OpenSubdiv/opensubdiv/far/patchBuilder.cpp
barry 0520fc53ff Extended non-manifold patches to irregular to prevent gaps:
- Far::PatchBuilder additions to identify spans around non-manifold corners
    - re-organized patch regularity test to inspect individual corner features
    - updated partial span gathering function to handle non-manifold cases
    - ensure vertex tag xordinary bit remains unset when non-manifold
2018-11-01 10:17:40 -07:00

1617 lines
61 KiB
C++

//
// Copyright 2018 DreamWorks Animation LLC.
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#include "../far/patchBuilder.h"
#include "../far/catmarkPatchBuilder.h"
#include "../far/loopPatchBuilder.h"
#include "../far/bilinearPatchBuilder.h"
#include "../vtr/level.h"
#include "../vtr/fvarLevel.h"
#include "../vtr/refinement.h"
#include "../vtr/stackBuffer.h"
#include <cassert>
#include <cstdio>
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
using Vtr::Array;
using Vtr::ConstArray;
using Vtr::internal::Level;
using Vtr::internal::FVarLevel;
using Vtr::internal::Refinement;
using Vtr::internal::StackBuffer;
namespace Far {
//
// Local helper functions for topology queries:
//
namespace {
//
// Inline methods to encapsulate fast and specific modulus operations.
// The mod-4 case is trivial. For mod-N, since we are always doing
// the test (i + 1) % N, or (i - 1 + N) % N, the subtraction suffices.
//
inline int fastMod4(int x) {
return x & 0x3;
}
inline int fastMod3(int x) {
static int const mod3Array[] = { 0, 1, 2, 0, 1, 2 };
return mod3Array[x];
}
inline int fastModN(int x, int N) {
return (x < N) ? x : (x - N);
}
//
// Local helper functions for identifying the subset of a ring around a
// corner that contributes to a patch -- parameterized by a mask that
// indicates what kind of edge is to delimit the span.
//
// Note that the two main methods need both face-verts and face-edges
// for each corner, and that we don't really need the face-index once
// we have them -- consider passing the fVerts and fEdges as arguments
// as they will otherwise be retrieved repeatedly for each corner.
//
// (As these mature it is likely they will be moved to Vtr, as a method
// to identify a VSpan would complement the existing method to gather
// the vertex/values associated with it. The manifold vs non-manifold
// choice would then also be encapsulated -- provided both remain free
// of PatchTable-specific logic.)
//
inline Level::ETag
getSingularEdgeMask(bool includeAllInfSharpEdges = false) {
Level::ETag eTagMask;
eTagMask.clear();
eTagMask._boundary = true;
eTagMask._nonManifold = true;
eTagMask._infSharp = includeAllInfSharpEdges;
return eTagMask;
}
inline bool
isEdgeSingular(Level const & level, FVarLevel const * fvarLevel,
Index eIndex, Level::ETag eTagMask)
{
Level::ETag eTag = level.getEdgeTag(eIndex);
if (fvarLevel) {
eTag = fvarLevel->getEdgeTag(eIndex).combineWithLevelETag(eTag);
}
return (eTag.getBits() & eTagMask.getBits()) > 0;
}
void
identifyManifoldCornerSpan(Level const & level, Index fIndex,
int fCorner, Level::ETag eTagMask,
Level::VSpan & vSpan, int fvc = -1)
{
FVarLevel const * fvarLevel = (fvc < 0) ? 0 : &level.getFVarLevel(fvc);
ConstIndexArray fVerts = level.getFaceVertices(fIndex);
ConstIndexArray fEdges = level.getFaceEdges(fIndex);
ConstIndexArray vEdges = level.getVertexEdges(fVerts[fCorner]);
int nEdges = vEdges.size();
int iLeadingStart = vEdges.FindIndex(fEdges[fCorner]);
int iTrailingStart = fastModN(iLeadingStart + 1, nEdges);
vSpan.clear();
vSpan._numFaces = 1;
vSpan._cornerInSpan = 0;
int iLeading = iLeadingStart;
while (! isEdgeSingular(level, fvarLevel, vEdges[iLeading], eTagMask)) {
++vSpan._numFaces;
++vSpan._cornerInSpan;
iLeading = fastModN(iLeading + nEdges - 1, nEdges);
if (iLeading == iTrailingStart) break;
}
int iTrailing = iTrailingStart;
if (iTrailing != iLeading) {
while (!isEdgeSingular(level, fvarLevel, vEdges[iTrailing], eTagMask)) {
++vSpan._numFaces;
iTrailing = fastModN(iTrailing + 1, nEdges);
if (iTrailing == iLeadingStart) break;
}
}
vSpan._startFace = (LocalIndex) iLeading;
}
void
identifyNonManifoldCornerSpan(Level const & level, Index fIndex,
int fCorner, Level::ETag eTagMask,
Level::VSpan & vSpan, int fvc = -1)
{
FVarLevel const * fvarLevel = (fvc < 0) ? 0 : &level.getFVarLevel(fvc);
ConstIndexArray fEdges = level.getFaceEdges(fIndex);
Index eLeadingStart = fEdges[fCorner];
Index eTrailingStart = fEdges[(fCorner + fEdges.size() - 1) % fEdges.size()];
vSpan.clear();
vSpan._numFaces = 1;
vSpan._cornerInSpan = 0;
Index startFace = fIndex;
int startCorner = fCorner;
// Traverse clockwise to find the leading edge of the span -- keeping
// track of the starting face and corner to use later:
Index fLeading = fIndex;
Index eLeading = eLeadingStart;
while (!isEdgeSingular(level, fvarLevel, eLeading, eTagMask)) {
++vSpan._numFaces;
++vSpan._cornerInSpan;
// Identify the face opposite the current leading edge, identify
// the edges of the next face, and then the next leading edge:
//
ConstIndexArray eFaces = level.getEdgeFaces(eLeading);
assert(eFaces.size() == 2);
fLeading = (eFaces[0] == fLeading) ? eFaces[1] : eFaces[0];
fEdges = level.getFaceEdges(fLeading);
startFace = fLeading;
startCorner = (fEdges.FindIndex(eLeading) + 1) % fEdges.size();
eLeading = fEdges[startCorner];
if (eLeading == eTrailingStart) {
vSpan._periodic = !isEdgeSingular(level, fvarLevel, eLeading, eTagMask);
break;
}
}
// Traverse counter-clockwise to find the trailing edge of the span (unless
// the above traversal reached where it started):
Index fTrailing = fIndex;
Index eTrailing = eTrailingStart;
if (eTrailing != eLeading) {
while (!isEdgeSingular(level, fvarLevel, eTrailing, eTagMask)) {
++vSpan._numFaces;
// Identify the face opposite the current trailing edge, identify
// the edges of the next face, and then the next trailing edge:
//
ConstIndexArray eFaces = level.getEdgeFaces(eTrailing);
assert(eFaces.size() == 2);
fTrailing = (eFaces[0] == fTrailing) ? eFaces[1] : eFaces[0];
fEdges = level.getFaceEdges(fTrailing);
eTrailing = fEdges[(fEdges.FindIndex(eTrailing) + fEdges.size() - 1) % fEdges.size()];
if (eTrailing == eLeadingStart) {
vSpan._periodic = !isEdgeSingular(level, fvarLevel, eTrailing, eTagMask);
break;
}
}
}
// Identify the span's starting point relative to the incident components
// of the vertex, using the start face and corner of the leading edge:
//
Index vIndex = level.getFaceVertices(fIndex)[fCorner];
ConstIndexArray vFaces = level.getVertexFaces(vIndex);
ConstLocalIndexArray vInFaces = level.getVertexFaceLocalIndices(vIndex);
vSpan._startFace = vFaces.size();
for (int i = 0; i < vFaces.size(); ++i) {
if ((vFaces[i] == startFace) && (vInFaces[i] == startCorner)) {
vSpan._startFace = i;
break;
}
}
assert(vSpan._startFace < vFaces.size());
}
// Simple conveniences for the span search functions:
inline int
countManifoldCornerSpan(Level const & level, Index fIndex, int fCorner,
Level::ETag eTagMask, int fvc = -1)
{
Level::VSpan vSpan;
identifyManifoldCornerSpan(level, fIndex, fCorner, eTagMask, vSpan, fvc);
return vSpan._numFaces;
}
inline int
countNonManifoldCornerSpan(Level const & level, Index fIndex, int fCorner,
Level::ETag eTagMask, int fvc = -1)
{
Level::VSpan vSpan;
identifyNonManifoldCornerSpan(level, fIndex, fCorner, eTagMask, vSpan, fvc);
return vSpan._numFaces;
}
//
// Gathering the one-ring of vertices from triangles surrounding a vertex:
// - the neighborhood of the vertex is assumed to be tri-regular (manifold)
//
// Ordering of resulting vertices:
// The surrounding one-ring follows the ordering of the incident faces. For each
// incident tri, the vertex opposite its leading edge is added. If the vertex is on a
// boundary, a second vertex on the boundary edge will be contributed from the last face.
