mirror of
https://github.com/PixarAnimationStudios/OpenSubdiv
synced 2024-11-22 19:50:08 +00:00
392e5e8bed
While this may be worth revisiting, we should first quantify the benefits and identify the compilers that support it. Ultimately, we may never use pragma once in favor of strictly using standard C++.
1132 lines
45 KiB
C++
1132 lines
45 KiB
C++
//
|
|
// Copyright 2013 Pixar
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "Apache License")
|
|
// with the following modification; you may not use this file except in
|
|
// compliance with the Apache License and the following modification to it:
|
|
// Section 6. Trademarks. is deleted and replaced with:
|
|
//
|
|
// 6. Trademarks. This License does not grant permission to use the trade
|
|
// names, trademarks, service marks, or product names of the Licensor
|
|
// and its affiliates, except as required to comply with Section 4(c) of
|
|
// the License and to reproduce the content of the NOTICE file.
|
|
//
|
|
// You may obtain a copy of the Apache License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the Apache License with the above modification is
|
|
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the Apache License for the specific
|
|
// language governing permissions and limitations under the Apache License.
|
|
//
|
|
|
|
#ifndef OPENSUBDIV3_HBRCATMARK_H
|
|
#define OPENSUBDIV3_HBRCATMARK_H
|
|
|
|
/*#define HBR_DEBUG */
|
|
#include "../hbr/subdivision.h"
|
|
|
|
#include "../version.h"
|
|
|
|
namespace OpenSubdiv {
|
|
namespace OPENSUBDIV_VERSION {
|
|
|
|
template <class T>
|
|
class HbrCatmarkSubdivision : public HbrSubdivision<T> {
|
|
public:
|
|
HbrCatmarkSubdivision<T>()
|
|
: HbrSubdivision<T>(), triangleSubdivision(k_Normal) {}
|
|
|
|
HbrCatmarkSubdivision<T>(const HbrCatmarkSubdivision<T> &old)
|
|
: HbrSubdivision<T>(), triangleSubdivision(old.triangleSubdivision) {}
|
|
|
|
virtual HbrSubdivision<T>* Clone() const {
|
|
return new HbrCatmarkSubdivision<T>(*this);
|
|
}
|
|
|
|
virtual void Refine(HbrMesh<T>* mesh, HbrFace<T>* face);
|
|
virtual HbrFace<T>* RefineFaceAtVertex(HbrMesh<T>* mesh, HbrFace<T>* face, HbrVertex<T>* vertex);
|
|
virtual void GuaranteeNeighbor(HbrMesh<T>* mesh, HbrHalfedge<T>* edge);
|
|
virtual void GuaranteeNeighbors(HbrMesh<T>* mesh, HbrVertex<T>* vertex);
|
|
|
|
virtual bool HasLimit(HbrMesh<T>* mesh, HbrFace<T>* face);
|
|
virtual bool HasLimit(HbrMesh<T>* mesh, HbrHalfedge<T>* edge);
|
|
virtual bool HasLimit(HbrMesh<T>* mesh, HbrVertex<T>* vertex);
|
|
|
|
virtual HbrVertex<T>* Subdivide(HbrMesh<T>* mesh, HbrFace<T>* face);
|
|
virtual HbrVertex<T>* Subdivide(HbrMesh<T>* mesh, HbrHalfedge<T>* edge);
|
|
virtual HbrVertex<T>* Subdivide(HbrMesh<T>* mesh, HbrVertex<T>* vertex);
|
|
|
|
virtual bool VertexIsExtraordinary(HbrMesh<T> const * /* mesh */, HbrVertex<T>* vertex) { return vertex->GetValence() != 4; }
|
|
virtual bool FaceIsExtraordinary(HbrMesh<T> const* /* mesh */, HbrFace<T>* face) { return face->GetNumVertices() != 4; }
|
|
|
|
// Triangle subdivision rules, which modifies the rules for
|
|
// triangular faces in order to make them smoother. The "normal"
|
|
// rule is the standard Catmull-Clark rule. The "old" rule
|
|
// modifies only the subdivision rules for a face to vertex
|
|
// refinement. The "new" rule modifies only the subdivision rules
|
|
// for an edge to vertex refinement. These rules are only applied
|
|
// to the top level face, since only top level faces can be
|
|
// triangular; after one level of refinement everything becomes
|
|
// quads.
