OpenSubdiv/examples/glFVarViewer/glFVarViewer.cpp
Takahito Tejima 36465ed96c Merge pull request #586 from davidgyu/fvarRename
Renamed per-patch face-varying access methods
2015-06-02 14:26:25 -07:00

1182 lines
35 KiB
C++

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#include "../common/glUtils.h"
#include <GLFW/glfw3.h>
GLFWwindow* g_window = 0;
GLFWmonitor* g_primary = 0;
#include <far/error.h>
#include <osd/cpuEvaluator.h>
#include <osd/cpuGLVertexBuffer.h>
#include <osd/glMesh.h>
OpenSubdiv::Osd::GLMeshInterface *g_mesh = NULL;
#include "../../regression/common/far_utils.h"
#include "../common/stopwatch.h"
#include "../common/simple_math.h"
#include "../common/glControlMeshDisplay.h"
#include "../common/glHud.h"
#include "../common/glShaderCache.h"
#include <osd/glslPatchShaderSource.h>
static const char *shaderSource =
#if defined(GL_ARB_tessellation_shader) || defined(GL_VERSION_4_0)
#include "shader.gen.h"
#else
#include "shader_gl3.gen.h"
#endif
;
#include <cfloat>
#include <vector>
#include <fstream>
#include <sstream>
#include <utility>
#include <string>
#include <algorithm>
enum DisplayStyle { kWire = 0,
kShaded,
kWireShaded };
int g_currentShape = 0;
int g_frame = 0,
g_repeatCount = 0;
OpenSubdiv::Sdc::Options::FVarLinearInterpolation g_fvarBoundary =
OpenSubdiv::Sdc::Options::FVAR_LINEAR_ALL;
// GUI variables
int g_fullscreen = 0,
g_freeze = 0,
g_displayStyle = kWireShaded,
g_adaptive = 0,
g_mbutton[3] = {0, 0, 0},
g_mouseUvView = 0,
g_running = 1;
float g_moveScale = 0.0f;
float g_rotate[2] = {0, 0},
g_dolly = 5,
g_pan[2] = {0, 0},
g_center[3] = {0, 0, 0},
g_size = 0,
g_uvPan[2] = {0, 0},
g_uvScale = 1.0;
int g_prev_x = 0,
g_prev_y = 0;
int g_width = 1600,
g_height = 800;
GLhud g_hud;
GLControlMeshDisplay g_controlMeshDisplay;
// geometry
std::vector<float> g_orgPositions,
g_positions,
g_normals;
Scheme g_scheme;
int g_level = 2;
int g_tessLevel = 1;
int g_tessLevelMin = 1;
GLuint g_transformUB = 0,
g_transformBinding = 0,
g_tessellationUB = 0,
g_tessellationBinding = 0;
struct Transform {
float ModelViewMatrix[16];
float ProjectionMatrix[16];
float ModelViewProjectionMatrix[16];
float ModelViewInverseMatrix[16];
float UvViewMatrix[16];
} g_transformData;
GLuint g_vao = 0;
std::vector<int> g_coarseEdges;
std::vector<float> g_coarseEdgeSharpness;
std::vector<float> g_coarseVertexSharpness;
struct Program {
GLuint program;
GLuint uniformModelViewProjectionMatrix;
GLuint attrPosition;
GLuint attrColor;
} g_defaultProgram;
struct FVarData
{
FVarData() :
textureBuffer(0) {
}
~FVarData() {
Release();
}
void Release() {
if (textureBuffer)
glDeleteTextures(1, &textureBuffer);
textureBuffer = 0;
}
void Create(OpenSubdiv::Far::PatchTable const *patchTable,
int fvarWidth, std::vector<float> const & fvarSrcData) {
Release();
OpenSubdiv::Far::ConstIndexArray indices = patchTable->GetFVarValues();
// expand fvardata to per-patch array
std::vector<float> data;
data.reserve(indices.size() * fvarWidth);
for (int fvert = 0; fvert < (int)indices.size(); ++fvert) {
int index = indices[fvert] * fvarWidth;
for (int i = 0; i < fvarWidth; ++i) {
data.push_back(fvarSrcData[index++]);
}
}
GLuint buffer;
glGenBuffers(1, &buffer);
glBindBuffer(GL_ARRAY_BUFFER, buffer);
glBufferData(GL_ARRAY_BUFFER, data.size()*sizeof(float),
&data[0], GL_STATIC_DRAW);
glGenTextures(1, &textureBuffer);
glBindTexture(GL_TEXTURE_BUFFER, textureBuffer);
glTexBuffer(GL_TEXTURE_BUFFER, GL_R32F, buffer);
glBindTexture(GL_TEXTURE_BUFFER, 0);
glBindTexture(GL_ARRAY_BUFFER, 0);
glDeleteBuffers(1, &buffer);
}
GLuint textureBuffer;
} g_fvarData;