//
int
gatherTriRegularRingAroundVertex(Level const& level,
Index vIndex, int ringPoints[], int fvarChannel) {
ConstIndexArray vEdges = level.getVertexEdges(vIndex);
ConstIndexArray vFaces = level.getVertexFaces(vIndex);
ConstLocalIndexArray vInFaces = level.getVertexFaceLocalIndices(vIndex);
bool isBoundary = (vEdges.size() > vFaces.size());
int ringIndex = 0;
for (int i = 0; i < vFaces.size(); ++i) {
//
// For each tri, we want the the vertex at the end of the leading edge:
//
ConstIndexArray fPoints = (fvarChannel < 0)
? level.getFaceVertices(vFaces[i])
: level.getFaceFVarValues(vFaces[i], fvarChannel);
int vInThisFace = vInFaces[i];
ringPoints[ringIndex++] = fPoints[fastMod3(vInThisFace + 1)];
if (isBoundary && (i == (vFaces.size() - 1))) {
ringPoints[ringIndex++] = fPoints[fastMod3(vInThisFace + 2)];
}
}
return ringIndex;
}
int
gatherRegularPartialRingAroundVertex(Level const& level,
Index vIndex, Level::VSpan const & span, int ringPoints[], int fvarChannel) {
bool isManifold = !level.isVertexNonManifold(vIndex);
ConstIndexArray vFaces = level.getVertexFaces(vIndex);
ConstLocalIndexArray vInFaces = level.getVertexFaceLocalIndices(vIndex);
int nFaces = span._numFaces;
int startFace = span._startFace;
Index nextFace = vFaces[startFace];
int vInNextFace = vInFaces[startFace];
int ringIndex = 0;
for (int i = 0; i < nFaces; ++i) {
Index thisFace = nextFace;
int vInThisFace = vInNextFace;
ConstIndexArray fPoints = (fvarChannel < 0)
? level.getFaceVertices(thisFace)
: level.getFaceFVarValues(thisFace, fvarChannel);
bool isQuad = (fPoints.size() == 4);
if (isQuad) {
ringPoints[ringIndex++] = fPoints[fastMod4(vInThisFace + 1)];
ringPoints[ringIndex++] = fPoints[fastMod4(vInThisFace + 2)];
} else {
ringPoints[ringIndex++] = fPoints[fastMod3(vInThisFace + 1)];
}
if (i == (nFaces - 1)) {
if (!span._periodic) {
if (isQuad) {
ringPoints[ringIndex++] = fPoints[fastMod4(vInThisFace + 3)];
} else {
ringPoints[ringIndex++] = fPoints[fastMod3(vInThisFace + 2)];
}
}
} else if (isManifold) {
int iNext = fastModN(startFace + i + 1, vFaces.size());
nextFace = vFaces[iNext];
vInNextFace = vInFaces[iNext];
} else {
int nextInThisFace = fastModN(vInThisFace + fPoints.size() - 1, fPoints.size());
Index nextEdge = level.getFaceEdges(thisFace)[nextInThisFace];
ConstIndexArray eFaces = level.getEdgeFaces(nextEdge);
nextFace = (eFaces[0] == thisFace) ? eFaces[1] : eFaces[0];
vInNextFace = level.getFaceEdges(nextFace).FindIndex(nextEdge);
}
}
return ringIndex;
}
//
// Functions to encode/decode the 5-bit boundary mask for a triangular patch
// from the two 3-bit boundary vertex and bounday edge masks. When referring
// to a "boundary vertex" in the encoded bits, we are referring to a vertex on
// a boundary while its incident edges of the triangle are not boundaries --
// topologically distinct from a vertex at the end of a boundary edge.
