refiner->GetLevel(0);
g_controlMeshDisplay->SetTopology(refBaseLevel);
int nverts = refBaseLevel.GetNumVertices();
g_orgPositions=shape->verts;
g_positions.resize(g_orgPositions.size(),0.0f);
delete g_mesh;
g_mesh = NULL;
g_scheme = scheme;
// Adaptive refinement currently supported only for catmull-clark scheme
bool doAdaptive = (g_adaptive!=0 && g_scheme==kCatmark),
doSingleCreasePatch = (g_singleCreasePatch!=0 && g_scheme==kCatmark),
doInfSharpPatch = (g_infSharpPatch!=0 && g_scheme==kCatmark);
Osd::MeshBitset bits;
bits.set(Osd::MeshAdaptive, doAdaptive);
bits.set(Osd::MeshUseSingleCreasePatch, doSingleCreasePatch);
bits.set(Osd::MeshUseInfSharpPatch, doInfSharpPatch);
bits.set(Osd::MeshEndCapBSplineBasis, g_endCap == kEndCapBSplineBasis);
bits.set(Osd::MeshEndCapGregoryBasis, g_endCap == kEndCapGregoryBasis);
bits.set(Osd::MeshEndCapLegacyGregory, g_endCap == kEndCapLegacyGregory);
int numVertexElements = 6;
int numVaryingElements = 0;
if (g_kernel == kCPU) {
g_mesh = new Osd::Mesh<Osd::CpuD3D11VertexBuffer,
Far::StencilTable,
Osd::CpuEvaluator,
Osd::D3D11PatchTable,
ID3D11DeviceContext>(
refiner,
numVertexElements,
numVaryingElements,
level, bits, NULL, g_pd3dDeviceContext);
#ifdef OPENSUBDIV_HAS_OPENMP
} else if (kernel == kOPENMP) {
g_mesh = new Osd::Mesh<Osd::CpuD3D11VertexBuffer,
Far::StencilTable,
Osd::OmpEvaluator,
Osd::D3D11PatchTable,
ID3D11DeviceContext>(
refiner,
numVertexElements,
numVaryingElements,
level, bits, NULL, g_pd3dDeviceContext);
#endif
#ifdef OPENSUBDIV_HAS_TBB
} else if (kernel == kTBB) {
g_mesh = new Osd::Mesh<Osd::CpuD3D11VertexBuffer,
Far::StencilTable,
Osd::TbbEvaluator,
Osd::D3D11PatchTable,
ID3D11DeviceContext>(
refiner,
numVertexElements,
numVaryingElements,
level, bits, NULL, g_pd3dDeviceContext);
#endif
#ifdef OPENSUBDIV_HAS_OPENCL_DX_INTEROP
} else if(kernel == kCL) {
static Osd::EvaluatorCacheT<Osd::CLEvaluator> clEvaluatorCache;
g_mesh = new Osd::Mesh<Osd::CLD3D11VertexBuffer,
Osd::CLStencilTable,
Osd::CLEvaluator,
Osd::D3D11PatchTable,
CLD3D11DeviceContext>(
refiner,
numVertexElements,
numVaryingElements,
level, bits,
&clEvaluatorCache,
&g_clDeviceContext);
#endif
#ifdef OPENSUBDIV_HAS_CUDA
} else if (g_kernel == kCUDA) {
g_mesh = new Osd::Mesh<Osd::CudaD3D11VertexBuffer,
Osd::CudaStencilTable,
Osd::CudaEvaluator,
Osd::D3D11PatchTable,
ID3D11DeviceContext>(
refiner,
numVertexElements,
numVaryingElements,
level, bits, NULL, g_pd3dDeviceContext);
#endif
} else if (g_kernel == kDirectCompute) {
static Osd::EvaluatorCacheT<Osd::D3D11ComputeEvaluator> d3d11ComputeEvaluatorCache;
g_mesh = new Osd::Mesh<Osd::D3D11VertexBuffer,
Osd::D3D11StencilTable,
Osd::D3D11ComputeEvaluator,
Osd::D3D11PatchTable,
ID3D11DeviceContext>(
refiner,
numVertexElements,
numVaryingElements,
level, bits,
&d3d11ComputeEvaluatorCache,
g_pd3dDeviceContext);
} else {
printf("Unsupported kernel %s\n", getKernelName(kernel));
}
// legacy gregory
delete g_legacyGregoryPatchTable;
g_legacyGregoryPatchTable = NULL;
if (g_endCap == kEndCapLegacyGregory) {
g_legacyGregoryPatchTable =
Osd::D3D11LegacyGregoryPatchTable::Create(
g_mesh->GetFarPatchTable(), g_pd3dDeviceContext);
}
// compute model bounding
float min[3] = { FLT_MAX, FLT_MAX, FLT_MAX};
float max[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX};
for (size_t i=0; i <g_orgPositions.size()/3; ++i) {
for(int j=0; j<3; ++j) {
float v = g_orgPositions[i*3+j];
min[j] = std::min(min[j], v);
max[j] = std::max(max[j], v);
}
}
for (int j=0; j<3; ++j) {
g_center[j] = (min[j] + max[j]) * 0.5f;
g_size += (max[j]-min[j])*(max[j]-min[j]);
}
g_size = sqrtf(g_size);
g_tessLevelMin = 1;
g_tessLevel = std::max(g_tessLevel,g_tessLevelMin);
updateGeom();
}
//------------------------------------------------------------------------------
static void
fitFrame() {
g_pan[0] = g_pan[1] = 0;
g_dolly = g_size;
}
//------------------------------------------------------------------------------
union Effect {
Effect(int displayStyle_, int shadingMode_, int screenSpaceTess_,
int fractionalSpacing_, int patchCull_, int singleCreasePatch_)
: value(0) {
displayStyle = displayStyle_;
shadingMode = shadingMode_;
screenSpaceTess = screenSpaceTess_;
fractionalSpacing = fractionalSpacing_;
patchCull = patchCull_;
singleCreasePatch = singleCreasePatch_;
}
struct {
unsigned int displayStyle:2;
unsigned int shadingMode:4;
unsigned int screenSpaceTess:1;
unsigned int fractionalSpacing:1;
unsigned int patchCull:1;
unsigned int singleCreasePatch:1;
};
int value;
bool operator < (const Effect &e) const {
return value < e.value;
}
};
struct EffectDesc {
EffectDesc(OpenSubdiv::Far::PatchDescriptor desc,
Effect effect) : desc(desc), effect(effect),
maxValence(0), numElements(0) { }
OpenSubdiv::Far::PatchDescriptor desc;
Effect effect;
int maxValence;
int numElements;
bool operator < (const EffectDesc &e) const {
return
(desc < e.desc || ((desc == e.desc &&