//------------------------------------------------------------------------------
static GLuint
compileShader(GLenum shaderType, const char *source) {
GLuint shader = glCreateShader(shaderType);
glShaderSource(shader, 1, &source, NULL);
glCompileShader(shader);
return shader;
}
static bool
linkDefaultProgram() {
#if defined(GL_ARB_tessellation_shader) || defined(GL_VERSION_4_0)
#define GLSL_VERSION_DEFINE "#version 400\n"
#else
#define GLSL_VERSION_DEFINE "#version 150\n"
#endif
static const char *vsSrc =
GLSL_VERSION_DEFINE
"in vec3 position;\n"
"in vec3 color;\n"
"out vec4 fragColor;\n"
"uniform mat4 ModelViewProjectionMatrix;\n"
"void main() {\n"
" fragColor = vec4(color, 1);\n"
" gl_Position = ModelViewProjectionMatrix * "
" vec4(position, 1);\n"
"}\n";
static const char *fsSrc =
GLSL_VERSION_DEFINE
"in vec4 fragColor;\n"
"out vec4 color;\n"
"void main() {\n"
" color = fragColor;\n"
"}\n";
GLuint program = glCreateProgram();
GLuint vertexShader = compileShader(GL_VERTEX_SHADER, vsSrc);
GLuint fragmentShader = compileShader(GL_FRAGMENT_SHADER, fsSrc);
glAttachShader(program, vertexShader);
glAttachShader(program, fragmentShader);
glLinkProgram(program);
GLint status;
glGetProgramiv(program, GL_LINK_STATUS, &status);
if (status == GL_FALSE) {
GLint infoLogLength;
glGetProgramiv(program, GL_INFO_LOG_LENGTH, &infoLogLength);
char *infoLog = new char[infoLogLength];
glGetProgramInfoLog(program, infoLogLength, NULL, infoLog);
printf("%s\n", infoLog);
delete[] infoLog;
exit(1);
}
g_defaultProgram.program = program;
g_defaultProgram.uniformModelViewProjectionMatrix =
glGetUniformLocation(program, "ModelViewProjectionMatrix");
g_defaultProgram.attrPosition = glGetAttribLocation(program, "position");
g_defaultProgram.attrColor = glGetAttribLocation(program, "color");
return true;
}
//------------------------------------------------------------------------------
#include "init_shapes.h"
//------------------------------------------------------------------------------
static void
calcNormals(OpenSubdiv::Far::TopologyRefiner const & refiner,
std::vector<float> const & pos, std::vector<float> & normals) {
typedef OpenSubdiv::Far::ConstIndexArray IndexArray;
OpenSubdiv::Far::TopologyLevel const & refBaseLevel = refiner.GetLevel(0);
// calc normal vectors
int nverts = (int)pos.size()/3;
int nfaces = refBaseLevel.GetNumFaces();
for (int face = 0; face < nfaces; ++face) {
IndexArray fverts = refBaseLevel.GetFaceVertices(face);
assert(fverts.size()>=2);
float const * p0 = &pos[fverts[0]*3],
* p1 = &pos[fverts[1]*3],
* p2 = &pos[fverts[2]*3];
float n[3];
cross(n, p0, p1, p2);
for (int j = 0; j < fverts.size(); j++) {
int idx = fverts[j] * 3;
normals[idx ] += n[0];
normals[idx+1] += n[1];
normals[idx+2] += n[2];
}
}
for (int i = 0; i < nverts; ++i)
normalize(&normals[i*3]);
}
//------------------------------------------------------------------------------
static void
updateGeom() {
int nverts = (int)g_orgPositions.size() / 3;
std::vector<float> vertex;
vertex.reserve(nverts*3);
const float *p = &g_orgPositions[0];
float r = sin(g_frame*0.001f) * g_moveScale;
for (int i = 0; i < nverts; ++i) {
float ct = cos(p[2] * r);
float st = sin(p[2] * r);
g_positions[i*3+0] = p[0]*ct + p[1]*st;
g_positions[i*3+1] = -p[0]*st + p[1]*ct;
g_positions[i*3+2] = p[2];
p += 3;
}
p = &g_orgPositions[0];
const float *pp = &g_positions[0];
for (int i = 0; i < nverts; ++i) {
vertex.push_back(pp[0]);
vertex.push_back(pp[1]);
vertex.push_back(pp[2]);
pp += 3;
}
g_mesh->UpdateVertexBuffer(&vertex[0], 0, nverts);
g_mesh->Refine();
g_mesh->Synchronize();
}