//
// The 5-bit encoding is as follows:
//
// - the upper 2 bits indicate how to interpret the lower 3 bits:
// 0 - as boundary edges only (all boundary vertices are implicit)
// 1 - as "boundary vertices" only (no boundary edges)
// 2 - a single boundary edge with opposite "boundary vertex"
//
// - the lower 3 bits are set according to boundary features present
//
// There are a total of 18 possible boundary configurations:
//
// - no boundaries at all (1 case)
// - one boundary edge (3 cases)
// - two boundary edges (3 cases)
// - three boundary edges (1 case)
// - one boundary vertex (3 cases)
// - two boundary vertices (3 cases)
// - three boundarey vertices (1 case)
// - one boundary edge with opposite boundary vertex (3 cases)
//
inline int unpackTriBoundaryMaskLower(int mask) { return mask & 0x7; }
inline int unpackTriBoundaryMaskUpper(int mask) { return (mask >> 3) & 0x3; }
inline int packTriBoundaryMask(int upper, int lower) { return (upper << 3) | lower; }
int
encodeTriBoundaryMask(int eBits, int vBits)
{
int upperBits = 0;
int lowerBits = eBits;
if (vBits) {
if (eBits == 0) {
upperBits = 1;
lowerBits = vBits;
} else if ((vBits == 7) && ((eBits == 1) || (eBits == 2) || (eBits == 4))) {
upperBits = 2;
lowerBits = eBits;
}
}
return packTriBoundaryMask(upperBits, lowerBits);
}
void
decodeTriBoundaryMask(int mask, int & eBits, int & vBits)
{
static int const eBitsToVBits[] = { 0, 3, 6, 7, 5, 7, 7, 7 };
int lowerBits = unpackTriBoundaryMaskLower(mask);
int upperBits = unpackTriBoundaryMaskUpper(mask);
switch (upperBits) {
case 0:
eBits = lowerBits;
vBits = eBitsToVBits[eBits];
break;
case 1:
eBits = 0;
vBits = lowerBits;
break;
case 2:
eBits = lowerBits;
vBits = 0x7;
break;
}
}
inline Index
getNextFaceInVertFaces(Level const & level, int thisFaceInVFaces,
ConstIndexArray const & vFaces,
ConstLocalIndexArray const & vInFaces,
bool manifold, int & vInNextFace) {
Index nextFace;
if (manifold) {
int nextFaceInVFaces = fastModN(thisFaceInVFaces + 1, vFaces.size());
nextFace = vFaces[nextFaceInVFaces];
vInNextFace = vInFaces[nextFaceInVFaces];
} else {
Index thisFace = vFaces[thisFaceInVFaces];
int vInThisFace = vInFaces[thisFaceInVFaces];
ConstIndexArray fEdges = level.getFaceEdges(thisFace);
Index nextEdge = fEdges[fastModN((vInThisFace + fEdges.size() - 1), fEdges.size())];
ConstIndexArray eFaces = level.getEdgeFaces(nextEdge);
assert(eFaces.size() == 2);
nextFace = (eFaces[0] == thisFace) ? eFaces[1] : eFaces[0];
int edgeInNextFace = level.getFaceEdges(nextFace).FindIndex(nextEdge);
vInNextFace = edgeInNextFace;
}
return nextFace;
}
inline Index
getPrevFaceInVertFaces(Level const & level, int thisFaceInVFaces,
ConstIndexArray const & vFaces,
ConstLocalIndexArray const & vInFaces,
bool manifold, int & vInPrevFace) {
Index prevFace;
if (manifold) {
int prevFaceInVFaces = (thisFaceInVFaces ? thisFaceInVFaces : vFaces.size()) - 1;
prevFace = vFaces[prevFaceInVFaces];
vInPrevFace = vInFaces[prevFaceInVFaces];
} else {
Index thisFace = vFaces[thisFaceInVFaces];
int vInThisFace = vInFaces[thisFaceInVFaces];
ConstIndexArray fEdges = level.getFaceEdges(thisFace);
Index prevEdge = fEdges[vInThisFace];
ConstIndexArray eFaces = level.getEdgeFaces(prevEdge);
assert(eFaces.size() == 2);
prevFace = (eFaces[0] == thisFace) ? eFaces[1] : eFaces[0];
int edgeInPrevFace = level.getFaceEdges(prevFace).FindIndex(prevEdge);
vInPrevFace = fastModN(edgeInPrevFace + 1, fEdges.size());
}
return prevFace;
}
inline ConstIndexArray
getFacePoints(Level const& level, Index faceIndex, int fvarChannel)
{
return (fvarChannel < 0) ? level.getFaceVertices(faceIndex)
: level.getFaceFVarValues(faceIndex, fvarChannel);
}
} // namespace anon
//
// Factory method and constructor:
//
PatchBuilder*
PatchBuilder::Create(TopologyRefiner const& refiner, Options const& options) {
switch (refiner.GetSchemeType()) {
case Sdc::SCHEME_BILINEAR:
return new BilinearPatchBuilder(refiner, options);
case Sdc::SCHEME_CATMARK:
return new CatmarkPatchBuilder(refiner, options);
case Sdc::SCHEME_LOOP:
return new LoopPatchBuilder(refiner, options);
}
assert("Unrecognized Sdc::SchemeType for PatchBuilder construction" == 0);
return 0;
}
PatchBuilder::PatchBuilder(
TopologyRefiner const& refiner, Options const& options) :
_refiner(refiner), _options(options) {
//
// Initialize members with properties of the subdivision scheme and patch
// choices for quick retrieval:
//
_schemeType = refiner.GetSchemeType();
_schemeRegFaceSize = Sdc::SchemeTypeTraits::GetRegularFaceSize(_schemeType);
_schemeNeighborhood = Sdc::SchemeTypeTraits::GetLocalNeighborhoodSize(_schemeType);
// Initialization of members involving patch types is deferred to the
// subclass for the scheme
}
PatchBuilder::~PatchBuilder() {
}
//
// Topology inspections methods for a particular face in the hierarchy:
//
bool
PatchBuilder::IsFaceAPatch(int levelIndex, Index faceIndex) const {
Level const & level = _refiner.getLevel(levelIndex);
ConstIndexArray fVerts = level.getFaceVertices(faceIndex);
// Fail if the face is a hole (i.e. no limit surface)
if (level.isFaceHole(faceIndex)) return false;
// Fail if the face is irregular
if (fVerts.size() != _schemeRegFaceSize) return false;
// Fail if the face lacks its complete neighborhood of support
// - preserving the historical test for 4-sided faces
if ((_schemeRegFaceSize == 4) || (levelIndex == 0)) {
if (level.getFaceCompositeVTag(fVerts)._incomplete) return false;
} else {
if (_refiner.getRefinement(levelIndex - 1).getChildFaceTag(faceIndex)._incomplete) return false;
}
return true;
}
bool
PatchBuilder::IsFaceALeaf(int levelIndex, Index faceIndex) const {
// All faces in the last level are leaves
if (levelIndex < _refiner.GetMaxLevel()) {
// Faces selected for further refinement are not leaves
if (_refiner.getRefinement(levelIndex).
getParentFaceSparseTag(faceIndex)._selected) {
return false;
}
}
return true;
}
bool
PatchBuilder::IsPatchRegular(int levelIndex, Index faceIndex,
int fvarChannel) const {
if (_schemeNeighborhood == 0) {
// The previous face-is-a-patch test precludes an irregular patch
