mirror of
https://github.com/PixarAnimationStudios/OpenSubdiv
synced 2025-01-09 08:10:07 +00:00
3ae50d1c50
New text: Copyright 2013 Pixar Licensed under the Apache License, Version 2.0 (the "Apache License") with the following modification; you may not use this file except in compliance with the Apache License and the following modification to it: Section 6. Trademarks. is deleted and replaced with: 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor and its affiliates, except as required to comply with Section 4(c) of the License and to reproduce the content of the NOTICE file. You may obtain a copy of the Apache License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the Apache License with the above modification is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the Apache License for the specific language governing permissions and limitations under the Apache License.
1076 lines
37 KiB
C++
1076 lines
37 KiB
C++
//
|
|
// Copyright 2013 Pixar
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "Apache License")
|
|
// with the following modification; you may not use this file except in
|
|
// compliance with the Apache License and the following modification to it:
|
|
// Section 6. Trademarks. is deleted and replaced with:
|
|
//
|
|
// 6. Trademarks. This License does not grant permission to use the trade
|
|
// names, trademarks, service marks, or product names of the Licensor
|
|
// and its affiliates, except as required to comply with Section 4(c) of
|
|
// the License and to reproduce the content of the NOTICE file.
|
|
//
|
|
// You may obtain a copy of the Apache License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the Apache License with the above modification is
|
|
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the Apache License for the specific
|
|
// language governing permissions and limitations under the Apache License.
|
|
//
|
|
|
|
#include "../osd/cpuEvalLimitKernel.h"
|
|
|
|
#include <math.h>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <string.h>
|
|
#include <algorithm>
|
|
#include <vector>
|
|
#include <cassert>
|
|
|
|
namespace OpenSubdiv {
|
|
namespace OPENSUBDIV_VERSION {
|
|
|
|
void
|
|
evalBilinear(float u, float v,
|
|
unsigned int const * vertexIndices,
|
|
OsdVertexBufferDescriptor const & inDesc,
|
|
float const * inQ,
|
|
OsdVertexBufferDescriptor const & outDesc,
|
|
float * outQ) {
|
|
|
|
assert( inDesc.length <= (outDesc.stride-outDesc.offset) );
|
|
|
|
float const * inOffset = inQ + inDesc.offset;
|
|
|
|
float * Q = outQ + outDesc.offset;
|
|
|
|
memset(Q, 0, inDesc.length*sizeof(float));
|
|
|
|
float ou = 1.0f - u,
|
|
ov = 1.0f - v,
|
|
w[4] = { ov*ou, v*ou, v*u, ov*u };
|
|
|
|
for (int i=0; i<4; ++i) {
|
|
|
|
float const * in = inOffset + vertexIndices[i]*inDesc.stride;
|
|
|
|
for (int k=0; k<inDesc.length; ++k) {
|
|
Q[k] += w[i] * in[k];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
inline void
|
|
evalCubicBSpline(float u, float B[4], float BU[4]) {
|
|
float t = u;
|
|
float s = 1.0f - u;
|
|
|
|
float A0 = s * (0.5f * s);
|
|
float A1 = t * (s + 0.5f * t) + s * (0.5f * s + t);
|
|
float A2 = t * ( 0.5f * t);
|
|
|
|
B[0] = 1.f/3.f * s * A0;
|
|
B[1] = (2.f/3.f * s + t) * A0 + (2.f/3.f * s + 1.f/3.f * t) * A1;
|
|
B[2] = (1.f/3.f * s + 2.f/3.f * t) * A1 + ( s + 2.f/3.f * t) * A2;
|
|
B[3] = 1.f/3.f * t * A2;
|
|
|
|
if (BU) {
|
|
BU[0] = - A0;
|
|
BU[1] = A0 - A1;
|
|
BU[2] = A1 - A2;
|
|
BU[3] = A2;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void
|
|
evalBSpline(float u, float v,
|
|
unsigned int const * vertexIndices,
|
|
OsdVertexBufferDescriptor const & inDesc,
|
|
float const * inQ,
|
|
OsdVertexBufferDescriptor const & outDesc,
|
|
float * outQ,
|
|
float * outDQU,
|
|
float * outDQV ) {
|
|
|
|
// make sure that we have enough space to store results
|
|
assert( inDesc.length <= (outDesc.stride-outDesc.offset) );
|
|
|
|
bool evalDeriv = (outDQU or outDQV);
|
|
|
|
float B[4], D[4],
|
|
*BU=(float*)alloca(inDesc.length*4*sizeof(float)),
|
|
*DU=(float*)alloca(inDesc.length*4*sizeof(float));
|
|
|
|
memset(BU, 0, inDesc.length*4*sizeof(float));
|
|
memset(DU, 0, inDesc.length*4*sizeof(float));
|
|
|
|