(maxValence < e.maxValence || ((maxValence == e.maxValence) &&
(numElements < e.numElements || ((numElements == e.numElements) &&
(effect < e.effect))))))));
}
};
static Effect
GetEffect()
{
return Effect(g_displayStyle,
g_shadingMode,
g_screenSpaceTess,
g_fractionalSpacing,
g_patchCull,
g_singleCreasePatch);
}
// ---------------------------------------------------------------------------
class ShaderCache : public D3D11ShaderCache<EffectDesc> {
public:
virtual D3D11DrawConfig *CreateDrawConfig(EffectDesc const &effectDesc) {
using namespace OpenSubdiv;
D3D11DrawConfig *config = new D3D11DrawConfig();
Far::PatchDescriptor::Type type = effectDesc.desc.GetType();
// common defines
std::stringstream ss;
if (type == Far::PatchDescriptor::QUADS) {
ss << "#define PRIM_QUAD\n";
} else {
ss << "#define PRIM_TRI\n";
}
// OSD tessellation controls
if (effectDesc.effect.screenSpaceTess) {
ss << "#define OSD_ENABLE_SCREENSPACE_TESSELLATION\n";
}
if (effectDesc.effect.fractionalSpacing) {
ss << "#define OSD_FRACTIONAL_ODD_SPACING\n";
}
if (effectDesc.effect.patchCull) {
ss << "#define OSD_ENABLE_PATCH_CULL\n";
}
if (effectDesc.effect.singleCreasePatch) {
ss << "#define OSD_PATCH_ENABLE_SINGLE_CREASE\n";
}
// for legacy gregory
ss << "#define OSD_MAX_VALENCE " << effectDesc.maxValence << "\n";
ss << "#define OSD_NUM_ELEMENTS " << effectDesc.numElements << "\n";
// display styles
std::string gs_entry =
(type == Far::PatchDescriptor::QUADS ? "gs_quad" : "gs_triangle");
if (effectDesc.desc.IsAdaptive()) gs_entry += "_smooth";
switch (effectDesc.effect.displayStyle) {
case kDisplayStyleWire:
ss << "#define GEOMETRY_OUT_WIRE\n";
gs_entry = gs_entry + "_wire";
break;
case kDisplayStyleWireOnShaded:
ss << "#define GEOMETRY_OUT_LINE\n";
gs_entry = gs_entry + "_wire";
break;
case kDisplayStyleShaded:
ss << "#define GEOMETRY_OUT_FILL\n";
break;
}
// shading mode
switch(effectDesc.effect.shadingMode) {
case kShadingMaterial:
ss << "#define SHADING_MATERIAL\n";
break;
case kShadingPatchType:
ss << "#define SHADING_PATCH_TYPE\n";
break;
case kShadingPatchCoord:
ss << "#define SHADING_PATCH_COORD\n";
break;
case kShadingNormal:
ss << "#define SHADING_NORMAL\n";
break;
}
// need for patch color-coding : we need these defines in the fragment shader
if (type == Far::PatchDescriptor::GREGORY) {
ss << "#define OSD_PATCH_GREGORY\n";
} else if (type == Far::PatchDescriptor::GREGORY_BOUNDARY) {
ss << "#define OSD_PATCH_GREGORY_BOUNDARY\n";
} else if (type == Far::PatchDescriptor::GREGORY_BASIS) {
ss << "#define OSD_PATCH_GREGORY_BASIS\n";
}
// include osd PatchCommon
ss << "#define OSD_PATCH_BASIS_HLSL\n";
ss << Osd::HLSLPatchShaderSource::GetPatchBasisShaderSource();
ss << Osd::HLSLPatchShaderSource::GetCommonShaderSource();
std::string common = ss.str();
ss.str("");
// input layout
const D3D11_INPUT_ELEMENT_DESC hInElementDesc[] = {
{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 4*3, D3D11_INPUT_PER_VERTEX_DATA, 0 }
};
// vertex shader
ss << common
<< shaderSource
<< Osd::HLSLPatchShaderSource::GetVertexShaderSource(type);
if (effectDesc.desc.IsAdaptive()) {
config->CompileVertexShader("vs_5_0", "vs_main_patches", ss.str(),
&g_pInputLayout,
hInElementDesc,
ARRAYSIZE(hInElementDesc),
g_pd3dDevice);
} else {
config->CompileVertexShader("vs_5_0", "vs_main",
ss.str(),
&g_pInputLayout,
hInElementDesc,
ARRAYSIZE(hInElementDesc),
g_pd3dDevice);
}
ss.str("");
if (effectDesc.desc.IsAdaptive()) {
// hull shader
ss << common
<< shaderSource
<< Osd::HLSLPatchShaderSource::GetHullShaderSource(type);
config->CompileHullShader("hs_5_0", "hs_main_patches", ss.str(),
g_pd3dDevice);
ss.str("");
// domain shader
ss << common
<< shaderSource
<< Osd::HLSLPatchShaderSource::GetDomainShaderSource(type);
config->CompileDomainShader("ds_5_0", "ds_main_patches", ss.str(),
g_pd3dDevice);
ss.str("");
}
// geometry shader
ss << common
<< shaderSource;
config->CompileGeometryShader("gs_5_0", gs_entry,
ss.str(),
g_pd3dDevice);
ss.str("");
// pixel shader
ss << common
<< shaderSource;
config->CompilePixelShader("ps_5_0", "ps_main", ss.str(),
g_pd3dDevice);
ss.str("");
return config;
};
};
ShaderCache g_shaderCache;
//------------------------------------------------------------------------------
static void
bindProgram(Effect effect, OpenSubdiv::Osd::PatchArray const & patch) {
EffectDesc effectDesc(patch.GetDescriptor(), effect);
typedef OpenSubdiv::Far::PatchDescriptor Descriptor;
// only legacy gregory needs maxValence and numElements
// neither legacy gregory nor gregory basis need single crease
if (patch.GetDescriptor().GetType() == Descriptor::GREGORY ||
patch.GetDescriptor().GetType() == Descriptor::GREGORY_BOUNDARY) {
int maxValence = g_mesh->GetMaxValence();
int numElements = 6;
effectDesc.maxValence = maxValence;
effectDesc.numElements = numElements;
// note: singleCreasePatch needs to be left defined for the patchParam
// datatype consistency.