return true;
}
Level const & level = _refiner.getLevel(levelIndex);
// Retrieve individual VTags for the four corners and combine:
Level::VTag vTags[4];
level.getFaceVTags(faceIndex, vTags, fvarChannel);
Level::VTag fCompVTag = Level::VTag::BitwiseOr(vTags, _schemeRegFaceSize);
// Immediately return regular status if completely smooth at all corners
// (all corners smooth rules out presence of non-manifold vertices)
bool hasXOrdinary = fCompVTag._xordinary;
if (fCompVTag._rule == Sdc::Crease::RULE_SMOOTH) {
return !hasXOrdinary;
}
// See if any features warrant inspection of the corners individually:
bool hasIrregFaces = (_schemeRegFaceSize == 4);
int minIsoLevel = 1 + (hasXOrdinary && hasIrregFaces);
bool hasNonManifold = fCompVTag._nonManifold;
bool hasInfSharp = fCompVTag._infSharp || fCompVTag._infSharpEdges;
bool testInfSharp = hasInfSharp && !_options.approxInfSharpWithSmooth;
bool testInfIrreg = testInfSharp && fCompVTag._infIrregular;
bool testAllCorners = (levelIndex < minIsoLevel) || hasNonManifold || testInfIrreg;
if (testAllCorners) {
Level::ETag eMask = getSingularEdgeMask(testInfSharp);
int regBoundaryFaces = 2 + (_schemeRegFaceSize == 3);
for (int i = 0; i < _schemeRegFaceSize; ++i) {
Level::VTag vTag = vTags[i];
if (vTag._nonManifold) {
int n = countNonManifoldCornerSpan(
level, faceIndex, i, eMask, fvarChannel);
if ((vTag._infSharp && (n != 1)) ||
(vTag._infSharpCrease && (n != regBoundaryFaces))) {
return false;
}
} else {
if (vTag._xordinary) {
if (vTag._rule == Sdc::Crease::RULE_SMOOTH) {
return false;
}
}
if (testInfIrreg && vTag._infIrregular) {
if (vTag._infSharpEdges) {
int n = countManifoldCornerSpan(
level, faceIndex, i, eMask, fvarChannel);
if (!vTag._infSharpCrease) {
if (n != 1) return false;
} else if (n > 1) {
if (n != regBoundaryFaces) return false;
} else if (_options.approxSmoothCornerWithSharp) {
if (!vTag._boundary) return false;
} else {
return false;
}
} else {
return false;
}
}
}
}
}
// Irregularities not detected above occur at sharp features. Determine if
// still regular from xordinary corners -- unless using inf-sharp features
// and no inf-sharp irregularities are present:
//
bool isRegular = !hasXOrdinary || (testInfSharp && !fCompVTag._infIrregular);
// Legacy option -- reinterpret smooth corner as sharp if specified:
if (!isRegular && _options.approxSmoothCornerWithSharp) {
if (fCompVTag._xordinary && fCompVTag._boundary && !fCompVTag._nonManifold) {
isRegular = isPatchSmoothCorner(levelIndex, faceIndex, fvarChannel);
}
}
return isRegular;
}
bool
PatchBuilder::isPatchSmoothCorner(int levelIndex, Index faceIndex,
int fvarChannel) const {
Level const & level = _refiner.getLevel(levelIndex);
ConstIndexArray fVerts = level.getFaceVertices(faceIndex);
bool isQuad = (fVerts.size() == 4);
Level::VTag vTags[4];
level.getFaceVTags(faceIndex, vTags, fvarChannel);
//
// Test the subdivision rules for the corners, rather than just the
// boundary/interior tags, to ensure that inf-sharp vertices or edges
// are properly accounted for (and the cases appropriately excluded)
// if inf-sharp patches are enabled:
//
int boundaryCount = 0;
if (!_options.approxInfSharpWithSmooth) {
boundaryCount =
(vTags[0]._infSharpEdges && (vTags[0]._rule == Sdc::Crease::RULE_CREASE)) +
(vTags[1]._infSharpEdges && (vTags[1]._rule == Sdc::Crease::RULE_CREASE)) +
(vTags[2]._infSharpEdges && (vTags[2]._rule == Sdc::Crease::RULE_CREASE));
if (isQuad) {
boundaryCount +=
(vTags[3]._infSharpEdges && (vTags[3]._rule == Sdc::Crease::RULE_CREASE));
}
} else {
boundaryCount =
(vTags[0]._boundary && (vTags[0]._rule == Sdc::Crease::RULE_CREASE)) +
(vTags[1]._boundary && (vTags[1]._rule == Sdc::Crease::RULE_CREASE)) +
(vTags[2]._boundary && (vTags[2]._rule == Sdc::Crease::RULE_CREASE));
if (isQuad) {
boundaryCount +=
(vTags[3]._boundary && (vTags[3]._rule == Sdc::Crease::RULE_CREASE));
}
}
int xordinaryCount = vTags[0]._xordinary + vTags[1]._xordinary + vTags[2]._xordinary;
if (isQuad) {
xordinaryCount += vTags[3]._xordinary;
}
if ((boundaryCount == 3) && (xordinaryCount == 1)) {
// This must be an isolated xordinary corner above level 1, otherwise
// we still need to assure the xordinary vertex is opposite a smooth
// interior vertex:
//
if (!isQuad || (levelIndex > 1)) return true;
if (vTags[0]._xordinary) return (vTags[2]._rule == Sdc::Crease::RULE_SMOOTH);
if (vTags[1]._xordinary) return (vTags[3]._rule == Sdc::Crease::RULE_SMOOTH);
if (vTags[2]._xordinary) return (vTags[0]._rule == Sdc::Crease::RULE_SMOOTH);
if (vTags[3]._xordinary) return (vTags[1]._rule == Sdc::Crease::RULE_SMOOTH);
}
return false;
}
int
PatchBuilder::GetRegularPatchBoundaryMask(int levelIndex, Index faceIndex,
int fvarChannel) const {
if (_schemeNeighborhood == 0) {
// Boundaries for patches not dependent on the 1-ring are ignored
return 0;
}
Level const & level = _refiner.getLevel(levelIndex);
// Gather tags for the four corners and edges. Regardless of the
// options for treating non-manifold or inf-sharp patches, for a
// regular patch we can infer all that we need from these tags:
//
Level::VTag vTags[4];
Level::ETag eTags[4];
level.getFaceVTags(faceIndex, vTags, fvarChannel);
Level::VTag fTag = Level::VTag::BitwiseOr(vTags, _schemeRegFaceSize);
if (!fTag._infSharpEdges) {
return 0;
}
level.getFaceETags(faceIndex, eTags, fvarChannel);
//
// For quads it is sufficient to inspect only edge tags. For tris,
// vertices may lie on boundaries with no incident boundary edges in
// the tri itself.
//
bool isQuad = ( _schemeRegFaceSize == 4);
int eBits = 0;
if (!_options.approxInfSharpWithSmooth) {
eBits = (eTags[0]._infSharp << 0) |
(eTags[1]._infSharp << 1) |
(eTags[2]._infSharp << 2);
if (isQuad) eBits |= (eTags[3]._infSharp << 3);
} else {
eBits = (eTags[0]._boundary << 0) |
(eTags[1]._boundary << 1) |
(eTags[2]._boundary << 2);
if (isQuad) eBits |= (eTags[3]._boundary << 3);
}
if (fTag._nonManifold) {
eBits |= (eTags[0]._nonManifold << 0) |
(eTags[1]._nonManifold << 1) |
(eTags[2]._nonManifold << 2);
if (isQuad) eBits |= (eTags[3]._nonManifold << 3);
}
int vBits = 0;