evalCubicBSpline(u, B, evalDeriv ? D : 0);
|
|
|
|
float const * inOffset = inQ + inDesc.offset;
|
|
|
|
for (int i=0; i<4; ++i) {
|
|
for (int j=0; j<4; ++j) {
|
|
|
|
float const * in = inOffset + vertexIndices[i+j*4]*inDesc.stride;
|
|
|
|
for (int k=0; k<inDesc.length; ++k) {
|
|
|
|
BU[i*inDesc.length+k] += in[k] * B[j];
|
|
|
|
if (evalDeriv)
|
|
DU[i*inDesc.length+k] += in[k] * D[j];
|
|
}
|
|
}
|
|
}
|
|
|
|
evalCubicBSpline(v, B, evalDeriv ? D : 0);
|
|
|
|
float * Q = outQ + outDesc.offset,
|
|
* dQU = outDQU + outDesc.offset,
|
|
* dQV = outDQV + outDesc.offset;
|
|
|
|
// clear result
|
|
memset(Q, 0, inDesc.length*sizeof(float));
|
|
if (evalDeriv) {
|
|
memset(dQU, 0, inDesc.length*sizeof(float));
|
|
memset(dQV, 0, inDesc.length*sizeof(float));
|
|
}
|
|
|
|
for (int i=0; i<4; ++i) {
|
|
for (int k=0; k<inDesc.length; ++k) {
|
|
Q[k] += BU[inDesc.length*i+k] * B[i];
|
|
|
|
if (evalDeriv) {
|
|
dQU[k] += DU[inDesc.length*i+k] * B[i];
|
|
dQV[k] += BU[inDesc.length*i+k] * D[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void
|
|
evalBoundary(float u, float v,
|
|
unsigned int const * vertexIndices,
|
|
OsdVertexBufferDescriptor const & inDesc,
|
|
float const * inQ,
|
|
OsdVertexBufferDescriptor const & outDesc,
|
|
float * outQ,
|
|
float * outDQU,
|
|
float * outDQV ) {
|
|
|
|
assert( inDesc.length <= (outDesc.stride-outDesc.offset) );
|
|
|
|
bool evalDeriv = (outDQU or outDQV);
|
|
|
|
float B[4], D[4],
|
|
*BU=(float*)alloca(inDesc.length*4*sizeof(float)),
|
|
*DU=(float*)alloca(inDesc.length*4*sizeof(float));
|
|
|
|
memset(BU, 0, inDesc.length*4*sizeof(float));
|
|
memset(DU, 0, inDesc.length*4*sizeof(float));
|
|
|
|
evalCubicBSpline(u, B, evalDeriv ? D : 0);
|
|
|
|
float const * inOffset = inQ + inDesc.offset;
|
|
|
|
|
|
// mirror the missing vertices (M)
|
|
//
|
|
// M0 -- M1 -- M2 -- M3 (corner)
|
|
// | | | |
|
|
// | | | |
|
|
// v0 -- v1 -- v2 -- v3 M : mirrored
|
|
// |.....|.....|.....|
|
|
// |.....|.....|.....|
|
|
// v4 -- v5 -- v6 -- v7 v : original Cv
|
|
// |.....|.....|.....|
|
|
// |.....|.....|.....|
|
|
// v8 -- v9 -- v10-- v11
|
|
|
|
float *M = (float*)alloca(inDesc.length*4*sizeof(float));
|
|
|
|
float const *v0 = inOffset + vertexIndices[0]*inDesc.stride,
|
|
*v1 = inOffset + vertexIndices[1]*inDesc.stride,
|
|
*v2 = inOffset + vertexIndices[2]*inDesc.stride,
|
|
*v3 = inOffset + vertexIndices[3]*inDesc.stride,
|
|
*v4 = inOffset + vertexIndices[4]*inDesc.stride,
|
|
*v5 = inOffset + vertexIndices[5]*inDesc.stride,
|
|
*v6 = inOffset + vertexIndices[6]*inDesc.stride,
|
|
*v7 = inOffset + vertexIndices[7]*inDesc.stride;
|
|
|
|
for (int k=0; k<inDesc.stride; ++k) {
|
|
M[0*inDesc.length+k] = 2.0f*v0[k] - v4[k]; // M0 = 2*v0 - v3
|
|
M[1*inDesc.length+k] = 2.0f*v1[k] - v5[k]; // M0 = 2*v1 - v4
|
|
M[2*inDesc.length+k] = 2.0f*v2[k] - v6[k]; // M1 = 2*v2 - v5
|
|
M[3*inDesc.length+k] = 2.0f*v3[k] - v7[k]; // M4 = 2*v2 - v1
|
|
}
|
|
|
|
for (int i=0; i<4; ++i) {
|
|
for (int j=0; j<4; ++j) {
|
|
|
|
// swap the missing row of verts with our mirrored ones
|
|
float const * in = j==0 ? &M[i*inDesc.stride] :
|
|
inOffset + vertexIndices[i+(j-1)*4]*inDesc.stride;
|
|
|
|
for (int k=0; k<inDesc.length; ++k) {
|
|
|
|
BU[i*inDesc.length+k] += in[k] * B[j];
|
|
|
|
if (evalDeriv)
|
|
DU[i*inDesc.length+k] += in[k] * D[j];
|
|
}
|
|
}
|
|
}
|
|
|
|
evalCubicBSpline(v, B, evalDeriv ? D : 0);
|
|
|
|
float * Q = outQ + outDesc.offset,
|
|
* dQU = outDQU + outDesc.offset,
|
|
* dQV = outDQV + outDesc.offset;
|
|
|
|
// clear result
|
|
memset(Q, 0, inDesc.length*sizeof(float));
|
|
if (evalDeriv) {
|
|
memset(dQU, 0, inDesc.length*sizeof(float));
|
|
memset(dQV, 0, inDesc.length*sizeof(float));
|
|
}
|
|
|
|
for (int i=0; i<4; ++i) {
|
|
for (int k=0; k<inDesc.length; ++k) {
|
|
Q[k] += BU[inDesc.length*i+k] * B[i];
|
|
|
|
if (evalDeriv) {
|
|
dQU[k] += DU[inDesc.length*i+k] * B[i];
|
|
dQV[k] += BU[inDesc.length*i+k] * D[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void
|
|
evalCorner(float u, float v,
|
|
unsigned int const * vertexIndices,
|
|
OsdVertexBufferDescriptor const & inDesc,
|
|
float const * inQ,
|
|
OsdVertexBufferDescriptor const & outDesc,
|
|
float * outQ,
|
|
float * outDQU,
|