}
D3D11DrawConfig *config = g_shaderCache.GetDrawConfig(effectDesc);
assert(g_pInputLayout);
// Update transform state
{
__declspec(align(16))
struct CB_PER_FRAME_CONSTANTS
{
float ModelViewMatrix[16];
float ProjectionMatrix[16];
float ModelViewProjectionMatrix[16];
float ModelViewInverseMatrix[16];
};
if (! g_pcbPerFrame) {
D3D11_BUFFER_DESC cbDesc;
ZeroMemory(&cbDesc, sizeof(cbDesc));
cbDesc.Usage = D3D11_USAGE_DYNAMIC;
cbDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
cbDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
cbDesc.MiscFlags = 0;
cbDesc.ByteWidth = sizeof(CB_PER_FRAME_CONSTANTS);
g_pd3dDevice->CreateBuffer(&cbDesc, NULL, &g_pcbPerFrame);
}
assert(g_pcbPerFrame);
D3D11_MAPPED_SUBRESOURCE MappedResource;
g_pd3dDeviceContext->Map(g_pcbPerFrame, 0, D3D11_MAP_WRITE_DISCARD, 0, &MappedResource);
CB_PER_FRAME_CONSTANTS* pData = ( CB_PER_FRAME_CONSTANTS* )MappedResource.pData;
float aspect = (g_height > 0) ? (float)g_width / g_height : 1.0f;
identity(pData->ModelViewMatrix);
translate(pData->ModelViewMatrix, -g_pan[0], -g_pan[1], -g_dolly);
rotate(pData->ModelViewMatrix, g_rotate[1], 1, 0, 0);
rotate(pData->ModelViewMatrix, g_rotate[0], 0, 1, 0);
translate(pData->ModelViewMatrix, -g_center[0], -g_center[2], g_center[1]); // z-up model
rotate(pData->ModelViewMatrix, -90, 1, 0, 0); // z-up model
inverseMatrix(pData->ModelViewInverseMatrix, pData->ModelViewMatrix);
identity(pData->ProjectionMatrix);
perspective(pData->ProjectionMatrix, 45.0, aspect, 0.01f, 500.0);
multMatrix(pData->ModelViewProjectionMatrix, pData->ModelViewMatrix, pData->ProjectionMatrix);
memcpy(g_modelViewProjectionMatrix, pData->ModelViewProjectionMatrix, sizeof(float) * 16);
g_pd3dDeviceContext->Unmap( g_pcbPerFrame, 0 );
}
// Update tessellation state
{
__declspec(align(16))
struct Tessellation {
float TessLevel;
int GregoryQuadOffsetBase;
int PrimitiveIdBase;
};
if (! g_pcbTessellation) {
D3D11_BUFFER_DESC cbDesc;
ZeroMemory(&cbDesc, sizeof(cbDesc));
cbDesc.Usage = D3D11_USAGE_DYNAMIC;
cbDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
cbDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
cbDesc.MiscFlags = 0;
cbDesc.ByteWidth = sizeof(Tessellation);
g_pd3dDevice->CreateBuffer(&cbDesc, NULL, &g_pcbTessellation);
}
assert(g_pcbTessellation);
D3D11_MAPPED_SUBRESOURCE MappedResource;
g_pd3dDeviceContext->Map(g_pcbTessellation, 0, D3D11_MAP_WRITE_DISCARD, 0, &MappedResource);
Tessellation * pData = ( Tessellation* )MappedResource.pData;
pData->TessLevel = static_cast<float>(1 << g_tessLevel);
pData->GregoryQuadOffsetBase = g_legacyGregoryPatchTable ?
g_legacyGregoryPatchTable->GetQuadOffsetsBase(patch.GetDescriptor().GetType()) : 0;
pData->PrimitiveIdBase = patch.GetPrimitiveIdBase();
g_pd3dDeviceContext->Unmap( g_pcbTessellation, 0 );
}
// Update material state
{
__declspec(align(16))
struct Material {
float color[4];
};
if (! g_pcbMaterial) {
D3D11_BUFFER_DESC cbDesc;
ZeroMemory(&cbDesc, sizeof(cbDesc));
cbDesc.Usage = D3D11_USAGE_DYNAMIC;
cbDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
cbDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
cbDesc.MiscFlags = 0;
cbDesc.ByteWidth = sizeof(Material);
g_pd3dDevice->CreateBuffer(&cbDesc, NULL, &g_pcbMaterial);
}
assert(g_pcbMaterial);
D3D11_MAPPED_SUBRESOURCE MappedResource;
g_pd3dDeviceContext->Map(g_pcbMaterial, 0, D3D11_MAP_WRITE_DISCARD, 0, &MappedResource);
Material * pData = ( Material* )MappedResource.pData;
static float const uniformColor[4] = {0.13f, 0.13f, 0.61f, 1.0f};
memcpy(pData->color, uniformColor, 4*sizeof(float));
g_pd3dDeviceContext->Unmap( g_pcbMaterial, 0 );
}
g_pd3dDeviceContext->IASetInputLayout(g_pInputLayout);
g_pd3dDeviceContext->VSSetShader(config->GetVertexShader(), NULL, 0);
g_pd3dDeviceContext->VSSetConstantBuffers(0, 1, &g_pcbPerFrame);
g_pd3dDeviceContext->HSSetShader(config->GetHullShader(), NULL, 0);
g_pd3dDeviceContext->HSSetConstantBuffers(0, 1, &g_pcbPerFrame);
g_pd3dDeviceContext->HSSetConstantBuffers(1, 1, &g_pcbTessellation);
g_pd3dDeviceContext->DSSetShader(config->GetDomainShader(), NULL, 0);
g_pd3dDeviceContext->DSSetConstantBuffers(0, 1, &g_pcbPerFrame);
g_pd3dDeviceContext->GSSetShader(config->GetGeometryShader(), NULL, 0);
g_pd3dDeviceContext->GSSetConstantBuffers(0, 1, &g_pcbPerFrame);
g_pd3dDeviceContext->PSSetShader(config->GetPixelShader(), NULL, 0);
g_pd3dDeviceContext->PSSetConstantBuffers(0, 1, &g_pcbPerFrame);
g_pd3dDeviceContext->PSSetConstantBuffers(2, 1, &g_pcbLighting);
g_pd3dDeviceContext->PSSetConstantBuffers(3, 1, &g_pcbMaterial);
ID3D11ShaderResourceView *srv = g_mesh->GetPatchTable()->GetPatchParamSRV();
if (srv) {
g_pd3dDeviceContext->HSSetShaderResources(0, 1, &srv); // t0
g_pd3dDeviceContext->DSSetShaderResources(0, 1, &srv);
g_pd3dDeviceContext->PSSetShaderResources(0, 1, &srv);
}
if (g_legacyGregoryPatchTable) {
ID3D11ShaderResourceView *vertexSRV =
g_legacyGregoryPatchTable->GetVertexSRV();
ID3D11ShaderResourceView *vertexValenceSRV =
g_legacyGregoryPatchTable->GetVertexValenceSRV();
ID3D11ShaderResourceView *quadOffsetsSRV =
g_legacyGregoryPatchTable->GetQuadOffsetsSRV();
g_pd3dDeviceContext->VSSetShaderResources(2, 1, &vertexSRV); // t2
g_pd3dDeviceContext->VSSetShaderResources(3, 1, &vertexValenceSRV);// t3
g_pd3dDeviceContext->HSSetShaderResources(4, 1, &quadOffsetsSRV); // t4
}
}
//------------------------------------------------------------------------------
static void
display() {
float color[4] = {0.006f, 0.006f, 0.006f, 1.0f};
g_pd3dDeviceContext->ClearRenderTargetView(g_pSwapChainRTV, color);
// Clear the depth buffer.