if (!isQuad) {
if (!_options.approxInfSharpWithSmooth) {
vBits = (vTags[0]._infSharpEdges << 0) |
(vTags[1]._infSharpEdges << 1) |
(vTags[2]._infSharpEdges << 2);
} else if (fTag._boundary) {
vBits = (vTags[0]._boundary << 0) |
(vTags[1]._boundary << 1) |
(vTags[2]._boundary << 2);
}
if (fTag._nonManifold) {
vBits |= (vTags[0]._nonManifold << 0) |
(vTags[1]._nonManifold << 1) |
(vTags[2]._nonManifold << 2);
}
}
int boundaryMask = 0;
if (eBits || vBits) {
if (isQuad) {
boundaryMask = eBits;
} else {
boundaryMask = encodeTriBoundaryMask(eBits, vBits);
}
}
return boundaryMask;
}
void
PatchBuilder::GetIrregularPatchCornerSpans(int levelIndex, Index faceIndex,
Level::VSpan cornerSpans[4], int fvarChannel) const {
Level const & level = _refiner.getLevel(levelIndex);
// Retrieve tags and identify other information for the corner vertices:
Level::VTag vTags[4];
level.getFaceVTags(faceIndex, vTags, fvarChannel);
FVarLevel::ValueTag fvarTags[4];
if (fvarChannel >= 0) {
level.getFVarLevel(fvarChannel).getFaceValueTags(faceIndex, fvarTags);
}
bool testInfSharp = !_options.approxInfSharpWithSmooth;
//
// For each corner vertex, use the complete neighborhood when possible
// (which does not require a search, otherwise identify the span of
// interest around the vertex:
//
ConstIndexArray fVerts = level.getFaceVertices(faceIndex);
Level::ETag singularEdgeMask =
getSingularEdgeMask(!_options.approxInfSharpWithSmooth);
for (int i = 0; i < fVerts.size(); ++i) {
bool noFVarMisMatch = (fvarChannel < 0) || !fvarTags[i]._mismatch;
bool isManifold = !vTags[i]._nonManifold;
bool testInfSharpEdges = testInfSharp && vTags[i]._infSharpEdges &&
(vTags[i]._rule != Sdc::Crease::RULE_DART);
if (noFVarMisMatch && !testInfSharpEdges && isManifold) {
cornerSpans[i].clear();
} else {
if (isManifold) {
identifyManifoldCornerSpan(level, faceIndex,
i, singularEdgeMask, cornerSpans[i], fvarChannel);
} else {
identifyNonManifoldCornerSpan(level, faceIndex,
i, singularEdgeMask, cornerSpans[i], fvarChannel);
}
}
if (vTags[i]._corner) {
cornerSpans[i]._sharp = true;
} else if (testInfSharp) {
cornerSpans[i]._sharp = testInfSharpEdges
? !vTags[i]._infSharpCrease : vTags[i]._infSharp;
}
// Legacy option -- reinterpret smooth corner as sharp if specified:
if (!cornerSpans[i]._sharp && _options.approxSmoothCornerWithSharp) {
if (vTags[i]._xordinary && vTags[i]._boundary && !vTags[i]._nonManifold) {
int nFaces = cornerSpans[i].isAssigned()
? cornerSpans[i]._numFaces
: level.getVertexFaces(fVerts[i]).size();
cornerSpans[i]._sharp = (nFaces == 1);
}
}
}
}
int
PatchBuilder::getRegularFacePoints(int levelIndex, Index faceIndex,
Index patchPoints[], int fvarChannel) const {
Level const & level = _refiner.getLevel(levelIndex);
ConstIndexArray facePoints = (fvarChannel < 0)
? level.getFaceVertices(faceIndex)
: level.getFaceFVarValues(faceIndex, fvarChannel);
for (int i = 0; i < facePoints.size(); ++i) {
patchPoints[i] = facePoints[i];
}
return facePoints.size();
}
int
PatchBuilder::getQuadRegularPatchPoints(int levelIndex, Index faceIndex,
int regBoundaryMask, Index patchPoints[],
int fvarChannel) const {
if (regBoundaryMask < 0) {
regBoundaryMask = GetRegularPatchBoundaryMask(levelIndex, faceIndex);
}
bool interiorPatch = (regBoundaryMask == 0);
static int const patchPointsPerCorner[4][4] = { { 5, 4, 0, 1 },
{ 6, 2, 3, 7 },
{ 10, 11, 15, 14 },
{ 9, 13, 12, 8 } };
int eMask = regBoundaryMask;
Level const & level = _refiner.getLevel(levelIndex);
ConstIndexArray fVerts = level.getFaceVertices(faceIndex);
ConstIndexArray fPoints = getFacePoints(level, faceIndex, fvarChannel);
Index boundaryPoint = INDEX_INVALID;
if (!interiorPatch && _options.fillMissingBoundaryPoints) {
boundaryPoint = fPoints[0];
}
for (int i = 0; i < 4; ++i) {
Index v = fVerts[i];
const int* cornerPointIndices = patchPointsPerCorner[i];
ConstIndexArray vFaces = level.getVertexFaces(v);
ConstLocalIndexArray vInFaces = level.getVertexFaceLocalIndices(v);
Index f = faceIndex;
int fInVFaces = vFaces.FindIndex(f);
assert(vInFaces[fInVFaces] == i); // Beware non-manifold vert in face twice...
bool interiorCorner = interiorPatch || (((eMask & (1 << i)) |
(eMask & (1 << fastMod4(i+3)))) == 0);
if (interiorCorner) {
int fOppInVFaces = fastMod4(fInVFaces + 2);
Index fOpp = vFaces[fOppInVFaces];
int vInFOpp = vInFaces[fOppInVFaces];
ConstIndexArray fOppPoints = getFacePoints(level, fOpp, fvarChannel);
patchPoints[cornerPointIndices[1]] = fOppPoints[fastMod4(vInFOpp + 1)];
patchPoints[cornerPointIndices[2]] = fOppPoints[fastMod4(vInFOpp + 2)];
patchPoints[cornerPointIndices[3]] = fOppPoints[fastMod4(vInFOpp + 3)];
} else if ((eMask & (1 << i)) && (eMask & (1 << fastMod4(i+3)))) {
// Two indicent boundary edges -- no incident faces
patchPoints[cornerPointIndices[1]] = boundaryPoint;
patchPoints[cornerPointIndices[2]] = boundaryPoint;
patchPoints[cornerPointIndices[3]] = boundaryPoint;
} else if (eMask & (1 << i)) {
// Leading/outgoing boundary edge -- need next face:
int vInFNext;
Index fNext = getNextFaceInVertFaces(level, fInVFaces, vFaces, vInFaces,
!level.getVertexTag(v)._nonManifold, vInFNext);
ConstIndexArray fNextPoints = getFacePoints(level, fNext, fvarChannel);
patchPoints[cornerPointIndices[1]] = fNextPoints[fastMod4(vInFNext + 3)];
patchPoints[cornerPointIndices[2]] = boundaryPoint;
patchPoints[cornerPointIndices[3]] = boundaryPoint;
} else {
// Trailing/incoming boundary edge -- need previous face:
int vInFPrev;
Index fPrev = getPrevFaceInVertFaces(level, fInVFaces, vFaces, vInFaces,
!level.getVertexTag(v)._nonManifold, vInFPrev);
ConstIndexArray fPrevPoints = getFacePoints(level, fPrev, fvarChannel);
patchPoints[cornerPointIndices[1]] = boundaryPoint;
patchPoints[cornerPointIndices[2]] = boundaryPoint;
patchPoints[cornerPointIndices[3]] = fPrevPoints[fastMod4(vInFPrev + 1)];
}
patchPoints[cornerPointIndices[0]] = fPoints[i];
}
return 16;
}
int
PatchBuilder::getTriRegularPatchPoints(int levelIndex, Index faceIndex,
int regBoundaryMask, Index patchPoints[],
int fvarChannel) const {
if (regBoundaryMask < 0) {