//------------------------------------------------------------------------------
static void
rebuildMesh() {
ShapeDesc const &shapeDesc = g_defaultShapes[g_currentShape];
int level = g_level;
Scheme scheme = g_defaultShapes[g_currentShape].scheme;
Shape * shape = Shape::parseObj(shapeDesc.data.c_str(), shapeDesc.scheme);
// create Far mesh (topology)
OpenSubdiv::Sdc::SchemeType sdctype = GetSdcType(*shape);
OpenSubdiv::Sdc::Options sdcoptions = GetSdcOptions(*shape);
sdcoptions.SetFVarLinearInterpolation(g_fvarBoundary);
OpenSubdiv::Far::TopologyRefiner * refiner =
OpenSubdiv::Far::TopologyRefinerFactory<Shape>::Create(*shape,
OpenSubdiv::Far::TopologyRefinerFactory<Shape>::Options(sdctype, sdcoptions));
// save coarse topology (used for coarse mesh drawing)
g_controlMeshDisplay.SetTopology(refiner->GetLevel(0));
g_orgPositions=shape->verts;
g_normals.resize(g_orgPositions.size(), 0.0f);
calcNormals(*refiner, g_orgPositions, g_normals);
g_positions.resize(g_orgPositions.size(),0.0f);
g_scheme = scheme;
// Adaptive refinement currently supported only for catmull-clark scheme
bool doAdaptive = (g_adaptive!=0 and g_scheme==kCatmark);
OpenSubdiv::Osd::MeshBitset bits;
bits.set(OpenSubdiv::Osd::MeshAdaptive, doAdaptive);
bits.set(OpenSubdiv::Osd::MeshFVarData, 1);
int numVertexElements = 3;
int numVaryingElements = 0;
delete g_mesh;
g_mesh = new OpenSubdiv::Osd::Mesh<OpenSubdiv::Osd::CpuGLVertexBuffer,
OpenSubdiv::Far::StencilTable,
OpenSubdiv::Osd::CpuEvaluator,
OpenSubdiv::Osd::GLPatchTable>(
refiner,
numVertexElements,
numVaryingElements,
level, bits);
std::vector<float> fvarData;
InterpolateFVarData(*refiner, *shape, fvarData);
// set fvardata to texture buffer
g_fvarData.Create(g_mesh->GetFarPatchTable(),
shape->GetFVarWidth(), fvarData);
delete shape;
// compute model bounding
float min[3] = { FLT_MAX, FLT_MAX, FLT_MAX};
float max[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX};
for (size_t i = 0; i < g_orgPositions.size()/3; ++i) {
for (int j = 0; j < 3; ++j) {
float v = g_orgPositions[i*3+j];
min[j] = std::min(min[j], v);
max[j] = std::max(max[j], v);
}
}
for (int j = 0; j < 3; ++j) {
g_center[j] = (min[j] + max[j]) * 0.5f;
g_size += (max[j]-min[j])*(max[j]-min[j]);
}
g_size = sqrtf(g_size);
updateGeom();
// -------- VAO
glBindVertexArray(g_vao);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, g_mesh->GetPatchTable()->GetPatchIndexBuffer());
glBindBuffer(GL_ARRAY_BUFFER, g_mesh->BindVertexBuffer());
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(GLfloat) * 3, 0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
}
//------------------------------------------------------------------------------
static void
fitFrame() {
g_pan[0] = g_pan[1] = 0;
g_dolly = g_size;
g_uvPan[0] = g_uvPan[1] = 0;
g_uvScale = 1.0;
}
//------------------------------------------------------------------------------
union Effect {
Effect(int displayStyle_, int uvDraw_) : value(0) {
displayStyle = displayStyle_;
uvDraw = uvDraw_;
}
struct {
unsigned int displayStyle:3;
unsigned int uvDraw:1;
};
int value;
bool operator < (const Effect &e) const {
return value < e.value;
}
};
static Effect
GetEffect(bool uvDraw = false) {
return Effect(g_displayStyle, uvDraw);
}
// ---------------------------------------------------------------------------
struct EffectDesc {
EffectDesc(OpenSubdiv::Far::PatchDescriptor desc,
Effect effect) : desc(desc), effect(effect),
maxValence(0), numElements(0) { }
OpenSubdiv::Far::PatchDescriptor desc;
Effect effect;
int maxValence;
int numElements;
bool operator < (const EffectDesc &e) const {
return
(desc < e.desc || ((desc == e.desc &&