g_pd3dDeviceContext->ClearDepthStencilView(g_pDepthStencilView, D3D11_CLEAR_DEPTH, 1.0f, 0);
g_pd3dDeviceContext->OMSetDepthStencilState(g_pDepthStencilState, 1);
g_pd3dDeviceContext->RSSetState(g_pRasterizerState);
ID3D11Buffer *buffer = g_mesh->BindVertexBuffer();
assert(buffer);
// vertex texture update for legacy gregory drawing
if (g_legacyGregoryPatchTable) {
g_legacyGregoryPatchTable->UpdateVertexBuffer(buffer,
g_mesh->GetNumVertices(),
6,
g_pd3dDeviceContext);
}
UINT hStrides = 6*sizeof(float);
UINT hOffsets = 0;
g_pd3dDeviceContext->IASetVertexBuffers(0, 1, &buffer, &hStrides, &hOffsets);
OpenSubdiv::Osd::PatchArrayVector const & patches =
g_mesh->GetPatchTable()->GetPatchArrays();
g_pd3dDeviceContext->IASetIndexBuffer(
g_mesh->GetPatchTable()->GetPatchIndexBuffer(), DXGI_FORMAT_R32_UINT, 0);
// patch drawing
int patchCount[12]; // [Type] (see far/patchTable.h)
int numTotalPatches = 0;
int numDrawCalls = 0;
for (int i=0; i<(int)patches.size(); ++i) {
OpenSubdiv::Osd::PatchArray const & patch = patches[i];
OpenSubdiv::Far::PatchDescriptor desc = patch.GetDescriptor();
OpenSubdiv::Far::PatchDescriptor::Type patchType = desc.GetType();
patchCount[patchType] += patch.GetNumPatches();
numTotalPatches += patch.GetNumPatches();
D3D11_PRIMITIVE_TOPOLOGY topology;
switch (patchType) {
case OpenSubdiv::Far::PatchDescriptor::TRIANGLES:
topology = D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST;
break;
case OpenSubdiv::Far::PatchDescriptor::QUADS:
topology = D3D11_PRIMITIVE_TOPOLOGY_LINELIST_ADJ;
break;
default:
switch (desc.GetNumControlVertices()) {
case 4:
topology = D3D11_PRIMITIVE_TOPOLOGY_4_CONTROL_POINT_PATCHLIST;
break;
case 9:
topology = D3D11_PRIMITIVE_TOPOLOGY_9_CONTROL_POINT_PATCHLIST;
break;
case 12:
topology = D3D11_PRIMITIVE_TOPOLOGY_12_CONTROL_POINT_PATCHLIST;
break;
case 16:
topology = D3D11_PRIMITIVE_TOPOLOGY_16_CONTROL_POINT_PATCHLIST;
break;
case 20:
topology = D3D11_PRIMITIVE_TOPOLOGY_20_CONTROL_POINT_PATCHLIST;
break;
default:
assert(false);
break;
}
break;
}
bindProgram(GetEffect(), patch);
g_pd3dDeviceContext->IASetPrimitiveTopology(topology);
g_pd3dDeviceContext->DrawIndexed(
patch.GetNumPatches() * desc.GetNumControlVertices(),
patch.GetIndexBase(), 0);
}
// draw the control mesh
g_controlMeshDisplay->Draw(buffer, 6, g_modelViewProjectionMatrix);
g_fpsTimer.Stop();
float elapsed = (float)g_fpsTimer.GetElapsed();
g_fpsTimer.Start();
if (g_hud->IsVisible()) {
typedef OpenSubdiv::Far::PatchDescriptor Descriptor;
double fps = 1.0/g_fpsTimer.GetElapsed();
if (g_displayPatchCounts) {
int x = -280;
int y = -180;
g_hud->DrawString(x, y, "NonPatch : %d",
patchCount[Descriptor::QUADS]); y += 20;
g_hud->DrawString(x, y, "Regular : %d",
patchCount[Descriptor::REGULAR]); y+= 20;
g_hud->DrawString(x, y, "Gregory : %d",
patchCount[Descriptor::GREGORY]); y+= 20;
g_hud->DrawString(x, y, "Boundary Gregory : %d",
patchCount[Descriptor::GREGORY_BOUNDARY]); y+= 20;
g_hud->DrawString(x, y, "Gregory Basis : %d",
patchCount[Descriptor::GREGORY_BASIS]); y+= 20;
}
g_hud->DrawString(10, -120, "Tess level : %d", g_tessLevel);
g_hud->DrawString(10, -100, "Control Vertices = %d", g_mesh->GetNumVertices());
g_hud->DrawString(10, -80, "Scheme = %s", g_scheme==kBilinear ? "BILINEAR" : (g_scheme == kLoop ? "LOOP" : "CATMARK"));
g_hud->DrawString(10, -60, "GPU TIME = %.3f ms", g_gpuTime);
g_hud->DrawString(10, -40, "CPU TIME = %.3f ms", g_cpuTime);
g_hud->DrawString(10, -20, "FPS = %3.1f", fps);
g_hud->Flush();
}
g_pSwapChain->Present(0, 0);
}
//------------------------------------------------------------------------------
static void
motion(int x, int y) {
if (g_mbutton[0] && !g_mbutton[1] && !g_mbutton[2]) {
// orbit
g_rotate[0] += x - g_prev_x;
g_rotate[1] += y - g_prev_y;
} else if (!g_mbutton[0] && g_mbutton[1] && !g_mbutton[2]) {
// pan
g_pan[0] -= g_dolly*(x - g_prev_x)/g_width;
g_pan[1] += g_dolly*(y - g_prev_y)/g_height;
} else if ((g_mbutton[0] && g_mbutton[1] && !g_mbutton[2]) ||
(!g_mbutton[0] && !g_mbutton[1] && g_mbutton[2])) {
// dolly
g_dolly -= g_dolly*0.01f*(x - g_prev_x);
if(g_dolly <= 0.01) g_dolly = 0.01f;
}
g_prev_x = float(x);
g_prev_y = float(y);
}
//------------------------------------------------------------------------------
static void
mouse(int button, int state, int x, int y) {