|
float * outDQV ) {
|
|
|
|
assert( inDesc.length <= (outDesc.stride-outDesc.offset) );
|
|
|
|
int length = inDesc.length;
|
|
|
|
bool evalDeriv = (outDQU or outDQV);
|
|
|
|
float B[4], D[4],
|
|
*BU=(float*)alloca(length*4*sizeof(float)),
|
|
*DU=(float*)alloca(length*4*sizeof(float));
|
|
|
|
memset(BU, 0, length*4*sizeof(float));
|
|
memset(DU, 0, length*4*sizeof(float));
|
|
|
|
|
|
evalCubicBSpline(u, B, evalDeriv ? D : 0);
|
|
|
|
float const *inOffset = inQ + inDesc.offset;
|
|
|
|
// mirror the missing vertices (M)
|
|
//
|
|
// M0 -- M1 -- M2 -- M3 (corner)
|
|
// | | | |
|
|
// | | | |
|
|
// v0 -- v1 -- v2 -- M4 M : mirrored
|
|
// |.....|.....| |
|
|
// |.....|.....| |
|
|
// v3.--.v4.--.v5 -- M5 v : original Cv
|
|
// |.....|.....| |
|
|
// |.....|.....| |
|
|
// v6 -- v7 -- v8 -- M6
|
|
|
|
float *M = (float*)alloca(length*7*sizeof(float));
|
|
|
|
float const *v0 = inOffset + vertexIndices[0]*inDesc.stride,
|
|
*v1 = inOffset + vertexIndices[1]*inDesc.stride,
|
|
*v2 = inOffset + vertexIndices[2]*inDesc.stride,
|
|
*v3 = inOffset + vertexIndices[3]*inDesc.stride,
|
|
*v4 = inOffset + vertexIndices[4]*inDesc.stride,
|
|
*v5 = inOffset + vertexIndices[5]*inDesc.stride,
|
|
*v7 = inOffset + vertexIndices[7]*inDesc.stride,
|
|
*v8 = inOffset + vertexIndices[8]*inDesc.stride;
|
|
|
|
for (int k=0; k<inDesc.stride; ++k) {
|
|
M[0*length+k] = 2.0f*v0[k] - v3[k]; // M0 = 2*v0 - v3
|
|
M[1*length+k] = 2.0f*v1[k] - v4[k]; // M0 = 2*v1 - v4
|
|
M[2*length+k] = 2.0f*v2[k] - v5[k]; // M1 = 2*v2 - v5
|
|
|
|
M[4*length+k] = 2.0f*v2[k] - v1[k]; // M4 = 2*v2 - v1
|
|
M[5*length+k] = 2.0f*v5[k] - v4[k]; // M5 = 2*v5 - v4
|
|
M[6*length+k] = 2.0f*v8[k] - v7[k]; // M6 = 2*v8 - v7
|
|
|
|
// M3 = 2*M2 - M1
|
|
M[3*length+k] = 2.0f*M[2*length+k] - M[1*length+k];
|
|
}
|
|
|
|
for (int i=0; i<4; ++i) {
|
|
for (int j=0; j<4; ++j) {
|
|
|
|
float const * in = NULL;
|
|
|
|
if (j==0) { // (2)
|
|
in = &M[i*inDesc.stride];
|
|
} else if (i==3) {
|
|
in = &M[(j+3)*inDesc.stride];
|
|
} else {
|
|
in = inOffset + vertexIndices[i+(j-1)*3]*inDesc.stride;
|
|
}
|
|
|
|
assert(in);
|
|
|
|
for (int k=0; k<length; ++k) {
|
|
|
|
BU[i*length+k] += in[k] * B[j];
|
|
|
|
if (evalDeriv)
|
|
DU[i*length+k] += in[k] * D[j];
|
|
}
|
|
}
|
|
}
|
|
|
|
evalCubicBSpline(v, B, evalDeriv ? D : 0);
|
|
|
|
float * Q = outQ + outDesc.offset,
|
|
* dQU = outDQU + outDesc.offset,
|
|
* dQV = outDQV + outDesc.offset;
|
|
|
|
// clear result
|
|
memset(Q, 0, length*sizeof(float));
|
|
if (evalDeriv) {
|
|
memset(dQU, 0, length*sizeof(float));
|
|
memset(dQV, 0, length*sizeof(float));
|
|
}
|
|
|
|
for (int i=0; i<4; ++i) {
|
|
for (int k=0; k<length; ++k) {
|
|
Q[k] += BU[length*i+k] * B[i];
|
|
|
|
if (evalDeriv) {
|
|
dQU[k] += DU[length*i+k] * B[i];
|
|
dQV[k] += BU[length*i+k] * D[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static float ef_small[7] = {
|
|
0.813008f, 0.500000f, 0.363636f, 0.287505f,
|
|
0.238692f, 0.204549f, 0.179211f };
|
|
/*
|
|
static float ef_large[27] = {
|
|
0.812816f, 0.500000f, 0.363644f, 0.287514f,
|
|
0.238688f, 0.204544f, 0.179229f, 0.159657f,
|
|
0.144042f, 0.131276f, 0.120632f, 0.111614f,
|
|
0.103872f, 0.09715f, 0.0912559f, 0.0860444f,
|
|
0.0814022f, 0.0772401f, 0.0734867f, 0.0700842f,
|
|
0.0669851f, 0.0641504f, 0.0615475f, 0.0591488f,
|
|
0.0569311f, 0.0548745f, 0.0529621f
|
|
};
|
|
*/
|
|
|
|
inline void
|
|
univar4x4(float u, float B[4], float D[4])
|
|
{
|
|
float t = u;
|
|
float s = 1.0f - u;
|
|
|
|
float A0 = s * s;
|
|
float A1 = 2 * s * t;
|
|
float A2 = t * t;
|
|
|
|
B[0] = s * A0;
|
|
B[1] = t * A0 + s * A1;
|
|
B[2] = t * A1 + s * A2;
|
|
B[3] = t * A2;
|
|
|
|
if (D) {
|
|
D[0] = - A0;
|
|
D[1] = A0 - A1;
|
|
D[2] = A1 - A2;
|
|
D[3] = A2;
|
|
}
|
|
}
|
|
|
|
inline float
|
|
csf(unsigned int n, unsigned int j)
|
|
{
|
|
if (j%2 == 0) {
|
|
return cosf((2.0f * float(M_PI) * float(float(j-0)/2.0f))/(float(n)+3.0f));
|
|
} else {
|
|
return sinf((2.0f * float(M_PI) * float(float(j-1)/2.0f))/(float(n)+3.0f));
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
evalGregory(float u, float v,
|
|
unsigned int const * vertexIndices,
|
|
int const * vertexValenceBuffer,
|
|
unsigned int const * quadOffsetBuffer,