regBoundaryMask = GetRegularPatchBoundaryMask(levelIndex, faceIndex);
}
bool interiorPatch = (regBoundaryMask == 0);
static int const patchPointsPerCorner[3][4] = { { 4, 7, 3, 0 },
{ 5, 1, 2, 6 },
{ 8, 9, 11, 10 } };
int vMask = 0;
int eMask = 0;
if (!interiorPatch) {
decodeTriBoundaryMask(regBoundaryMask, eMask, vMask);
}
Level const & level = _refiner.getLevel(levelIndex);
ConstIndexArray fVerts = level.getFaceVertices(faceIndex);
ConstIndexArray fPoints = getFacePoints(level, faceIndex, fvarChannel);
Index boundaryPoint = INDEX_INVALID;
if (!interiorPatch && _options.fillMissingBoundaryPoints) {
boundaryPoint = fPoints[0];
}
for (int i = 0; i < 3; ++i) {
Index v = fVerts[i];
const int* cornerPointIndices = patchPointsPerCorner[i];
ConstIndexArray vFaces = level.getVertexFaces(v);
ConstLocalIndexArray vInFaces = level.getVertexFaceLocalIndices(v);
Index f = faceIndex;
int fInVFaces = vFaces.FindIndex(f);
bool interiorCorner = interiorPatch || ((vMask & (1 << i)) == 0);
if (interiorCorner) {
int f2InVFaces = fastModN(fInVFaces + 2, 6);
int f3InVFaces = fastModN(fInVFaces + 3, 6);
Index f2 = vFaces[f2InVFaces];
Index f3 = vFaces[f3InVFaces];
int vInf2 = vInFaces[f2InVFaces];
int vInf3 = vInFaces[f3InVFaces];
ConstIndexArray f2Points = getFacePoints(level, f2, fvarChannel);
ConstIndexArray f3Points = getFacePoints(level, f3, fvarChannel);
patchPoints[cornerPointIndices[1]] = f2Points[fastMod3(vInf2 + 1)];
patchPoints[cornerPointIndices[2]] = f3Points[fastMod3(vInf3 + 1)];
patchPoints[cornerPointIndices[3]] = f3Points[fastMod3(vInf3 + 2)];
} else if ((eMask & (1 << i)) && (eMask & (1 << fastMod3(i+2)))) {
// Test for two indicent boundary edges -- no incident faces
patchPoints[cornerPointIndices[1]] = boundaryPoint;
patchPoints[cornerPointIndices[2]] = boundaryPoint;
patchPoints[cornerPointIndices[3]] = boundaryPoint;
} else if (eMask & (1 << i)) {
// Test for leading/outgoing boundary edge:
int f2InVFaces = fastModN(fInVFaces + 2, vFaces.size());
Index f2 = vFaces[f2InVFaces];
int vInf2 = vInFaces[f2InVFaces];
ConstIndexArray f2Points = getFacePoints(level, f2, fvarChannel);
patchPoints[cornerPointIndices[1]] = f2Points[fastMod3(vInf2 + 1)];
patchPoints[cornerPointIndices[2]] = f2Points[fastMod3(vInf2 + 2)];
patchPoints[cornerPointIndices[3]] = boundaryPoint;
} else if (eMask & (1 << fastMod3(i+2))) {
// Test for trailing/incoming boundary edge:
int f0InVFaces = fastModN(fInVFaces + vFaces.size() - 2, vFaces.size());
Index f0 = vFaces[f0InVFaces];
int vInf0 = vInFaces[f0InVFaces];
ConstIndexArray f0Points = getFacePoints(level, f0, fvarChannel);
patchPoints[cornerPointIndices[1]] = boundaryPoint;
patchPoints[cornerPointIndices[2]] = boundaryPoint;
patchPoints[cornerPointIndices[3]] = f0Points[fastMod3(vInf0 + 1)];
} else {
// Test for boundary vertex:
int f2InVFaces = fastModN(fInVFaces + 1, vFaces.size());
Index f2 = vFaces[f2InVFaces];
int vInf2 = vInFaces[f2InVFaces];
ConstIndexArray f2Points = getFacePoints(level, f2, fvarChannel);
patchPoints[cornerPointIndices[1]] = f2Points[fastMod3(vInf2 + 2)];
patchPoints[cornerPointIndices[2]] = boundaryPoint;
patchPoints[cornerPointIndices[3]] = boundaryPoint;
}
patchPoints[cornerPointIndices[0]] = fPoints[i];
}
return 12;
}
int
PatchBuilder::GetRegularPatchPoints(int levelIndex, Index faceIndex,
int regBoundaryMask, Index patchPoints[],
int fvarChannel) const {
if (_schemeNeighborhood == 0) {
return getRegularFacePoints(
levelIndex, faceIndex, patchPoints, fvarChannel);
} else if (_schemeRegFaceSize == 4) {
return getQuadRegularPatchPoints(
levelIndex, faceIndex, regBoundaryMask, patchPoints, fvarChannel);
} else {
return getTriRegularPatchPoints(
levelIndex, faceIndex, regBoundaryMask, patchPoints, fvarChannel);
}
return 0;
}
int
PatchBuilder::assembleIrregularSourcePatch(
int levelIndex, Index faceIndex, Level::VSpan const cornerSpans[],
SourcePatch & sourcePatch) const {
//
// Initialize the four Patch corners and finalize the patch:
//
Level const & level = _refiner.getLevel(levelIndex);
ConstIndexArray fVerts = level.getFaceVertices(faceIndex);
for (int corner = 0; corner < fVerts.size(); ++corner) {
//
// Identify the face for the patch within the given ring when the
// full ring is implicitly specified.
//
// Note also that specifying a sub-ring in a VSpan currently implies
// it is a boundary or dart (if all faces present) -- we need a
// better way of specifying corner properties such as boundary, dart,
// sharp, etc. (possibly a VTag for each corner in addition to the
// VSpan)
//
Level::VTag vTag = level.getVertexTag(fVerts[corner]);
SourcePatch::Corner & patchCorner = sourcePatch._corners[corner];
if (cornerSpans[corner].isAssigned()) {
patchCorner._numFaces = cornerSpans[corner]._numFaces;
patchCorner._patchFace = cornerSpans[corner]._cornerInSpan;
patchCorner._boundary = true;
} else {
ConstIndexArray vFaces = level.getVertexFaces(fVerts[corner]);
patchCorner._numFaces = vFaces.size();
patchCorner._patchFace = vFaces.FindIndex(faceIndex);
patchCorner._boundary = vTag._boundary;
}
patchCorner._sharp = cornerSpans[corner]._sharp;
patchCorner._dart = (vTag._rule == Sdc::Crease::RULE_DART) && vTag._infSharpEdges;
}
sourcePatch.Finalize(fVerts.size());
return sourcePatch.GetNumSourcePoints();
}
//
// Gather patch points from around the face of a level given a previously
// initialized SourcePatch. This is historically specific to an irregular
// patch and still relies on the cornerSpans (which may or may not have been
// initialized when the SourcePatch was created) rather than inspecting the
// corners of the SourcePatch.
//
// We need temporary/local space for rings around each corner -- both for
// the Vtr::Level and the corresponding rings of the patch.
//
// Get the corresponding rings from the Vtr::Level and the patch descriptor:
// the values of the latter will be indices for points[] whose values will
// come from values of former, i.e. points[localRing[i]] = sourceRing[i].
// Points that overlap will be assigned multiple times, but messy logic to
// deal with overlap while determining the correspondence is avoided.