if (button == 0 && state == 1 && g_hud->MouseClick(x, y)) return;
if (button < 3) {
g_prev_x = float(x);
g_prev_y = float(y);
g_mbutton[button] = state;
}
}
//-----------------------------------------------------------------------------
static void
quit() {
g_bDone = true;
if (g_mesh)
delete g_mesh;
if (g_hud)
delete g_hud;
if (g_controlMeshDisplay)
delete g_controlMeshDisplay;
SAFE_RELEASE(g_pRasterizerState);
SAFE_RELEASE(g_pInputLayout);
SAFE_RELEASE(g_pDepthStencilState);
SAFE_RELEASE(g_pcbPerFrame);
SAFE_RELEASE(g_pcbTessellation);
SAFE_RELEASE(g_pcbLighting);
SAFE_RELEASE(g_pcbMaterial);
SAFE_RELEASE(g_pDepthStencilView);
SAFE_RELEASE(g_pSwapChainRTV);
SAFE_RELEASE(g_pSwapChain);
SAFE_RELEASE(g_pd3dDeviceContext);
SAFE_RELEASE(g_pd3dDevice);
PostQuitMessage(0);
exit(0);
}
//------------------------------------------------------------------------------
static void
keyboard(char key) {
if (g_hud->KeyDown((int)key)) return;
switch (key) {
case 'Q': quit();
case 'F': fitFrame(); break;
case '+':
case '=': g_tessLevel++; break;
case '-': g_tessLevel = std::max(g_tessLevelMin, g_tessLevel-1); break;
case 0x1b: g_hud->SetVisible(!g_hud->IsVisible()); break;
}
}
//------------------------------------------------------------------------------
static void
rebuildOsdMesh() {
createOsdMesh( g_defaultShapes[ g_currentShape ], g_level, g_kernel, g_defaultShapes[ g_currentShape ].scheme );
}
static void
callbackDisplayStyle(int b) {
g_displayStyle = b;
}
static void
callbackEndCap(int endCap) {
g_endCap = endCap;
rebuildOsdMesh();
}
static void
callbackKernel(int k) {
g_kernel = k;
#ifdef OPENSUBDIV_HAS_OPENCL_DX_INTEROP
if (g_kernel == kCL && (!g_clDeviceContext.IsInitialized())) {
if (g_clDeviceContext.Initialize(g_pd3dDeviceContext) == false) {
printf("Error in initializing OpenCL\n");
exit(1);
}
}
#endif
#ifdef OPENSUBDIV_HAS_CUDA
if (g_kernel == kCUDA && (!g_cudaDeviceContext.IsInitialized())) {
if (g_cudaDeviceContext.Initialize(g_pd3dDevice) == false) {
printf("Error in initializing Cuda\n");
exit(1);
}
}
#endif
rebuildOsdMesh();
}
static void
callbackLevel(int l) {
g_level = l;
rebuildOsdMesh();
}
static void
callbackModel(int m) {
if (m < 0) {
m = 0;
}
if (m >= (int)g_defaultShapes.size()) {
m = (int)g_defaultShapes.size() - 1;
}
g_currentShape = m;
rebuildOsdMesh();
}
static void
callbackDisplayNormal(bool checked, int n) {
g_drawNormals = checked;
}
static void
callbackShadingMode(int b) {
g_shadingMode = b;
}
static void
callbackAnimate(bool checked, int m) {
g_moveScale = checked;
}
static void
callbackFreeze(bool checked, int f) {
g_freeze = checked;
}
static void
callbackAdaptive(bool checked, int a) {
g_adaptive = checked;
rebuildOsdMesh();
}
static void
callbackSingleCreasePatch(bool checked, int /* a */) {
g_singleCreasePatch = checked;
rebuildOsdMesh();
}
static void
callbackInfSharpPatch(bool checked, int /* a */) {
g_infSharpPatch = checked;
rebuildOsdMesh();
}
static void
callbackCheckBox(bool checked, int button) {
switch (button) {
case kHUD_CB_DISPLAY_CONTROL_MESH_EDGES:
g_controlMeshDisplay->SetEdgesDisplay(checked);
break;
case kHUD_CB_DISPLAY_CONTROL_MESH_VERTS:
g_controlMeshDisplay->SetVerticesDisplay(checked);
break;
case kHUD_CB_ANIMATE_VERTICES:
g_moveScale = checked;
break;
case kHUD_CB_VIEW_LOD:
g_screenSpaceTess = checked;
break;
case kHUD_CB_FRACTIONAL_SPACING:
g_fractionalSpacing = checked;
break;
case kHUD_CB_PATCH_CULL:
g_patchCull = checked;
break;
case kHUD_CB_FREEZE:
g_freeze = checked;
break;
case kHUD_CB_DISPLAY_PATCH_COUNTS:
g_displayPatchCounts = checked;
break;
}
}
static void
initHUD() {
g_hud = new D3D11hud(g_pd3dDeviceContext);
g_hud->Init(g_width, g_height);
int compute_pulldown = g_hud->AddPullDown("Compute (K)", 475, 10, 300, callbackKernel, 'K');
g_hud->AddPullDownButton(compute_pulldown, "CPU", kCPU);
#ifdef OPENSUBDIV_HAS_OPENMP
g_hud->AddPullDownButton(compute_pulldown, "OpenMP", kOPENMP);
#endif
#ifdef OPENSUBDIV_HAS_TBB
g_hud->AddPullDownButton(compute_pulldown, "TBB", kTBB);
#endif
#ifdef OPENSUBDIV_HAS_CUDA
g_hud->AddPullDownButton(compute_pulldown, "CUDA", kCUDA);
#endif
#ifdef OPENSUBDIV_HAS_OPENCL_DX_INTEROP
if (CLDeviceContext::HAS_CL_VERSION_1_1()) {
g_hud->AddPullDownButton(compute_pulldown, "OpenCL", kCL);
}
#endif
g_hud->AddPullDownButton(compute_pulldown, "HLSL Compute", kDirectCompute);