|
|
int maxValence,
|
|
OsdVertexBufferDescriptor const & inDesc,
|
|
float const * inQ,
|
|
OsdVertexBufferDescriptor const & outDesc,
|
|
float * outQ,
|
|
float * outDQU,
|
|
float * outDQV )
|
|
{
|
|
// vertex
|
|
|
|
// make sure that we have enough space to store results
|
|
assert( inDesc.length <= (outDesc.stride-outDesc.offset) );
|
|
|
|
bool evalDeriv = (outDQU or outDQV);
|
|
|
|
int valences[4], length=inDesc.length;
|
|
|
|
float const * inOffset = inQ + inDesc.offset;
|
|
|
|
float *r = (float*)alloca((maxValence+2)*4*length*sizeof(float)), *rp,
|
|
*e0 = r + maxValence*4*length,
|
|
*e1 = e0 + 4*length;
|
|
memset(r, 0, (maxValence+2)*4*length*sizeof(float));
|
|
|
|
float *f=(float*)alloca(maxValence*length*sizeof(float)),
|
|
*pos=(float*)alloca(length*sizeof(float)),
|
|
*opos=(float*)alloca(length*4*sizeof(float));
|
|
memset(opos, 0, length*4*sizeof(float));
|
|
|
|
for (int vid=0; vid < 4; ++vid) {
|
|
|
|
int vertexID = vertexIndices[vid];
|
|
|
|
const int *valenceTable = vertexValenceBuffer + vertexID * (2*maxValence+1);
|
|
int valence = abs(*valenceTable);
|
|
assert(valence<=maxValence);
|
|
valences[vid] = valence;
|
|
|
|
memcpy(pos, inOffset + vertexID*inDesc.stride, length*sizeof(float));
|
|
|
|
rp=r+vid*maxValence*length;
|
|
|
|
int vofs = vid*length;
|
|
|
|
for (int i=0; i<valence; ++i) {
|
|
unsigned int im = (i+valence-1)%valence,
|
|
ip = (i+1)%valence;
|
|
|
|
int idx_neighbor = valenceTable[2*i + 0 + 1];
|
|
int idx_diagonal = valenceTable[2*i + 1 + 1];
|
|
int idx_neighbor_p = valenceTable[2*ip + 0 + 1];
|
|
int idx_neighbor_m = valenceTable[2*im + 0 + 1];
|
|
int idx_diagonal_m = valenceTable[2*im + 1 + 1];
|
|
|
|
float const * neighbor = inOffset + idx_neighbor * inDesc.stride;
|
|
float const * diagonal = inOffset + idx_diagonal * inDesc.stride;
|
|
float const * neighbor_p = inOffset + idx_neighbor_p * inDesc.stride;
|
|
float const * neighbor_m = inOffset + idx_neighbor_m * inDesc.stride;
|
|
float const * diagonal_m = inOffset + idx_diagonal_m * inDesc.stride;
|
|
|
|
float *fp = f+i*length;
|
|
|
|
for (int k=0; k<length; ++k) {
|
|
fp[k] = (pos[k]*float(valence) + (neighbor_p[k]+neighbor[k])*2.0f + diagonal[k])/(float(valence)+5.0f);
|
|
|
|
opos[vofs+k] += fp[k];
|
|
rp[i*length+k] =(neighbor_p[k]-neighbor_m[k])/3.0f + (diagonal[k]-diagonal_m[k])/6.0f;
|
|
}
|
|
|
|
}
|
|
|
|
for (int k=0; k<length; ++k) {
|
|
opos[vofs+k] /= valence;
|
|
}
|
|
|
|
for (int i=0; i<valence; ++i) {
|
|
int im = (i+valence-1)%valence;
|
|
for (int k=0; k<length; ++k) {
|
|
float e = 0.5f*(f[i*length+k]+f[im*length+k]);
|
|
e0[vofs+k] += csf(valence-3, 2*i) * e;
|
|
e1[vofs+k] += csf(valence-3, 2*i+1) * e;
|
|
}
|
|
}
|
|
|
|
for (int k=0; k<length; ++k) {
|
|
e0[vofs+k] *= ef_small[valence-3];
|
|
e1[vofs+k] *= ef_small[valence-3];
|
|
}
|
|
}
|
|
|
|
// tess control
|
|
|
|
// Control Vertices based on :
|
|
// "Approximating Subdivision Surfaces with Gregory Patches for Hardware Tessellation"
|
|
// Loop, Schaefer, Ni, Castafio (ACM ToG Siggraph Asia 2009)
|
|
//
|
|
// P3 e3- e2+ E2
|
|
// O--------O--------O--------O
|
|
// | | | |
|
|
// | | | |
|
|
// | | f3- | f2+ |
|
|
// | O O |
|
|
// e3+ O------O O------O e2-
|
|
// | f3+ f2- |
|
|
// | |
|
|
// | |
|
|
// | f0- f1+ |
|
|
// e0- O------O O------O e1+
|
|
// | O O |
|
|
// | | f0+ | f1- |
|
|
// | | | |
|
|
// | | | |
|
|
// O--------O--------O--------O
|
|
// P0 e0+ e1- E1
|
|
//
|
|
|
|
float *Ep=(float*)alloca(length*4*sizeof(float)),
|
|
*Em=(float*)alloca(length*4*sizeof(float)),
|
|
*Fp=(float*)alloca(length*4*sizeof(float)),
|
|
*Fm=(float*)alloca(length*4*sizeof(float));
|
|
|
|
for (int vid=0; vid<4; ++vid) {
|
|
|
|
int ip = (vid+1)%4;
|
|
int im = (vid+3)%4;
|
|
int n = valences[vid];
|
|
unsigned int const *quadOffsets = quadOffsetBuffer;
|
|
|
|
int start = quadOffsets[vid] & 0x00ff;
|
|
int prev = (quadOffsets[vid] & 0xff00) / 256;
|
|
|
|
for (int k=0, ofs=vid*length; k<length; ++k, ++ofs) {
|
|
|
|
Ep[ofs] = opos[ofs] + e0[ofs] * csf(n-3, 2*start) + e1[ofs]*csf(n-3, 2*start +1);
|
|
Em[ofs] = opos[ofs] + e0[ofs] * csf(n-3, 2*prev ) + e1[ofs]*csf(n-3, 2*prev + 1);
|
|
}
|
|
|
|
unsigned int np = valences[ip],