(maxValence < e.maxValence || ((maxValence == e.maxValence) &&
(numElements < e.numElements || ((numElements == e.numElements) &&
(effect < e.effect))))))));
}
};
// ---------------------------------------------------------------------------
class ShaderCache : public GLShaderCache<EffectDesc> {
public:
virtual GLDrawConfig *CreateDrawConfig(EffectDesc const &effectDesc) {
using namespace OpenSubdiv;
// compile shader program
#if defined(GL_ARB_tessellation_shader) || defined(GL_VERSION_4_0)
const char *glslVersion = "#version 400\n";
#else
const char *glslVersion = "#version 330\n";
#endif
GLDrawConfig *config = new GLDrawConfig(glslVersion);
Far::PatchDescriptor::Type type = effectDesc.desc.GetType();
// common defines
std::stringstream ss;
if (type == Far::PatchDescriptor::QUADS) {
ss << "#define PRIM_QUAD\n";
} else {
ss << "#define PRIM_TRI\n";
}
if (effectDesc.effect.uvDraw) {
ss << "#define GEOMETRY_OUT_FILL\n";
ss << "#define GEOMETRY_UV_VIEW\n";
} else {
switch (effectDesc.effect.displayStyle) {
case kWire:
ss << "#define GEOMETRY_OUT_WIRE\n";
break;
case kWireShaded:
ss << "#define GEOMETRY_OUT_LINE\n";
break;
case kShaded:
ss << "#define GEOMETRY_OUT_FILL\n";
break;
}
}
// for legacy gregory
ss << "#define OSD_MAX_VALENCE " << effectDesc.maxValence << "\n";
ss << "#define OSD_NUM_ELEMENTS " << effectDesc.numElements << "\n";
// face varying width
ss << "#define OSD_FVAR_WIDTH 2\n";
if (not effectDesc.desc.IsAdaptive()) {
ss << "#define SHADING_FACEVARYING_UNIFORM_SUBDIVISION\n";
}
// include osd PatchCommon
ss << Osd::GLSLPatchShaderSource::GetCommonShaderSource();
std::string common = ss.str();
ss.str("");
// vertex shader
ss << common
// enable local vertex shader
<< (effectDesc.desc.IsAdaptive() ? "" : "#define VERTEX_SHADER\n")
<< shaderSource
<< Osd::GLSLPatchShaderSource::GetVertexShaderSource(type);
config->CompileAndAttachShader(GL_VERTEX_SHADER, ss.str());
ss.str("");
if (effectDesc.desc.IsAdaptive()) {
// tess control shader
ss << common
<< shaderSource
<< Osd::GLSLPatchShaderSource::GetTessControlShaderSource(type);
config->CompileAndAttachShader(GL_TESS_CONTROL_SHADER, ss.str());
ss.str("");
// tess eval shader
ss << common
<< shaderSource
<< Osd::GLSLPatchShaderSource::GetTessEvalShaderSource(type);
config->CompileAndAttachShader(GL_TESS_EVALUATION_SHADER, ss.str());
ss.str("");
}
// geometry shader
ss << common
<< "#define GEOMETRY_SHADER\n"
<< shaderSource;
config->CompileAndAttachShader(GL_GEOMETRY_SHADER, ss.str());
ss.str("");
// fragment shader
ss << common
<< "#define FRAGMENT_SHADER\n"
<< shaderSource;
config->CompileAndAttachShader(GL_FRAGMENT_SHADER, ss.str());
ss.str("");
if (!config->Link()) {
delete config;
return NULL;
}
// assign uniform locations
GLuint uboIndex;
GLuint program = config->GetProgram();
g_transformBinding = 0;
uboIndex = glGetUniformBlockIndex(program, "Transform");
if (uboIndex != GL_INVALID_INDEX)
glUniformBlockBinding(program, uboIndex, g_transformBinding);
g_tessellationBinding = 1;
uboIndex = glGetUniformBlockIndex(program, "Tessellation");
if (uboIndex != GL_INVALID_INDEX)
glUniformBlockBinding(program, uboIndex, g_tessellationBinding);
// assign texture locations
GLint loc;
glUseProgram(program);
if ((loc = glGetUniformLocation(program, "OsdPatchParamBuffer")) != -1) {
glUniform1i(loc, 0); // GL_TEXTURE0
}
if ((loc = glGetUniformLocation(program, "OsdFVarDataBuffer")) != -1) {
glUniform1i(loc, 1); // GL_TEXTURE1
}
return config;
}
};
ShaderCache g_shaderCache;
//------------------------------------------------------------------------------
static void
updateUniformBlocks() {