int displaystyle_pulldown = g_hud->AddPullDown("DisplayStyle (W)", 200, 10, 250,
callbackDisplayStyle, 'W');
g_hud->AddPullDownButton(displaystyle_pulldown, "Wire", kDisplayStyleWire,
g_displayStyle == kDisplayStyleWire);
g_hud->AddPullDownButton(displaystyle_pulldown, "Shaded", kDisplayStyleShaded,
g_displayStyle == kDisplayStyleShaded);
g_hud->AddPullDownButton(displaystyle_pulldown, "Wire+Shaded", kDisplayStyleWireOnShaded,
g_displayStyle == kDisplayStyleWireOnShaded);
int shading_pulldown = g_hud->AddPullDown("Shading (C)", 200, 70, 250,
callbackShadingMode, 'C');
g_hud->AddPullDownButton(shading_pulldown, "Material",
kShadingMaterial,
g_shadingMode == kShadingMaterial);
g_hud->AddPullDownButton(shading_pulldown, "Patch Type",
kShadingPatchType,
g_shadingMode == kShadingPatchType);
g_hud->AddPullDownButton(shading_pulldown, "Patch Coord",
kShadingPatchCoord,
g_shadingMode == kShadingPatchCoord);
g_hud->AddPullDownButton(shading_pulldown, "Normal",
kShadingNormal,
g_shadingMode == kShadingNormal);
int y = 10;
g_hud->AddCheckBox("Control edges (H)",
g_controlMeshDisplay->GetEdgesDisplay(),
10, y, callbackCheckBox,
kHUD_CB_DISPLAY_CONTROL_MESH_EDGES, 'H');
y += 20;
g_hud->AddCheckBox("Control vertices (J)",
g_controlMeshDisplay->GetVerticesDisplay(),
10, y, callbackCheckBox,
kHUD_CB_DISPLAY_CONTROL_MESH_VERTS, 'J');
y += 20;
g_hud->AddCheckBox("Animate vertices (M)", g_moveScale != 0,
10, y, callbackCheckBox, kHUD_CB_ANIMATE_VERTICES, 'M');
y += 20;
g_hud->AddCheckBox("Screen space LOD (V)", g_screenSpaceTess != 0,
10, y, callbackCheckBox, kHUD_CB_VIEW_LOD, 'V');
y += 20;
g_hud->AddCheckBox("Fractional spacing (T)", g_fractionalSpacing != 0,
10, y, callbackCheckBox, kHUD_CB_FRACTIONAL_SPACING, 'T');
y += 20;
g_hud->AddCheckBox("Frustum Patch Culling (B)", g_patchCull != 0,
10, y, callbackCheckBox, kHUD_CB_PATCH_CULL, 'B');
y += 20;
g_hud->AddCheckBox("Freeze (spc)", g_freeze != 0,
10, y, callbackCheckBox, kHUD_CB_FREEZE, ' ');
y += 20;
g_hud->AddCheckBox("Adaptive (`)", true, 10, 190, callbackAdaptive, 0, '`');
g_hud->AddCheckBox("Single Crease Patch (S)", g_singleCreasePatch!=0, 10, 210, callbackSingleCreasePatch, 0, 'S');
g_hud->AddCheckBox("Inf Sharp Patch (I)", g_infSharpPatch!=0, 10, 230, callbackInfSharpPatch, 0, 'I');
int endcap_pulldown = g_hud->AddPullDown(
"End cap (E)", 10, 250, 200, callbackEndCap, 'E');
g_hud->AddPullDownButton(endcap_pulldown,"None",
kEndCapNone,
g_endCap == kEndCapNone);
g_hud->AddPullDownButton(endcap_pulldown, "BSpline",
kEndCapBSplineBasis,
g_endCap == kEndCapBSplineBasis);
g_hud->AddPullDownButton(endcap_pulldown, "GregoryBasis",
kEndCapGregoryBasis,
g_endCap == kEndCapGregoryBasis);
g_hud->AddPullDownButton(endcap_pulldown, "LegacyGregory",
kEndCapLegacyGregory,
g_endCap == kEndCapLegacyGregory);
for (int i = 1; i < 11; ++i) {
char level[16];
sprintf(level, "Lv. %d", i);
g_hud->AddRadioButton(3, level, i==2, 10, 290+i*20, callbackLevel, i, '0'+(i%10));
}
int shapes_pulldown = g_hud->AddPullDown("Shape (N)", -300, 10, 300, callbackModel, 'N');
for (int i = 0; i < (int)g_defaultShapes.size(); ++i) {
g_hud->AddPullDownButton(shapes_pulldown, g_defaultShapes[i].name.c_str(),i);
}
g_hud->AddCheckBox("Show patch counts", g_displayPatchCounts!=0, -280, -20, callbackCheckBox, kHUD_CB_DISPLAY_PATCH_COUNTS);
callbackModel(g_currentShape);
}
//------------------------------------------------------------------------------
static bool
initD3D11(HWND hWnd) {
D3D_DRIVER_TYPE driverTypes[] = {
D3D_DRIVER_TYPE_HARDWARE,
D3D_DRIVER_TYPE_WARP,
D3D_DRIVER_TYPE_REFERENCE,
};
UINT numDriverTypes = ARRAYSIZE(driverTypes);
DXGI_SWAP_CHAIN_DESC hDXGISwapChainDesc;
hDXGISwapChainDesc.BufferDesc.Width = g_width;
hDXGISwapChainDesc.BufferDesc.Height = g_height;
hDXGISwapChainDesc.BufferDesc.RefreshRate.Numerator = 0;
hDXGISwapChainDesc.BufferDesc.RefreshRate.Denominator = 1;
hDXGISwapChainDesc.BufferDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM_SRGB;
hDXGISwapChainDesc.BufferDesc.ScanlineOrdering = DXGI_MODE_SCANLINE_ORDER_UNSPECIFIED;
hDXGISwapChainDesc.BufferDesc.Scaling = DXGI_MODE_SCALING_UNSPECIFIED;
hDXGISwapChainDesc.SampleDesc.Count = 1;
hDXGISwapChainDesc.SampleDesc.Quality = 0;
hDXGISwapChainDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;
hDXGISwapChainDesc.BufferCount = 1;
hDXGISwapChainDesc.OutputWindow = hWnd;