|
|
nm = valences[im];
|
|
|
|
unsigned int prev_p = (quadOffsets[ip] & 0xff00) / 256,
|
|
start_m = quadOffsets[im] & 0x00ff;
|
|
|
|
float *Em_ip=(float*)alloca(length*sizeof(float)),
|
|
*Ep_im=(float*)alloca(length*sizeof(float));
|
|
|
|
for (int k=0, ipofs=ip*length, imofs=im*length; k<length; ++k, ++ipofs, ++imofs) {
|
|
Em_ip[k] = opos[ipofs] + e0[ipofs]*csf(np-3, 2*prev_p) + e1[ipofs]*csf(np-3, 2*prev_p+1);
|
|
Ep_im[k] = opos[imofs] + e0[imofs]*csf(nm-3, 2*start_m) + e1[imofs]*csf(nm-3, 2*start_m+1);
|
|
}
|
|
|
|
float s1 = 3.0f - 2.0f*csf(n-3,2)-csf(np-3,2),
|
|
s2 = 2.0f*csf(n-3,2),
|
|
s3 = 3.0f -2.0f*cosf(2.0f*float(M_PI)/float(n)) - cosf(2.0f*float(M_PI)/float(nm));
|
|
|
|
rp = r + vid*maxValence*length;
|
|
for (int k=0, ofs=vid*length; k<length; ++k, ++ofs) {
|
|
Fp[ofs] = (csf(np-3,2)*opos[ofs] + s1*Ep[ofs] + s2*Em_ip[k] + rp[start*length+k])/3.0f;
|
|
Fm[ofs] = (csf(nm-3,2)*opos[ofs] + s3*Em[ofs] + s2*Ep_im[k] - rp[prev*length+k])/3.0f;
|
|
}
|
|
}
|
|
|
|
float * p[20];
|
|
for (int i=0, ofs=0; i<4; ++i, ofs+=length) {
|
|
p[i*5+0] = opos + ofs;
|
|
p[i*5+1] = Ep + ofs;
|
|
p[i*5+2] = Em + ofs;
|
|
p[i*5+3] = Fp + ofs;
|
|
p[i*5+4] = Fm + ofs;
|
|
}
|
|
|
|
float U = 1-u, V=1-v;
|
|
float d11 = u+v; if(u+v==0.0f) d11 = 1.0f;
|
|
float d12 = U+v; if(U+v==0.0f) d12 = 1.0f;
|
|
float d21 = u+V; if(u+V==0.0f) d21 = 1.0f;
|
|
float d22 = U+V; if(U+V==0.0f) d22 = 1.0f;
|
|
|
|
float *q=(float*)alloca(length*16*sizeof(float));
|
|
for (int k=0; k<length; ++k) {
|
|
q[ 5*length+k] = (u*p[ 3][k] + v*p[ 4][k])/d11;
|
|
q[ 6*length+k] = (U*p[ 9][k] + v*p[ 8][k])/d12;
|
|
q[ 9*length+k] = (u*p[19][k] + V*p[18][k])/d21;
|
|
q[10*length+k] = (U*p[13][k] + V*p[14][k])/d22;
|
|
}
|
|
|
|
memcpy(q+ 0*length, p[ 0], length*sizeof(float));
|
|
memcpy(q+ 1*length, p[ 1], length*sizeof(float));
|
|
memcpy(q+ 2*length, p[ 7], length*sizeof(float));
|
|
memcpy(q+ 3*length, p[ 5], length*sizeof(float));
|
|
memcpy(q+ 4*length, p[ 2], length*sizeof(float));
|
|
memcpy(q+ 7*length, p[ 6], length*sizeof(float));
|
|
memcpy(q+ 8*length, p[16], length*sizeof(float));
|
|
memcpy(q+11*length, p[12], length*sizeof(float));
|
|
memcpy(q+12*length, p[15], length*sizeof(float));
|
|
memcpy(q+13*length, p[17], length*sizeof(float));
|
|
memcpy(q+14*length, p[11], length*sizeof(float));
|
|
memcpy(q+15*length, p[10], length*sizeof(float));
|
|
|
|
float B[4], D[4],
|
|
*BU=(float*)alloca(inDesc.length*4*sizeof(float)),
|
|
*DU=(float*)alloca(inDesc.length*4*sizeof(float));
|
|
memset(BU, 0, inDesc.length*4*sizeof(float));
|
|
memset(DU, 0, inDesc.length*4*sizeof(float));
|
|
|
|
univar4x4(u, B, evalDeriv ? D : 0);
|
|
|
|
for (int i=0; i<4; ++i) {
|
|
for (int j=0; j<4; ++j) {
|
|
|
|
float const * in = q + (i+j*4)*length;
|
|
|
|
for (int k=0; k<inDesc.length; ++k) {
|
|
|
|
BU[i*inDesc.length+k] += in[k] * B[j];
|
|
|
|
if (evalDeriv)
|
|
DU[i*inDesc.length+k] += in[k] * D[j];
|
|
}
|
|
}
|
|
}
|
|
|
|
univar4x4(v, B, evalDeriv ? D : 0);
|
|
|
|
float * Q = outQ + outDesc.offset;
|
|
float * dQU = outDQU + outDesc.offset;
|
|
float * dQV = outDQV + outDesc.offset;
|
|
|
|
// clear result
|
|
memset(Q, 0, outDesc.length*sizeof(float));
|
|
if (evalDeriv) {
|
|
memset(dQU, 0, outDesc.length*sizeof(float));
|
|
memset(dQV, 0, outDesc.length*sizeof(float));
|
|
}
|
|
|
|
for (int i=0; i<4; ++i) {
|
|
for (int k=0; k<inDesc.length; ++k) {
|
|
Q[k] += BU[inDesc.length*i+k] * B[i];
|
|
|
|
if (evalDeriv) {
|
|
dQU[k] += DU[inDesc.length*i+k] * B[i];
|
|
dQV[k] += BU[inDesc.length*i+k] * D[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
evalGregoryBoundary(float u, float v,
|
|
unsigned int const * vertexIndices,
|
|
int const * vertexValenceBuffer,
|
|
unsigned int const * quadOffsetBuffer,
|
|
int maxValence,
|
|
OsdVertexBufferDescriptor const & inDesc,
|
|
float const * inQ,
|
|
OsdVertexBufferDescriptor const & outDesc,
|
|
float * outQ,
|
|
float * outDQU,
|
|
float * outDQV )
|
|
{
|
|
// vertex
|
|
|
|
// make sure that we have enough space to store results
|
|
assert( inDesc.length <= (outDesc.stride-outDesc.offset) );
|
|
|
|
bool evalDeriv = (outDQU or outDQV);
|
|
|
|
int valences[4], zerothNeighbors[4], length=inDesc.length;
|
|