|
|
enum TriangleSubdivision {
|
|
k_Normal,
|
|
k_Old,
|
|
k_New
|
|
};
|
|
TriangleSubdivision GetTriangleSubdivisionMethod() const { return triangleSubdivision; }
|
|
void SetTriangleSubdivisionMethod(TriangleSubdivision method) { triangleSubdivision = method; }
|
|
|
|
virtual int GetFaceChildrenCount(int nvertices) const { return nvertices; }
|
|
|
|
private:
|
|
|
|
// Transfers facevarying data from a parent face to a child face
|
|
void transferFVarToChild(HbrMesh<T>* mesh, HbrFace<T>* face, HbrFace<T>* child, int index);
|
|
|
|
// Transfers vertex and edge edits from a parent face to a child face
|
|
void transferEditsToChild(HbrFace<T>* face, HbrFace<T>* child, int index);
|
|
|
|
TriangleSubdivision triangleSubdivision;
|
|
};
|
|
|
|
template <class T>
|
|
void
|
|
HbrCatmarkSubdivision<T>::transferFVarToChild(HbrMesh<T>* mesh, HbrFace<T>* face, HbrFace<T>* child, int index) {
|
|
|
|
typename HbrMesh<T>::InterpolateBoundaryMethod fvarinterp = mesh->GetFVarInterpolateBoundaryMethod();
|
|
const int fvarcount = mesh->GetFVarCount();
|
|
int fvarindex = 0;
|
|
const int nv = face->GetNumVertices();
|
|
bool extraordinary = (nv != 4);
|
|
HbrVertex<T> *v = face->GetVertex(index), *childVertex;
|
|
HbrHalfedge<T>* edge;
|
|
|
|
// We do the face subdivision rule first, because we may reuse the
|
|
// result (stored in fv2) for the other subdivisions.
|
|
float weight = 1.0f / nv;
|
|
// For the face center vertex, the facevarying data can be cleared
|
|
// and averaged en masse, since the subdivision rules don't change
|
|
// for any of the data - we use the smooth rule for all of it.
|
|
// And since we know that the fvardata for this particular vertex
|
|
// is smooth and therefore shareable amongst all incident faces,
|
|
// we don't have to allocate extra storage for it. We also don't
|
|
// have to compute it if some other face got to it first (as
|
|
// indicated by the IsInitialized() flag).
|
|
HbrFVarData<T>& fv2 = child->GetFVarData(extraordinary ? 2 : (index+2)%4);
|
|
if (!fv2.IsInitialized()) {
|
|
const int totalfvarwidth = mesh->GetTotalFVarWidth();
|
|
fv2.ClearAll(totalfvarwidth);
|
|
for (int j = 0; j < nv; ++j) {
|
|
fv2.AddWithWeightAll(face->GetFVarData(j), totalfvarwidth, weight);
|
|
}
|
|
}
|
|
assert(fv2.IsInitialized());
|
|
|
|
v->GuaranteeNeighbors();
|
|
|
|
// Make sure that that each of the vertices of the child face have
|
|
// the appropriate facevarying storage as needed. If there are
|
|
// discontinuities in any facevarying datum, the vertex must
|
|
// allocate a new block of facevarying storage specific to the
|
|
// child face.