hDXGISwapChainDesc.Windowed = TRUE;
hDXGISwapChainDesc.SwapEffect = DXGI_SWAP_EFFECT_DISCARD;
hDXGISwapChainDesc.Flags = DXGI_SWAP_CHAIN_FLAG_ALLOW_MODE_SWITCH;
// create device and swap chain
HRESULT hr;
D3D_DRIVER_TYPE hDriverType = D3D_DRIVER_TYPE_NULL;
D3D_FEATURE_LEVEL hFeatureLevel = D3D_FEATURE_LEVEL_11_0;
for(UINT driverTypeIndex=0; driverTypeIndex < numDriverTypes; driverTypeIndex++){
hDriverType = driverTypes[driverTypeIndex];
hr = D3D11CreateDeviceAndSwapChain(NULL,
hDriverType, NULL, 0, NULL, 0,
D3D11_SDK_VERSION, &hDXGISwapChainDesc,
&g_pSwapChain, &g_pd3dDevice,
&hFeatureLevel, &g_pd3dDeviceContext);
if(SUCCEEDED(hr)){
break;
}
}
if(FAILED(hr)){
MessageBoxW(hWnd, L"D3D11CreateDeviceAndSwapChain", L"Err", MB_ICONSTOP);
return false;
}
// create rasterizer
D3D11_RASTERIZER_DESC rasterDesc;
ZeroMemory(&rasterDesc, sizeof(rasterDesc));
rasterDesc.AntialiasedLineEnable = false;
rasterDesc.CullMode = D3D11_CULL_BACK;
rasterDesc.DepthBias = 0;
rasterDesc.DepthBiasClamp = 0.0f;
rasterDesc.DepthClipEnable = true;
rasterDesc.FillMode = D3D11_FILL_SOLID;
rasterDesc.FrontCounterClockwise = true;
rasterDesc.MultisampleEnable = false;
rasterDesc.ScissorEnable = false;
rasterDesc.SlopeScaledDepthBias = 0.0f;
g_pd3dDevice->CreateRasterizerState(&rasterDesc, &g_pRasterizerState);
assert(g_pRasterizerState);
{ // update the lighting constant buffer
__declspec(align(16))
struct Lighting {
struct Light {
float position[4];
float ambient[4];
float diffuse[4];
float specular[4];
} lightSource[2];
} lightingData = {
0.5, 0.2f, 1.0f, 0.0f,
0.1f, 0.1f, 0.1f, 1.0f,
0.7f, 0.7f, 0.7f, 1.0f,
0.8f, 0.8f, 0.8f, 1.0f,
-0.8f, 0.4f, -1.0f, 0.0f,
0.0f, 0.0f, 0.0f, 1.0f,
0.5f, 0.5f, 0.5f, 1.0f,
0.8f, 0.8f, 0.8f, 1.0f,
};
D3D11_BUFFER_DESC cbDesc;
ZeroMemory(&cbDesc, sizeof(cbDesc));
cbDesc.Usage = D3D11_USAGE_DYNAMIC;
cbDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
cbDesc.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
cbDesc.MiscFlags = 0;
cbDesc.ByteWidth = sizeof(lightingData);
D3D11_SUBRESOURCE_DATA initData;
initData.pSysMem = &lightingData;
g_pd3dDevice->CreateBuffer(&cbDesc, &initData, &g_pcbLighting);
assert(g_pcbLighting);
}
// create depth stencil state
D3D11_DEPTH_STENCIL_DESC depthStencilDesc;
ZeroMemory(&depthStencilDesc, sizeof(depthStencilDesc));
depthStencilDesc.DepthEnable = true;
depthStencilDesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ALL;
depthStencilDesc.DepthFunc = D3D11_COMPARISON_LESS_EQUAL;
depthStencilDesc.StencilEnable = false;
g_pd3dDevice->CreateDepthStencilState(&depthStencilDesc, &g_pDepthStencilState);
assert(g_pDepthStencilState);
// initialize control mesh display
g_controlMeshDisplay = new D3D11ControlMeshDisplay(g_pd3dDeviceContext);
return true;
}
static bool
updateRenderTarget(HWND hWnd) {
RECT rc;
GetClientRect(hWnd, &rc);
UINT width = rc.right - rc.left;
UINT height = rc.bottom - rc.top;
if (g_pSwapChainRTV && (g_width == width) && (g_height == height)) {
return true;
}
g_width = width;
g_height = height;
g_hud->Rebuild(g_width, g_height);
SAFE_RELEASE(g_pSwapChainRTV);
g_pSwapChain->ResizeBuffers(0, g_width, g_height, DXGI_FORMAT_UNKNOWN, 0);
// get backbuffer of swap chain
ID3D11Texture2D* hpBackBuffer = NULL;
if(FAILED(g_pSwapChain->GetBuffer(0, __uuidof(ID3D11Texture2D), (void**)&hpBackBuffer))){
MessageBoxW(hWnd, L"SwpChain GetBuffer", L"Err", MB_ICONSTOP);
return false;
}
// create render target from the back buffer
if(FAILED(g_pd3dDevice->CreateRenderTargetView(hpBackBuffer, NULL, &g_pSwapChainRTV))){
MessageBoxW(hWnd, L"CreateRenderTargetView", L"Err", MB_ICONSTOP);
return false;
}
SAFE_RELEASE(hpBackBuffer);
// create depth buffer
D3D11_TEXTURE2D_DESC depthBufferDesc;
ZeroMemory(&depthBufferDesc, sizeof(depthBufferDesc));
depthBufferDesc.Width = g_width;
depthBufferDesc.Height = g_height;
depthBufferDesc.MipLevels = 1;
depthBufferDesc.ArraySize = 1;
depthBufferDesc.Format = DXGI_FORMAT_D24_UNORM_S8_UINT;
depthBufferDesc.SampleDesc.Count = 1;
depthBufferDesc.SampleDesc.Quality = 0;
depthBufferDesc.Usage = D3D11_USAGE_DEFAULT;
depthBufferDesc.BindFlags = D3D11_BIND_DEPTH_STENCIL;
depthBufferDesc.CPUAccessFlags = 0;
depthBufferDesc.MiscFlags = 0;
g_pd3dDevice->CreateTexture2D(&depthBufferDesc, NULL, &g_pDepthStencilBuffer);
assert(g_pDepthStencilBuffer);