|
|
float const * inOffset = inQ + inDesc.offset;
|
|
|
|
float *r = (float*)alloca((maxValence+2)*4*length*sizeof(float)), *rp,
|
|
*e0 = r + maxValence*4*length,
|
|
*e1 = e0 + 4*length;
|
|
memset(r, 0, (maxValence+2)*4*length*sizeof(float));
|
|
|
|
float *f=(float*)alloca(maxValence*length*sizeof(float)),
|
|
*org=(float*)alloca(length*4*sizeof(float)),
|
|
*opos=(float*)alloca(length*4*sizeof(float));
|
|
|
|
memset(opos, 0, length*4*sizeof(float));
|
|
|
|
for (int vid=0; vid < 4; ++vid) {
|
|
|
|
int vertexID = vertexIndices[vid];
|
|
|
|
const int *valenceTable = vertexValenceBuffer + vertexID * (2*maxValence+1);
|
|
int valence = *valenceTable,
|
|
ivalence = abs(valence);
|
|
|
|
assert(ivalence<=maxValence);
|
|
valences[vid] = valence;
|
|
|
|
int vofs = vid * length;
|
|
|
|
float *pos=org + vofs;
|
|
memcpy(pos, inOffset + vertexID*inDesc.stride, length*sizeof(float));
|
|
|
|
int boundaryEdgeNeighbors[2];
|
|
unsigned int currNeighbor = 0,
|
|
ibefore=0,
|
|
zerothNeighbor=0;
|
|
|
|
rp=r+vid*maxValence*length;
|
|
|
|
for (int i=0; i<ivalence; ++i) {
|
|
unsigned int im = (i+ivalence-1)%ivalence,
|
|
ip = (i+1)%ivalence;
|
|
|
|
int idx_neighbor = valenceTable[2*i + 0 + 1];
|
|
int idx_diagonal = valenceTable[2*i + 1 + 1];
|
|
int idx_neighbor_p = valenceTable[2*ip + 0 + 1];
|
|
int idx_neighbor_m = valenceTable[2*im + 0 + 1];
|
|
int idx_diagonal_m = valenceTable[2*im + 1 + 1];
|
|
|
|
int valenceNeighbor = vertexValenceBuffer[idx_neighbor * (2*maxValence+1)];
|
|
if (valenceNeighbor < 0) {
|
|
boundaryEdgeNeighbors[currNeighbor++] = idx_neighbor;
|
|
if (currNeighbor == 1) {
|
|
ibefore = i;
|
|
zerothNeighbor = i;
|
|
} else {
|
|
if (i-ibefore == 1) {
|
|
int tmp = boundaryEdgeNeighbors[0];
|
|
boundaryEdgeNeighbors[0] = boundaryEdgeNeighbors[1];
|
|
boundaryEdgeNeighbors[1] = tmp;
|
|
zerothNeighbor = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
float const * neighbor = inOffset + idx_neighbor * inDesc.stride;
|
|
float const * diagonal = inOffset + idx_diagonal * inDesc.stride;
|
|
float const * neighbor_p = inOffset + idx_neighbor_p * inDesc.stride;
|
|
float const * neighbor_m = inOffset + idx_neighbor_m * inDesc.stride;
|
|
float const * diagonal_m = inOffset + idx_diagonal_m * inDesc.stride;
|
|
|
|
float *fp = f+i*length;
|
|
|
|
for (int k=0; k<length; ++k) {
|
|
fp[k] = (pos[k]*float(ivalence) + (neighbor_p[k]+neighbor[k])*2.0f + diagonal[k])/(float(ivalence)+5.0f);
|
|
|
|
opos[vofs+k] += fp[k];
|
|
rp[i*length+k] =(neighbor_p[k]-neighbor_m[k])/3.0f + (diagonal[k]-diagonal_m[k])/6.0f;
|
|
}
|
|
}
|
|
|
|
for (int k=0; k<length; ++k) {
|
|
opos[vofs+k] /= ivalence;
|
|
}
|
|
|
|
zerothNeighbors[vid] = zerothNeighbor;
|
|
|
|
if (currNeighbor == 1) {
|
|
boundaryEdgeNeighbors[1] = boundaryEdgeNeighbors[0];
|
|
}
|
|
|
|
for (int i=0; i<ivalence; ++i) {
|
|
unsigned int im = (i+ivalence-1)%ivalence;
|
|
for (int k=0; k<length; ++k) {
|
|
float e = 0.5f*(f[i*length+k]+f[im*length+k]);
|
|
e0[vofs+k] += csf(ivalence-3, 2*i ) * e;
|
|
e1[vofs+k] += csf(ivalence-3, 2*i+1) * e;
|
|
}
|
|
}
|
|
|
|
for (int k=0; k<length; ++k) {
|
|
e0[vofs+k] *= ef_small[ivalence-3];
|
|
e1[vofs+k] *= ef_small[ivalence-3];
|
|
}
|
|
|
|
if (valence<0) {
|
|
if (ivalence>2) {
|
|
for (int k=0; k<length; ++k) {
|
|
opos[vofs+k] = (inOffset[boundaryEdgeNeighbors[0]*inDesc.stride+k] +
|
|
inOffset[boundaryEdgeNeighbors[1]*inDesc.stride+k] + 4.0f*pos[k])/6.0f;
|
|
}
|
|
} else {
|
|
memcpy(opos, pos, length*sizeof(float));
|
|
}
|
|
|
|
float k = float(float(ivalence) - 1.0f); //k is the number of faces
|
|
float c = cosf(float(M_PI)/k);
|
|
float s = sinf(float(M_PI)/k);
|
|
float gamma = -(4.0f*s)/(3.0f*k+c);
|
|
float alpha_0k = -((1.0f+2.0f*c)*sqrtf(1.0f+c))/((3.0f*k+c)*sqrtf(1.0f-c));
|
|
float beta_0 = s/(3.0f*k + c);
|
|
|
|
int idx_diagonal = valenceTable[2*zerothNeighbor + 1 + 1];
|
|
assert(idx_diagonal>0);
|
|
float const * diagonal = inOffset + idx_diagonal * inDesc.stride;
|
|
|
|
for (int k=0; k<length; ++k) {
|
|
e0[vofs+k] = (inOffset[boundaryEdgeNeighbors[0]*inDesc.stride+k] -
|
|
inOffset[boundaryEdgeNeighbors[1]*inDesc.stride+k])/6.0f;
|
|
|
|
e1[vofs+k] = gamma * pos[k] + beta_0 * diagonal[k] +
|
|