if (!g_transformUB) {
glGenBuffers(1, &g_transformUB);
glBindBuffer(GL_UNIFORM_BUFFER, g_transformUB);
glBufferData(GL_UNIFORM_BUFFER,
sizeof(g_transformData), NULL, GL_STATIC_DRAW);
};
glBindBuffer(GL_UNIFORM_BUFFER, g_transformUB);
glBufferSubData(GL_UNIFORM_BUFFER,
0, sizeof(g_transformData), &g_transformData);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
glBindBufferBase(GL_UNIFORM_BUFFER, g_transformBinding, g_transformUB);
// Update and bind tessellation state
struct Tessellation {
float TessLevel;
} tessellationData;
tessellationData.TessLevel = static_cast<float>(1 << g_tessLevel);
if (!g_tessellationUB) {
glGenBuffers(1, &g_tessellationUB);
glBindBuffer(GL_UNIFORM_BUFFER, g_tessellationUB);
glBufferData(GL_UNIFORM_BUFFER,
sizeof(tessellationData), NULL, GL_STATIC_DRAW);
};
glBindBuffer(GL_UNIFORM_BUFFER, g_tessellationUB);
glBufferSubData(GL_UNIFORM_BUFFER,
0, sizeof(tessellationData), &tessellationData);
glBindBuffer(GL_UNIFORM_BUFFER, 0);
glBindBufferBase(GL_UNIFORM_BUFFER, g_tessellationBinding, g_tessellationUB);
}
static void
bindTextures() {
if (g_mesh->GetPatchTable()->GetPatchParamTextureBuffer()) {
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_BUFFER,
g_mesh->GetPatchTable()->GetPatchParamTextureBuffer());
}
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_BUFFER, g_fvarData.textureBuffer);
glActiveTexture(GL_TEXTURE0);
}
static GLenum
bindProgram(Effect effect, OpenSubdiv::Osd::PatchArray const & patch) {
EffectDesc effectDesc(patch.GetDescriptor(), effect);
typedef OpenSubdiv::Far::PatchDescriptor Descriptor;
// lookup shader cache (compile the shader if needed)
GLDrawConfig *config = g_shaderCache.GetDrawConfig(effectDesc);
if (!config) return 0;
GLuint program = config->GetProgram();
glUseProgram(program);
// bind standalone uniforms
GLint uniformPrimitiveIdBase =
glGetUniformLocation(program, "PrimitiveIdBase");
if (uniformPrimitiveIdBase >=0)
glUniform1i(uniformPrimitiveIdBase, patch.GetPrimitiveIdBase());
// return primtype
GLenum primType;
switch(effectDesc.desc.GetType()) {
case Descriptor::QUADS:
primType = GL_LINES_ADJACENCY;
break;
case Descriptor::TRIANGLES:
primType = GL_TRIANGLES;
break;
default:
#if defined(GL_ARB_tessellation_shader) || defined(GL_VERSION_4_0)
primType = GL_PATCHES;
glPatchParameteri(GL_PATCH_VERTICES, effectDesc.desc.GetNumControlVertices());
#else
primType = GL_POINTS;
#endif
break;
}
return primType;
}
//------------------------------------------------------------------------------
static void
display() {
Stopwatch s;
s.Start();
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glViewport(0, 0, g_width/2, g_height);
g_hud.FillBackground();
// prepare view matrix
double aspect = (g_width/2)/(double)g_height;
identity(g_transformData.ModelViewMatrix);
translate(g_transformData.ModelViewMatrix, -g_pan[0], -g_pan[1], -g_dolly);
rotate(g_transformData.ModelViewMatrix, g_rotate[1], 1, 0, 0);
rotate(g_transformData.ModelViewMatrix, g_rotate[0], 0, 1, 0);
rotate(g_transformData.ModelViewMatrix, -90, 1, 0, 0);
translate(g_transformData.ModelViewMatrix,
-g_center[0], -g_center[1], -g_center[2]);
perspective(g_transformData.ProjectionMatrix,
45.0f, (float)aspect, 0.01f, 500.0f);
multMatrix(g_transformData.ModelViewProjectionMatrix,
g_transformData.ModelViewMatrix,
g_transformData.ProjectionMatrix);
identity(g_transformData.UvViewMatrix);
scale(g_transformData.UvViewMatrix, g_uvScale, g_uvScale, 1);
translate(g_transformData.UvViewMatrix, -g_uvPan[0], -g_uvPan[1], 0);
glEnable(GL_DEPTH_TEST);
// make sure that the vertex buffer is interoped back as a GL resources.