D3D11_DEPTH_STENCIL_VIEW_DESC depthStencilViewDesc;
ZeroMemory(&depthStencilViewDesc, sizeof(depthStencilViewDesc));
depthStencilViewDesc.Format = DXGI_FORMAT_D24_UNORM_S8_UINT;
depthStencilViewDesc.ViewDimension = D3D11_DSV_DIMENSION_TEXTURE2D;
depthStencilViewDesc.Texture2D.MipSlice = 0;
g_pd3dDevice->CreateDepthStencilView(g_pDepthStencilBuffer, &depthStencilViewDesc, &g_pDepthStencilView);
assert(g_pDepthStencilView);
// set device context to the render target
g_pd3dDeviceContext->OMSetRenderTargets(1, &g_pSwapChainRTV, g_pDepthStencilView);
// init viewport
D3D11_VIEWPORT vp;
vp.TopLeftX = 0;
vp.TopLeftY = 0;
vp.Width = (float)g_width;
vp.Height = (float)g_height;
vp.MinDepth = 0.0f;
vp.MaxDepth = 1.0f;
g_pd3dDeviceContext->RSSetViewports(1, &vp);
return true;
}
//------------------------------------------------------------------------------
static void
callbackError(OpenSubdiv::Far::ErrorType err, const char *message) {
std::ostringstream s;
s << "Error: " << err << "\n";
s << message;
OutputDebugString(s.str().c_str());
}
//------------------------------------------------------------------------------
static LRESULT WINAPI
msgProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam) {
switch(msg)
{
case WM_KEYDOWN:
keyboard(MapVirtualKey(UINT(wParam), MAPVK_VK_TO_CHAR));
break;
case WM_DESTROY:
quit();
return 0;
case WM_MOUSEMOVE:
motion(LOWORD(lParam), HIWORD(lParam));
return 0;
case WM_LBUTTONDOWN:
mouse(0, 1, LOWORD(lParam), HIWORD(lParam));
return 0;
case WM_LBUTTONUP:
mouse(0, 0, LOWORD(lParam), HIWORD(lParam));
return 0;
case WM_MBUTTONDOWN:
mouse(1, 1, LOWORD(lParam), HIWORD(lParam));
return 0;
case WM_MBUTTONUP:
mouse(1, 0, LOWORD(lParam), HIWORD(lParam));
return 0;
case WM_RBUTTONDOWN:
mouse(2, 1, LOWORD(lParam), HIWORD(lParam));
return 0;
case WM_RBUTTONUP:
mouse(2, 0, LOWORD(lParam), HIWORD(lParam));
return 0;
case WM_PAINT:
ValidateRect(hWnd, NULL);
return 0;
}
return DefWindowProc(hWnd, msg, wParam, lParam);
}
static std::vector<std::string>
tokenize(std::string const & src) {
std::vector<std::string> result;
std::stringstream input(src);
std::copy(std::istream_iterator<std::string>(input),
std::istream_iterator<std::string>(),
std::back_inserter< std::vector<std::string> >(result));
return result;
}
int WINAPI
WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow) {
// register window class
TCHAR szWindowClass[] = "OPENSUBDIV_EXAMPLE";
WNDCLASS wcex;
wcex.style = CS_HREDRAW | CS_VREDRAW;
wcex.lpfnWndProc = msgProc;
wcex.cbClsExtra = 0;
wcex.cbWndExtra = 0;
wcex.hInstance = hInstance;
wcex.hIcon = NULL;
wcex.hCursor = LoadCursor(NULL, IDC_ARROW);
wcex.hbrBackground = (HBRUSH)(COLOR_WINDOW+1);
wcex.lpszMenuName = NULL;
wcex.lpszClassName = szWindowClass;
RegisterClass(&wcex);
// create window
RECT rect = { 0, 0, g_width, g_height };
AdjustWindowRect(&rect, WS_OVERLAPPEDWINDOW, FALSE);
static const char windowTitle[] = "OpenSubdiv dxViewer " OPENSUBDIV_VERSION_STRING;
HWND hWnd = CreateWindow(szWindowClass,
windowTitle,
WS_OVERLAPPEDWINDOW | WS_VISIBLE,
CW_USEDEFAULT,
CW_USEDEFAULT,
rect.right - rect.left,
rect.bottom - rect.top,
NULL,
NULL,
hInstance,
NULL);
std::vector<std::string> args = tokenize(lpCmdLine);
for (size_t i=0; i<args.size(); ++i) {
std::ifstream ifs(args[i]);
if (ifs) {
std::stringstream ss;
ss << ifs.rdbuf();
ifs.close();
std::string str = ss.str();
g_defaultShapes.push_back(ShapeDesc(__argv[1], str.c_str(), kCatmark));
}
}
std::string str;
for (int i = 1; i < __argc; ++i) {
if (!strcmp(__argv[i], "-d"))
g_level = atoi(__argv[++i]);
else if (!strcmp(__argv[i], "-c"))
g_repeatCount = atoi(__argv[++i]);
else {
std::ifstream ifs(__argv[1]);
if (ifs) {
std::stringstream ss;
ss << ifs.rdbuf();
ifs.close();
str = ss.str();
g_defaultShapes.push_back(ShapeDesc(__argv[1], str.c_str(), kCatmark));
}
}
}
initShapes();
OpenSubdiv::Far::SetErrorCallback(callbackError);
initD3D11(hWnd);
initHUD();
// main loop
while (g_bDone == false) {
MSG msg;
ZeroMemory(&msg, sizeof(msg));
while (msg.message != WM_QUIT) {
while (PeekMessage(&msg, NULL, 0U, 0U, PM_REMOVE)) {
if (msg.message == WM_QUIT) goto end;
TranslateMessage(&msg);
DispatchMessage(&msg);
}
if (! g_freeze)
g_frame++;
updateGeom();
updateRenderTarget(hWnd);
display();
}
}
end:
quit();
}
//------------------------------------------------------------------------------