//
int
PatchBuilder::gatherIrregularSourcePoints(
int levelIndex, Index faceIndex,
Level::VSpan const cornerSpans[4], SourcePatch & sourcePatch,
Index patchVerts[], int fvarChannel) const {
//
// Allocate temporary space for rings around the corners in both the Level
// and the Patch, then retrieve corresponding rings and assign the source
// vertices to the given array of patch points
//
int numSourceVerts = sourcePatch.GetNumSourcePoints();
StackBuffer<Index,64,true> sourceRingVertices(sourcePatch.GetMaxRingSize());
StackBuffer<Index,64,true> patchRingPoints(sourcePatch.GetMaxRingSize());
// Debugging -- all entries should be assigned (see test after assignment)
const int debugUnassignedPointIndex = -1;
for (int i = 0; i < numSourceVerts; ++i) {
patchVerts[i] = debugUnassignedPointIndex;
}
Level const & level = _refiner.getLevel(levelIndex);
ConstIndexArray faceVerts = level.getFaceVertices(faceIndex);
for (int corner = 0; corner < sourcePatch._numCorners; ++corner) {
Index cornerVertex = faceVerts[corner];
// Gather the ring of source points from the Vtr level:
int sourceRingSize = 0;
if (cornerSpans[corner].isAssigned()) {
sourceRingSize = gatherRegularPartialRingAroundVertex(level,
cornerVertex, cornerSpans[corner], sourceRingVertices,
fvarChannel);
} else if (sourcePatch._numCorners == 4) {
sourceRingSize = level.gatherQuadRegularRingAroundVertex(
cornerVertex, sourceRingVertices,
fvarChannel);
} else {
sourceRingSize = gatherTriRegularRingAroundVertex(level,
cornerVertex, sourceRingVertices,
fvarChannel);
}
// Gather the ring of local points from the patch:
int patchRingSize = sourcePatch.GetCornerRingPoints(
corner, patchRingPoints);
assert(patchRingSize == sourceRingSize);
// Identify source points for corresponding local patch points of ring:
for (int i = 0; i < patchRingSize; ++i) {
assert(patchRingPoints[i] < numSourceVerts);
patchVerts[patchRingPoints[i]] = sourceRingVertices[i];
}
}
// Debugging -- all entries should be assigned (see pre-assignment above)
for (int i = 0; i < numSourceVerts; ++i) {
assert(patchVerts[i] != debugUnassignedPointIndex);
}
return numSourceVerts;
}
int
PatchBuilder::GetIrregularPatchSourcePoints(
int levelIndex, Index faceIndex, Level::VSpan const cornerSpans[],
Index sourcePoints[], int fvarChannel) const {
SourcePatch sourcePatch;
assembleIrregularSourcePatch(
levelIndex, faceIndex, cornerSpans, sourcePatch);
return gatherIrregularSourcePoints(levelIndex, faceIndex,
cornerSpans, sourcePatch, sourcePoints, fvarChannel);
}
//
// Template conversion methods for the matrix type -- explicit instantiation
// for float and double is required and follows the definition:
//
template <typename REAL>
int
PatchBuilder::GetIrregularPatchConversionMatrix(
int levelIndex, Index faceIndex,
Level::VSpan const cornerSpans[],
SparseMatrix<REAL> & conversionMatrix) const {
SourcePatch sourcePatch;
assembleIrregularSourcePatch(
levelIndex, faceIndex, cornerSpans, sourcePatch);
return convertToPatchType(
sourcePatch, GetIrregularPatchType(), conversionMatrix);
}
template int PatchBuilder::GetIrregularPatchConversionMatrix<float>(
int levelIndex, Index faceIndex, Level::VSpan const cornerSpans[],
SparseMatrix<float> & conversionMatrix) const;
template int PatchBuilder::GetIrregularPatchConversionMatrix<double>(
int levelIndex, Index faceIndex, Level::VSpan const cornerSpans[],
SparseMatrix<double> & conversionMatrix) const;
bool
PatchBuilder::IsRegularSingleCreasePatch(int levelIndex, Index faceIndex,
SingleCreaseInfo & creaseInfo) const {
if (_schemeRegFaceSize != 4) return false;
Level const & level = _refiner.getLevel(levelIndex);
return level.isSingleCreasePatch(faceIndex,
&creaseInfo.creaseSharpness, &creaseInfo.creaseEdgeInFace);
}
PatchParam
PatchBuilder::ComputePatchParam(int levelIndex, Index faceIndex,
PtexIndices const& ptexIndices,
int boundaryMask, bool computeTransitionMask) const {
// Move up the hierarchy accumulating u,v indices to the coarse level:
int depth = levelIndex;
int childIndexInParent = 0,
u = 0,
v = 0,
ofs = 1;
int regFaceSize = _schemeRegFaceSize;
bool irregBase =
_refiner.GetLevel(depth).GetFaceVertices(faceIndex).size() !=
regFaceSize;
// For triangle refinement, the parameterization is rotated at
// the fourth triangle subface at each level. The u and v values
// computed for rotated triangles will be negative while we are
// walking through the refinement levels.
bool rotatedTriangle = false;
int childFaceIndex = faceIndex;
for (int i = depth; i > 0; --i) {
Refinement const& refinement = _refiner.getRefinement(i-1);
Level const& parentLevel = _refiner.getLevel(i-1);
Index parentFaceIndex =
refinement.getChildFaceParentFace(childFaceIndex);
irregBase =
parentLevel.getFaceVertices(parentFaceIndex).size() !=
regFaceSize;
if (_schemeRegFaceSize == 3) {
// For now, we don't consider irregular faces for
// triangle refinement.
childIndexInParent =
refinement.getChildFaceInParentFace(childFaceIndex);
if (rotatedTriangle) {
switch ( childIndexInParent ) {
case 0 : break;
case 1 : { u-=ofs; } break;
case 2 : { v-=ofs; } break;
case 3 : { u+=ofs; v+=ofs; rotatedTriangle = false; } break;
}
} else {
switch ( childIndexInParent ) {
case 0 : break;
case 1 : { u+=ofs; } break;
case 2 : { v+=ofs; } break;
case 3 : { u-=ofs; v-=ofs; rotatedTriangle = true; } break;
}
}
ofs = (unsigned short)(ofs << 1);
} else if (!irregBase) {
childIndexInParent =
refinement.getChildFaceInParentFace(childFaceIndex);
switch ( childIndexInParent ) {
case 0 : break;
case 1 : { u+=ofs; } break;
case 2 : { u+=ofs; v+=ofs; } break;
case 3 : { v+=ofs; } break;
}
ofs = (unsigned short)(ofs << 1);
} else {
// If the root face is not a quad, we need to offset the ptex index
// CCW to match the correct child face
ConstIndexArray children =
refinement.getFaceChildFaces(parentFaceIndex);
for (int j=0; j<children.size(); ++j) {
if (children[j] == childFaceIndex) {
childIndexInParent = j;
break;
}
}
}
childFaceIndex = parentFaceIndex;
}
if (rotatedTriangle) {
// If the triangle is tagged as rotated at this point then the
// computed u and v parameters will both be negative and we map
// them onto positive values in the opposite diagonal of the
// parameter space.
u += ofs;
v += ofs;
}
int baseFaceIndex = childFaceIndex;
// Need to store ptex index from base face and child of an irregular face:
Index ptexIndex = ptexIndices.GetFaceId(baseFaceIndex);
assert(ptexIndex != -1);
if (irregBase) {
ptexIndex += childIndexInParent;
}
// Compute/identify the transition mask if requested, otherwise leave it 0:
int transitionMask = 0;
if (computeTransitionMask && (levelIndex < _refiner.GetMaxLevel())) {
transitionMask = _refiner.getRefinement(levelIndex).
getParentFaceSparseTag(faceIndex)._transitional;
}
PatchParam param;
param.Set(ptexIndex, (short)u, (short)v, (unsigned short) depth, irregBase,
(unsigned short) boundaryMask, (unsigned short) transitionMask);
return param;
}
//
// SourcePatch
//
// This class allows the full topological specification of the neighborhood
// of vertices and edges around a face that collectively define a rectangular
// piece of surface corresponding to that face. All components are declared
// in terms of local indices and explicitly avoid any references/indices to
// an external representation. It is assembled by specifying the topology
// of each corner (number of faces/edges, boundary, etc.) and finalization
// determines a set of source vertices in a canonical orientation relative
// to the face and any patch which may be derived from it.
//
// Any/all corners can be arbitrarily irregular. Information for each corner
// is similar to what is provided in a Vtr::Level::VSpan but does not require
// any Vtr dependent orientation (e.g. the leading edge) and also requires
// identification of the incident face that corresponds to the patch (i.e.
// the "patch face").