GLuint vbo = g_mesh->BindVertexBuffer();
glBindVertexArray(g_vao);
OpenSubdiv::Osd::PatchArrayVector const & patches =
g_mesh->GetPatchTable()->GetPatchArrays();
if (g_displayStyle == kWire)
glDisable(GL_CULL_FACE);
updateUniformBlocks();
bindTextures();
// patch drawing
for (int i = 0; i < (int)patches.size(); ++i) {
OpenSubdiv::Osd::PatchArray const & patch = patches[i];
GLenum primType = bindProgram(GetEffect(), patch);
glDrawElements(
primType,
patch.GetNumPatches()*patch.GetDescriptor().GetNumControlVertices(),
GL_UNSIGNED_INT,
(void *)(patch.GetIndexBase() * sizeof(unsigned int)));
}
if (g_displayStyle == kWire)
glEnable(GL_CULL_FACE);
glBindVertexArray(0);
glUseProgram(0);
// draw the control mesh
g_controlMeshDisplay.Draw(vbo, 3*sizeof(float),
g_transformData.ModelViewProjectionMatrix);
// ---------------------------------------------
// uv viewport
glViewport(g_width/2, 0, g_width/2, g_height);
g_mesh->BindVertexBuffer();
glBindVertexArray(g_vao);
glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
for (int i = 0; i < (int)patches.size(); ++i) {
OpenSubdiv::Osd::PatchArray const & patch = patches[i];
GLenum primType = bindProgram(GetEffect(/*uvDraw=*/ true), patch);
glDrawElements(
primType,
patch.GetNumPatches()*patch.GetDescriptor().GetNumControlVertices(),
GL_UNSIGNED_INT,
(void *)(patch.GetIndexBase() * sizeof(unsigned int)));
}
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
// full viewport
glViewport(0, 0, g_width, g_height);
if (g_hud.IsVisible()) {
g_hud.DrawString(10, -40, "Tess level : %d", g_tessLevel);
g_hud.Flush();
}
glFinish();
}
//------------------------------------------------------------------------------
static void
motion(GLFWwindow *, double dx, double dy) {
int x=(int)dx, y=(int)dy;
if (g_mouseUvView) {
if (!g_mbutton[0] && !g_mbutton[1] && g_mbutton[2]) {
// pan
g_uvPan[0] -= (x - g_prev_x) * 2 / g_uvScale / static_cast<float>(g_width/2);
g_uvPan[1] += (y - g_prev_y) * 2 / g_uvScale / static_cast<float>(g_height);
} else if ((g_mbutton[0] && !g_mbutton[1] && g_mbutton[2]) or
(!g_mbutton[0] && g_mbutton[1] && !g_mbutton[2])) {
// scale
g_uvScale += g_uvScale*0.01f*(x - g_prev_x);
g_uvScale = std::max(std::min(g_uvScale, 100.0f), 0.01f);
}
} else {
if (g_mbutton[0] && !g_mbutton[1] && !g_mbutton[2]) {
// orbit
g_rotate[0] += x - g_prev_x;
g_rotate[1] += y - g_prev_y;
} else if (!g_mbutton[0] && !g_mbutton[1] && g_mbutton[2]) {
// pan
g_pan[0] -= g_dolly*(x - g_prev_x)/g_width;
g_pan[1] += g_dolly*(y - g_prev_y)/g_height;
} else if ((g_mbutton[0] && !g_mbutton[1] && g_mbutton[2]) or
(!g_mbutton[0] && g_mbutton[1] && !g_mbutton[2])) {
// dolly
g_dolly -= g_dolly*0.01f*(x - g_prev_x);
if (g_dolly <= 0.01) g_dolly = 0.01f;
}
}
g_prev_x = x;
g_prev_y = y;
}
//------------------------------------------------------------------------------
static void
mouse(GLFWwindow *, int button, int state, int /* mods */) {
if (button == 0 && state == GLFW_PRESS && g_hud.MouseClick(g_prev_x, g_prev_y))
return;
if (button < 3) {
g_mbutton[button] = (state == GLFW_PRESS);
}
// window size might not match framebuffer size on a high DPI display
int windowWidth = g_width, windowHeight = g_height;
glfwGetWindowSize(g_window, &windowWidth, &windowHeight);
g_mouseUvView = (g_prev_x > windowWidth/2);
}
//------------------------------------------------------------------------------
static void
uninitGL() {
glDeleteVertexArrays(1, &g_vao);
if (g_mesh)
delete g_mesh;
}
//------------------------------------------------------------------------------
static void
reshape(GLFWwindow *, int width, int height) {
g_width = width;
g_height = height;
int windowWidth = g_width, windowHeight = g_height;
// window size might not match framebuffer size on a high DPI display
glfwGetWindowSize(g_window, &windowWidth, &windowHeight);
g_hud.Rebuild(windowWidth, windowHeight, width, height);
}
//------------------------------------------------------------------------------