(inOffset[boundaryEdgeNeighbors[0]*inDesc.stride+k] +
|
|
inOffset[boundaryEdgeNeighbors[1]*inDesc.stride+k]) * alpha_0k;
|
|
|
|
}
|
|
|
|
for (int x=1; x<ivalence-1; ++x) {
|
|
unsigned int curri = ((x + zerothNeighbor)%ivalence);
|
|
float alpha = (4.0f*sinf((float(M_PI) * float(x))/k))/(3.0f*k+c);
|
|
float beta = (sinf((float(M_PI) * float(x))/k) + sinf((float(M_PI) * float(x+1))/k))/(3.0f*k+c);
|
|
|
|
int idx_neighbor = valenceTable[2*curri + 0 + 1],
|
|
idx_diagonal = valenceTable[2*curri + 1 + 1];
|
|
assert( idx_neighbor>0 and idx_diagonal>0 );
|
|
|
|
float const * neighbor = inOffset + idx_neighbor * inDesc.stride,
|
|
* diagonal = inOffset + idx_diagonal * inDesc.stride;
|
|
|
|
for (int k=0; k<length; ++k) {
|
|
e1[vofs+k] += alpha*neighbor[k] + beta*diagonal[k];
|
|
}
|
|
}
|
|
|
|
for (int k=0; k<length; ++k) {
|
|
e1[vofs+k] /= 3.0f;
|
|
}
|
|
}
|
|
}
|
|
|
|
// tess control
|
|
|
|
// Control Vertices based on :
|
|
// "Approximating Subdivision Surfaces with Gregory Patches for Hardware Tessellation"
|
|
// Loop, Schaefer, Ni, Castafio (ACM ToG Siggraph Asia 2009)
|
|
//
|
|
// P3 e3- e2+ E2
|
|
// O--------O--------O--------O
|
|
// | | | |
|
|
// | | | |
|
|
// | | f3- | f2+ |
|
|
// | O O |
|
|
// e3+ O------O O------O e2-
|
|
// | f3+ f2- |
|
|
// | |
|
|
// | |
|
|
// | f0- f1+ |
|
|
// e0- O------O O------O e1+
|
|
// | O O |
|
|
// | | f0+ | f1- |
|
|
// | | | |
|
|
// | | | |
|
|
// O--------O--------O--------O
|
|
// P0 e0+ e1- E1
|
|
//
|
|
|
|
float *Ep=(float*)alloca(length*4*sizeof(float)),
|
|
*Em=(float*)alloca(length*4*sizeof(float)),
|
|
*Fp=(float*)alloca(length*4*sizeof(float)),
|
|
*Fm=(float*)alloca(length*4*sizeof(float));
|
|
|
|
for (int vid=0; vid<4; ++vid) {
|
|
|
|
unsigned int ip = (vid+1)%4,
|
|
im = (vid+3)%4,
|
|
n = abs(valences[vid]),
|
|
ivalence = n;
|
|
|
|
const unsigned int *quadOffsets = quadOffsetBuffer;
|
|
|
|
int vofs = vid * length;
|
|
|
|
unsigned int start = quadOffsets[vid] & 0x00ff,
|
|
prev = (quadOffsets[vid] & 0xff00) / 256,
|
|
np = abs(valences[ip]),
|
|
nm = abs(valences[im]),
|
|
start_m = quadOffsets[im] & 0x00ff,
|
|
prev_p = (quadOffsets[ip] & 0xff00) / 256;
|
|
|
|
float *Em_ip=(float*)alloca(length*sizeof(float)),
|
|
*Ep_im=(float*)alloca(length*sizeof(float));
|
|
|
|
if (valences[ip]<-2) {
|
|
unsigned int j = (np + prev_p - zerothNeighbors[ip]) % np;
|
|
for (int k=0, ipofs=ip*length; k<length; ++k, ++ipofs) {
|
|
Em_ip[k] = opos[ipofs] + cosf((float(M_PI)*j)/float(np-1))*e0[ipofs] + sinf((float(M_PI)*j)/float(np-1))*e1[ipofs];
|
|
}
|
|
} else {
|
|
for (int k=0, ipofs=ip*length; k<length; ++k, ++ipofs) {
|
|
Em_ip[k] = opos[ipofs] + e0[ipofs]*csf(np-3,2*prev_p) + e1[ipofs]*csf(np-3,2*prev_p+1);
|
|
}
|
|
}
|
|
|
|
if (valences[im]<-2) {
|
|
unsigned int j = (nm + start_m - zerothNeighbors[im]) % nm;
|
|
for (int k=0, imofs=im*length; k<length; ++k, ++imofs) {
|
|
Ep_im[k] = opos[imofs] + cosf((float(M_PI)*j)/float(nm-1))*e0[imofs] + sinf((float(M_PI)*j)/float(nm-1))*e1[imofs];
|
|
}
|
|
} else {
|
|
for (int k=0, imofs=im*length; k<length; ++k, ++imofs) {
|
|
Ep_im[k] = opos[imofs] + e0[imofs]*csf(nm-3,2*start_m) + e1[imofs]*csf(nm-3,2*start_m+1);
|
|
}
|
|
}
|
|
|
|
if (valences[vid] < 0) {
|
|
n = (n-1)*2;
|
|
}
|
|
if (valences[im] < 0) {
|
|
nm = (nm-1)*2;
|
|
}
|
|
if (valences[ip] < 0) {
|
|
np = (np-1)*2;
|
|
}
|
|
|
|
rp=r+vid*maxValence*length;
|
|
|
|
if (valences[vid] > 2) {
|
|
float s1 = 3.0f - 2.0f*csf(n-3,2)-csf(np-3,2),
|
|
s2 = 2.0f*csf(n-3,2),
|
|
s3 = 3.0f -2.0f*cosf(2.0f*float(M_PI)/float(n)) - cosf(2.0f*float(M_PI)/float(nm));
|
|
|
|
for (int k=0, ofs=vofs; k<length; ++k, ++ofs) {
|
|
Ep[ofs] = opos[ofs] + e0[ofs] * csf(n-3, 2*start) + e1[ofs]*csf(n-3, 2*start +1);
|
|
Em[ofs] = opos[ofs] + e0[ofs] * csf(n-3, 2*prev ) + e1[ofs]*csf(n-3, 2*prev + 1);
|
|
Fp[ofs] = (csf(np-3,2)*opos[ofs] + s1*Ep[ofs] + s2*Em_ip[k] + rp[start*length+k])/3.0f;
|
|
Fm[ofs] = (csf(nm-3,2)*opos[ofs] + s3*Em[ofs] + s2*Ep_im[k] - rp[prev*length+k])/3.0f;
|
|
}
|
|
} else if (valences[vid] < -2) {
|
|
unsigned int jp = (ivalence + start - zerothNeighbors[vid]) % ivalence,
|
|
jm = (ivalence + prev - zerothNeighbors[vid]) % ivalence;
|
|
|
|