//
// The set of local source vertices begins with the corner vertices of the
// face corresponding to the patch. Since the 1-rings of the corner vertices
// overlap, a subset of the 1-rings is identified as the "local ring points"
// for a corner, which are the points most associated with the corner. While
// one of these local ring points may overlap with an adjacent corner, the
// local ring points for each corner are indexed successively for each corner.
//
// The cumulative set of source points forming the 1-ring around the patch
// face is indexed successively in a counter-clockwise orientation beginning
// with the first edge-vertex of the first corner, e.g. for a patch with
// three regular corners and an irregular boundary:
//
// 13 12 11 10
// x--------x--------x--------x
// | | | |
// | | | |
// | | | |
// | | | |
// 14 x--------x--------x--------x 9
// | |3 2| |
// | | | |
// | | | |
// | |0 1| |
// 4 x--------x--------x--------x 8
// | | |
// | | |
// | | |
// | | |
// x--------x--------x
// 5 6 7
//
// The set of source points consists of the corner points {0,1,2,3} followed
// by the four sets of points {4,5,6}, {7,8}, {9,10,11} and {12,13,14} --
// each being the exterior subset of the points of the one-ring for the
// corresponding corner point.
//
// The 1-ring for each corner is made available for both assembling the points
// of the resulting Gregory patch and for defining correspondence between the
// original source of the vertices. All 1-rings are oriented counter-clockwise
// and begin with a vertex at the end of an edge. The 1-rings for boundaries
// begin/end with vertices at the ends of the leading/trailing edges. Interior
// 1-rings are ordered such that the patch-face vertices occur as specified.
//
//
// SourcePatch method to initialize other internal members once required
// members of all corners have been explicitly initialized. This deals with
// all of the awkward ways in which rings of vertices around each corner
// overlap in order to define the canonical ordering of vertices (and avoiding
// have the same vertex twice).
//
// Note: Considering passing Corner[4] to a constructor so that this is all
// dealt with in the constructor.
//
void
SourcePatch::Finalize(int size) {
//
// Determine the sizes of the rings and the total number of points
// involved. In the process, identify which corners share ring points
// with their neighbors and accumulate maximal ring sizes and valence:
//
bool isQuad = (size == 4);
_numCorners = size;
_maxValence = 0;
_maxRingSize = 0;
_numSourcePoints = _numCorners;
for (int cIndex = 0; cIndex < _numCorners; ++cIndex) {
//
// Need valence-2 information for neighbors as it affects sizing:
//
int cPrev = fastModN(cIndex + 2 + isQuad, _numCorners);
int cNext = fastModN(cIndex + 1, _numCorners);
bool prevIsVal2Interior = ((_corners[cPrev]._numFaces == 2) &&
!_corners[cPrev]._boundary);
bool thisIsVal2Interior = ((_corners[cIndex]._numFaces == 2) &&
!_corners[cIndex]._boundary);
bool nextIsVal2Interior = ((_corners[cNext]._numFaces == 2) &&
!_corners[cNext]._boundary);
Corner & corner = _corners[cIndex];
corner._val2Interior = thisIsVal2Interior;
corner._val2Adjacent = prevIsVal2Interior || nextIsVal2Interior;
//
// General cases are >= 3-face interior and >= 2-face boundary:
//
if ((corner._numFaces + corner._boundary) > 2) {
//
// Quads generally share with both prev and next, but triangles
// never share with prev because of the necessary asymmetry of
// the local ring points.
//
if (corner._boundary) {
corner._sharesWithPrev = isQuad && (corner._patchFace != (corner._numFaces - 1));
corner._sharesWithNext = (corner._patchFace != 0);
} else if (corner._dart) {
Corner & cP = _corners[cPrev];
Corner & cN = _corners[cNext];
bool cPrevOnDartEdge = cP._boundary && (cP._patchFace == 0);
bool cNextOnDartEdge = cN._boundary && (cN._patchFace == cN._numFaces - 1);
corner._sharesWithPrev = isQuad && !cPrevOnDartEdge;
corner._sharesWithNext = !cNextOnDartEdge;
} else {
corner._sharesWithPrev = isQuad;
corner._sharesWithNext = true;
}
_ringSizes[cIndex] = corner._numFaces * (1 + isQuad) + corner._boundary;
_localRingSizes[cIndex] = _ringSizes[cIndex] - (_numCorners - 1)
- corner._sharesWithPrev - corner._sharesWithNext;
if (corner._val2Adjacent) {
_localRingSizes[cIndex] -= prevIsVal2Interior;
_localRingSizes[cIndex] -= (nextIsVal2Interior && isQuad);
}
} else {
corner._sharesWithPrev = false;
corner._sharesWithNext = false;
// Single-face boundary/corner and valence-2 interior:
if (corner._numFaces == 1) {
_ringSizes[cIndex] = _numCorners - 1;
_localRingSizes[cIndex] = 0;
} else {
_ringSizes[cIndex] = 2 * (1 + isQuad);
_localRingSizes[cIndex] = isQuad;
}
}
_localRingOffsets[cIndex] = _numSourcePoints;
_maxValence = std::max(_maxValence, corner._numFaces + corner._boundary);
_maxRingSize = std::max(_maxRingSize, _ringSizes[cIndex]);
_numSourcePoints += _localRingSizes[cIndex];
}
}
int
SourcePatch::GetCornerRingPoints(int corner, int ringPoints[]) const {
bool isQuad = (_numCorners == 4);
int cNext = fastModN(corner + 1, _numCorners);
int cOpp = fastModN(corner + 1 + isQuad, _numCorners);
int cPrev = fastModN(corner + 2 + isQuad, _numCorners);
//
// Assemble the ring in a canonical ordering beginning with the points of
// the 2 or 3 other corners of the face followed by the local ring -- with
// any shared or compensating points (for valence-2 interior) preceding
// and following the points local to the ring.
//
int ringSize = 0;
// The adjacent corner points:
ringPoints[ringSize++] = cNext;
if (isQuad) {
ringPoints[ringSize++] = cOpp;
}
ringPoints[ringSize++] = cPrev;
// Shared points preceding the local ring points:
if (_corners[cPrev]._val2Interior) {
ringPoints[ringSize++] = isQuad ? cOpp : cNext;
}
if (_corners[corner]._sharesWithPrev) {
ringPoints[ringSize++] = _localRingOffsets[cPrev] + _localRingSizes[cPrev] - 1;
}
// The local ring points:
for (int i = 0; i < _localRingSizes[corner]; ++i) {
ringPoints[ringSize++] = _localRingOffsets[corner] + i;
}
// Shared points following the local ring points:
if (isQuad) {
if (_corners[corner]._sharesWithNext) {
ringPoints[ringSize++] = _localRingOffsets[cNext];
}
if (_corners[cNext]._val2Interior) {
ringPoints[ringSize++] = cOpp;
}
} else {
if (_corners[corner]._sharesWithNext) {
ringPoints[ringSize++] = _corners[cNext]._val2Interior
? cPrev : _localRingOffsets[cNext];
}
}
assert(ringSize == _ringSizes[corner]);
// The assembled ordering matches the desired ordering if the patch-face
// is first, so rotate the assembled ring if that's not the case:
//
if (_corners[corner]._patchFace) {
int rotationOffset = ringSize - (1 + isQuad) * _corners[corner]._patchFace;
std::rotate(ringPoints, ringPoints + rotationOffset, ringPoints + ringSize);
}
return ringSize;
}
} // end namespace Far
} // end namespace OPENSUBDIV_VERSION
} // end namespace OpenSubdiv