void windowClose(GLFWwindow*) {
g_running = false;
}
//------------------------------------------------------------------------------
static void
toggleFullScreen() {
// XXXX manuelk : to re-implement from glut
}
//------------------------------------------------------------------------------
static void
keyboard(GLFWwindow *, int key, int /* scancode */, int event, int /* mods */) {
if (event == GLFW_RELEASE) return;
if (g_hud.KeyDown(tolower(key))) return;
switch (key) {
case 'Q': g_running = 0; break;
case 'F': fitFrame(); break;
case GLFW_KEY_TAB: toggleFullScreen(); break;
case '+':
case '=': g_tessLevel++; break;
case '-': g_tessLevel = std::max(g_tessLevelMin, g_tessLevel-1); break;
case GLFW_KEY_ESCAPE: g_hud.SetVisible(!g_hud.IsVisible()); break;
}
}
//------------------------------------------------------------------------------
static void
callbackDisplayStyle(int b) {
g_displayStyle = b;
}
static void
callbackLevel(int l) {
g_level = l;
rebuildMesh();
}
static void
callbackModel(int m) {
int maxShapes = static_cast<int>(g_defaultShapes.size());
g_currentShape = std::max(0, std::min(m, maxShapes-1));
rebuildMesh();
}
static void
callbackAdaptive(bool checked, int /* a */) {
if (GLUtils::SupportsAdaptiveTessellation()) {
g_adaptive = checked;
rebuildMesh();
}
}
static void
callbackBoundary(int b) {
typedef OpenSubdiv::Sdc::Options SdcOptions;
switch (b) {
case SdcOptions::FVAR_LINEAR_NONE :
g_fvarBoundary = SdcOptions::FVAR_LINEAR_NONE; break;
case SdcOptions::FVAR_LINEAR_CORNERS_ONLY :
g_fvarBoundary = SdcOptions::FVAR_LINEAR_CORNERS_ONLY; break;
case SdcOptions::FVAR_LINEAR_CORNERS_PLUS1 :
g_fvarBoundary = SdcOptions::FVAR_LINEAR_CORNERS_PLUS1; break;
case SdcOptions::FVAR_LINEAR_CORNERS_PLUS2 :
g_fvarBoundary = SdcOptions::FVAR_LINEAR_CORNERS_PLUS2; break;
case SdcOptions::FVAR_LINEAR_BOUNDARIES :
g_fvarBoundary = SdcOptions::FVAR_LINEAR_BOUNDARIES; break;
case SdcOptions::FVAR_LINEAR_ALL :
g_fvarBoundary = SdcOptions::FVAR_LINEAR_ALL; break;
}
rebuildMesh();
}
static void
initHUD() {
int windowWidth = g_width, windowHeight = g_height,
frameBufferWidth = g_width, frameBufferHeight = g_height;
// window size might not match framebuffer size on a high DPI display
glfwGetWindowSize(g_window, &windowWidth, &windowHeight);
g_hud.Init(windowWidth, windowHeight, frameBufferWidth, frameBufferHeight);
int shading_pulldown = g_hud.AddPullDown("Shading (W)", 375, 10, 250, callbackDisplayStyle, 'w');
g_hud.AddPullDownButton(shading_pulldown, "Wire", kWire, g_displayStyle==kWire);
g_hud.AddPullDownButton(shading_pulldown, "Shaded", kShaded, g_displayStyle==kShaded);
g_hud.AddPullDownButton(shading_pulldown, "Wire+Shaded", kWireShaded, g_displayStyle==kWireShaded);
if (GLUtils::SupportsAdaptiveTessellation())
g_hud.AddCheckBox("Adaptive (`)", g_adaptive != 0, 10, 250, callbackAdaptive, 0, '`');
for (int i = 1; i < 11; ++i) {
char level[16];
sprintf(level, "Lv. %d", i);
g_hud.AddRadioButton(3, level, i == 2, 10, 270 + i*20, callbackLevel, i, '0'+(i%10));
}
typedef OpenSubdiv::Sdc::Options SdcOptions;
int boundary_pulldown = g_hud.AddPullDown("Boundary (B)", 10, 10, 250, callbackBoundary, 'b');
g_hud.AddPullDownButton(boundary_pulldown, "None (edge only)",
SdcOptions::FVAR_LINEAR_NONE, g_fvarBoundary==SdcOptions::FVAR_LINEAR_NONE);
g_hud.AddPullDownButton(boundary_pulldown, "Corners Only",
SdcOptions::FVAR_LINEAR_CORNERS_ONLY, g_fvarBoundary==SdcOptions::FVAR_LINEAR_CORNERS_ONLY);
g_hud.AddPullDownButton(boundary_pulldown, "Corners 1 (edge corner)",
SdcOptions::FVAR_LINEAR_CORNERS_PLUS1, g_fvarBoundary==SdcOptions::FVAR_LINEAR_CORNERS_PLUS1);
g_hud.AddPullDownButton(boundary_pulldown, "Corners 2 (edge corner prop)",
SdcOptions::FVAR_LINEAR_CORNERS_PLUS2, g_fvarBoundary==SdcOptions::FVAR_LINEAR_CORNERS_PLUS2);
g_hud.AddPullDownButton(boundary_pulldown, "Boundaries (always sharp)",