float s1 = 3-2*csf(n-3,2)-csf(np-3,2),
|
|
s2 = 2*csf(n-3,2),
|
|
s3 = 3.0f-2.0f*cosf(2.0f*float(M_PI)/n)-cosf(2.0f*float(M_PI)/nm);
|
|
|
|
for (int k=0, ofs=vofs; k<length; ++k, ++ofs) {
|
|
Ep[ofs] = opos[ofs] + cosf((float(M_PI)*jp)/float(ivalence-1))*e0[ofs] + sinf((float(M_PI)*jp)/float(ivalence-1))*e1[ofs];
|
|
Em[ofs] = opos[ofs] + cosf((float(M_PI)*jm)/float(ivalence-1))*e0[ofs] + sinf((float(M_PI)*jm)/float(ivalence-1))*e1[ofs];
|
|
Fp[ofs] = (csf(np-3,2)*opos[ofs] + s1*Ep[ofs] + s2*Em_ip[k] + rp[start*length+k])/3.0f;
|
|
Fm[ofs] = (csf(nm-3,2)*opos[ofs] + s3*Em[ofs] + s2*Ep_im[k] - rp[prev*length+k])/3.0f;
|
|
}
|
|
|
|
if (valences[im]<0) {
|
|
float s1=3-2*csf(n-3,2)-csf(np-3,2);
|
|
for (int k=0, ofs=vofs; k<length; ++k, ++ofs) {
|
|
Fp[ofs] = Fm[ofs] = (csf(np-3,2)*opos[ofs] + s1*Ep[ofs] + s2*Em_ip[k] + rp[start*length+k])/3.0f;
|
|
}
|
|
} else if (valences[ip]<0) {
|
|
float s1 = 3.0f-2.0f*cosf(2.0f*float(M_PI)/n)-cosf(2.0f*float(M_PI)/nm);
|
|
for (int k=0, ofs=vofs; k<length; ++k, ++ofs) {
|
|
Fm[ofs] = Fp[ofs] = (csf(nm-3,2)*opos[ofs] + s1*Em[ofs] + s2*Ep_im[k] - rp[prev*length+k])/3.0f;
|
|
}
|
|
}
|
|
} else if (valences[vid]==-2) {
|
|
for (int k=0, ofs=vofs, ipofs=ip*length, imofs=im*length; k<length; ++k, ++ofs, ++ipofs, ++imofs) {
|
|
Ep[ofs] = (2.0f * org[ofs] + org[ipofs])/3.0f;
|
|
Em[ofs] = (2.0f * org[ofs] + org[imofs])/3.0f;
|
|
Fp[ofs] = Fm[ofs] = (4.0f * org[ofs] + org[((vid+2)%n)*inDesc.stride+k] + 2.0f * org[ipofs] + 2.0f * org[imofs])/9.0f;
|
|
}
|
|
}
|
|
}
|
|
|
|
float * p[20];
|
|
for (int vid=0, ofs=0; vid<4; ++vid, ofs+=length) {
|
|
p[vid*5+0] = opos + ofs;
|
|
p[vid*5+1] = Ep + ofs;
|
|
p[vid*5+2] = Em + ofs;
|
|
p[vid*5+3] = Fp + ofs;
|
|
p[vid*5+4] = Fm + ofs;
|
|
}
|
|
|
|
float U = 1-u, V=1-v;
|
|
float d11 = u+v; if(u+v==0.0f) d11 = 1.0f;
|
|
float d12 = U+v; if(U+v==0.0f) d12 = 1.0f;
|
|
float d21 = u+V; if(u+V==0.0f) d21 = 1.0f;
|
|
float d22 = U+V; if(U+V==0.0f) d22 = 1.0f;
|
|
|
|
float *q=(float*)alloca(length*16*sizeof(float));
|
|
for (int k=0; k<length; ++k) {
|
|
q[ 5*length+k] = (u*p[ 3][k] + v*p[ 4][k])/d11;
|
|
q[ 6*length+k] = (U*p[ 9][k] + v*p[ 8][k])/d12;
|
|
q[ 9*length+k] = (u*p[19][k] + V*p[18][k])/d21;
|
|
q[10*length+k] = (U*p[13][k] + V*p[14][k])/d22;
|
|
}
|
|
|
|
memcpy(q+ 0*length, p[ 0], length*sizeof(float));
|
|
memcpy(q+ 1*length, p[ 1], length*sizeof(float));
|
|
memcpy(q+ 2*length, p[ 7], length*sizeof(float));
|
|
memcpy(q+ 3*length, p[ 5], length*sizeof(float));
|
|
memcpy(q+ 4*length, p[ 2], length*sizeof(float));
|
|
memcpy(q+ 7*length, p[ 6], length*sizeof(float));
|
|
memcpy(q+ 8*length, p[16], length*sizeof(float));
|
|
memcpy(q+11*length, p[12], length*sizeof(float));
|
|
memcpy(q+12*length, p[15], length*sizeof(float));
|
|
memcpy(q+13*length, p[17], length*sizeof(float));
|
|
memcpy(q+14*length, p[11], length*sizeof(float));
|
|
memcpy(q+15*length, p[10], length*sizeof(float));
|
|
|
|
float B[4], D[4],
|
|
*BU=(float*)alloca(inDesc.length*4*sizeof(float)),
|
|
*DU=(float*)alloca(inDesc.length*4*sizeof(float));
|
|
memset(BU, 0, inDesc.length*4*sizeof(float));
|
|
memset(DU, 0, inDesc.length*4*sizeof(float));
|
|
|
|
univar4x4(u, B, evalDeriv ? D : 0);
|
|
|
|
for (int i=0; i<4; ++i) {
|
|
for (int j=0; j<4; ++j) {
|
|
|
|
float const * in = q + (i+j*4)*length;
|
|
|
|
for (int k=0; k<inDesc.length; ++k) {
|
|
|
|
BU[i*inDesc.length+k] += in[k] * B[j];
|
|
|
|
if (evalDeriv)
|
|
DU[i*inDesc.length+k] += in[k] * D[j];
|
|
}
|
|
}
|
|
}
|
|
|
|
univar4x4(v, B, evalDeriv ? D : 0);
|
|
|
|
float * Q = outQ + outDesc.offset;
|
|
float * dQU = outDQU + outDesc.offset;
|
|
float * dQV = outDQV + outDesc.offset;
|
|
|
|
// clear result
|
|
memset(Q, 0, outDesc.length*sizeof(float));
|
|
if (evalDeriv) {
|
|
memset(dQU, 0, outDesc.length*sizeof(float));
|
|
memset(dQV, 0, outDesc.length*sizeof(float));
|
|
}
|
|
|
|
for (int i=0; i<4; ++i) {
|
|
for (int k=0; k<inDesc.length; ++k) {
|
|
Q[k] += BU[inDesc.length*i+k] * B[i];
|
|
|
|
if (evalDeriv) {
|
|
dQU[k] += DU[inDesc.length*i+k] * B[i];
|
|
dQV[k] += BU[inDesc.length*i+k] * D[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
} // end namespace OPENSUBDIV_VERSION
|
|
} // end namespace OpenSubdiv
|