SdcOptions::FVAR_LINEAR_BOUNDARIES, g_fvarBoundary==SdcOptions::FVAR_LINEAR_BOUNDARIES);
g_hud.AddPullDownButton(boundary_pulldown, "All (bilinear)",
SdcOptions::FVAR_LINEAR_ALL, g_fvarBoundary==SdcOptions::FVAR_LINEAR_ALL);
int pulldown_handle = g_hud.AddPullDown("Shape (N)", -300, 10, 300, callbackModel, 'n');
for (int i = 0; i < (int)g_defaultShapes.size(); ++i) {
g_hud.AddPullDownButton(pulldown_handle, g_defaultShapes[i].name.c_str(),i);
}
g_hud.Rebuild(windowWidth, windowHeight, frameBufferWidth, frameBufferHeight);
}
//------------------------------------------------------------------------------
static void
initGL() {
glClearColor(0.1f, 0.1f, 0.1f, 0.0f);
glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);
glCullFace(GL_BACK);
glEnable(GL_CULL_FACE);
glGenVertexArrays(1, &g_vao);
}
//------------------------------------------------------------------------------
static void
idle() {
if (not g_freeze)
g_frame++;
updateGeom();
if (g_repeatCount != 0 and g_frame >= g_repeatCount)
g_running = 0;
}
//------------------------------------------------------------------------------
static void
callbackError(OpenSubdiv::Far::ErrorType err, const char *message) {
printf("Error: %d\n", err);
printf("%s", message);
}
//------------------------------------------------------------------------------
static void
callbackErrorGLFW(int error, const char* description) {
fprintf(stderr, "GLFW Error (%d) : %s\n", error, description);
}
//------------------------------------------------------------------------------
int main(int argc, char ** argv) {
bool fullscreen = false;
std::string str;
for (int i = 1; i < argc; ++i) {
if (!strcmp(argv[i], "-d"))
g_level = atoi(argv[++i]);
else if (!strcmp(argv[i], "-c"))
g_repeatCount = atoi(argv[++i]);
else if (!strcmp(argv[i], "-f"))
fullscreen = true;
else {
std::ifstream ifs(argv[1]);
if (ifs) {
std::stringstream ss;
ss << ifs.rdbuf();
ifs.close();
str = ss.str();
g_defaultShapes.push_back(ShapeDesc(argv[1], str.c_str(), kCatmark));
}
}
}
initShapes();
OpenSubdiv::Far::SetErrorCallback(callbackError);
glfwSetErrorCallback(callbackErrorGLFW);
if (not glfwInit()) {
printf("Failed to initialize GLFW\n");
return 1;
}
static const char windowTitle[] = "OpenSubdiv glFVarViewer " OPENSUBDIV_VERSION_STRING;
GLUtils::SetMinimumGLVersion();
if (fullscreen) {
g_primary = glfwGetPrimaryMonitor();
// apparently glfwGetPrimaryMonitor fails under linux : if no primary,
// settle for the first one in the list
if (not g_primary) {
int count = 0;
GLFWmonitor ** monitors = glfwGetMonitors(&count);
if (count)
g_primary = monitors[0];
}
if (g_primary) {
GLFWvidmode const * vidmode = glfwGetVideoMode(g_primary);
g_width = vidmode->width;
g_height = vidmode->height;
}
}
if (not (g_window=glfwCreateWindow(g_width, g_height, windowTitle,
fullscreen and g_primary ? g_primary : NULL, NULL))) {
std::cerr << "Failed to create OpenGL context.\n";
glfwTerminate();
return 1;
}
glfwMakeContextCurrent(g_window);
GLUtils::PrintGLVersion();
// accommodate high DPI displays (e.g. mac retina displays)
glfwGetFramebufferSize(g_window, &g_width, &g_height);
glfwSetFramebufferSizeCallback(g_window, reshape);
glfwSetKeyCallback(g_window, keyboard);
glfwSetCursorPosCallback(g_window, motion);
glfwSetMouseButtonCallback(g_window, mouse);
glfwSetWindowCloseCallback(g_window, windowClose);
#if defined(OSD_USES_GLEW)
#ifdef CORE_PROFILE
// this is the only way to initialize glew correctly under core profile context.
glewExperimental = true;
#endif
if (GLenum r = glewInit() != GLEW_OK) {
printf("Failed to initialize glew. Error = %s\n", glewGetErrorString(r));
exit(1);
}
#ifdef CORE_PROFILE
// clear GL errors which was generated during glewInit()
glGetError();
#endif
#endif
initGL();
linkDefaultProgram();
glfwSwapInterval(0);
initHUD();
rebuildMesh();
while (g_running) {
idle();
display();
glfwPollEvents();
glfwSwapBuffers(g_window);
glFinish();
}
uninitGL();
glfwTerminate();
}