|
|
bool fv0IsSmooth, fv1IsSmooth, fv3IsSmooth;
|
|
|
|
childVertex = child->GetVertex(extraordinary ? 0 : (index+0)%4);
|
|
fv0IsSmooth = v->IsFVarAllSmooth();
|
|
if (!fv0IsSmooth) {
|
|
childVertex->NewFVarData(child);
|
|
}
|
|
HbrFVarData<T>& fv0 = childVertex->GetFVarData(child);
|
|
|
|
edge = face->GetEdge(index);
|
|
GuaranteeNeighbor(mesh, edge);
|
|
assert(edge->GetOrgVertex() == v);
|
|
childVertex = child->GetVertex(extraordinary ? 1 : (index+1)%4);
|
|
fv1IsSmooth = !edge->IsFVarInfiniteSharpAnywhere();
|
|
if (!fv1IsSmooth) {
|
|
childVertex->NewFVarData(child);
|
|
}
|
|
HbrFVarData<T>& fv1 = childVertex->GetFVarData(child);
|
|
|
|
edge = edge->GetPrev();
|
|
GuaranteeNeighbor(mesh, edge);
|
|
assert(edge == face->GetEdge((index + nv - 1) % nv));
|
|
assert(edge->GetDestVertex() == v);
|
|
childVertex = child->GetVertex(extraordinary ? 3 : (index+3)%4);
|
|
fv3IsSmooth = !edge->IsFVarInfiniteSharpAnywhere();
|
|
if (!fv3IsSmooth) {
|
|
childVertex->NewFVarData(child);
|
|
}
|
|
HbrFVarData<T>& fv3 = childVertex->GetFVarData(child);
|
|
fvarindex = 0;
|
|
for (int fvaritem = 0; fvaritem < fvarcount; ++fvaritem) {
|
|
// Vertex subdivision rule. Analyze whether the vertex is on the
|
|
// boundary and whether it's an infinitely sharp corner. We
|
|
// determine the last by checking the propagate corners flag on
|
|
// the mesh; if it's off, we check the two edges of this face
|
|
// incident to that vertex and determining whether they are
|
|
// facevarying boundary edges - this is analogous to what goes on
|
|
// for the interpolateboundary tag (which when set to
|
|
// EDGEANDCORNER marks vertices with a valence of two as being
|
|
// sharp corners). If propagate corners is on, we check *all*
|
|
// faces to see if two edges side by side are facevarying boundary
|
|
// edges. The facevarying boundary check ignores geometric
|
|
// sharpness, otherwise we may swim at geometric creases which
|
|
// aren't actually discontinuous.
|
|
bool infcorner = false;
|
|
const int fvarwidth = mesh->GetFVarWidths()[fvaritem];
|
|
const unsigned char fvarmask = v->GetFVarMask(fvaritem);
|
|
if (fvarinterp == HbrMesh<T>::k_InterpolateBoundaryEdgeAndCorner) {
|
|
if (fvarmask >= HbrVertex<T>::k_Corner) {
|
|
infcorner = true;
|
|
} else if (mesh->GetFVarPropagateCorners()) {
|
|
if (v->IsFVarCorner(fvaritem)) {
|
|
infcorner = true;
|
|
}
|
|
} else {
|
|
if (face->GetEdge(index)->GetFVarSharpness(fvaritem, true) && face->GetEdge(index)->GetPrev()->GetFVarSharpness(fvaritem, true)) {
|
|
infcorner = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Infinitely sharp vertex rule. Applied if the vertex is:
|
|
// - undergoing no facevarying boundary interpolation;
|
|
// - at a geometric crease, in either boundary interpolation case; or
|
|
// - is an infinitely sharp facevarying vertex, in the EDGEANDCORNER case; or
|
|
// - has a mask equal or greater than one, in the "always
|
|
// sharp" interpolate boundary case
|
|
if (fvarinterp == HbrMesh<T>::k_InterpolateBoundaryNone ||
|
|
(fvarinterp == HbrMesh<T>::k_InterpolateBoundaryAlwaysSharp &&
|
|
fvarmask >= 1) ||
|
|
v->GetSharpness() > HbrVertex<T>::k_Smooth ||
|
|
infcorner) {
|
|
fv0.SetWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, 1.0f);
|
|
}
|
|
// Dart rule: unlike geometric creases, because there's two
|
|
// discontinuous values for the one incident edge, we use the
|
|
// boundary rule and not the smooth rule
|
|
else if (fvarmask == 1) {
|
|
assert(!v->OnBoundary());
|
|
|
|
// Use 0.75 of the current vert
|
|
fv0.SetWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, 0.75f);
|
|
|
|
// 0.125 of "two adjacent edge vertices", which in actuality
|
|
// are the facevarying values of the same vertex but on each
|
|
// side of the single incident facevarying sharp edge
|
|
HbrHalfedge<T>* start = v->GetIncidentEdge(), *nextedge;
|
|
edge = start;
|
|
while (edge) {
|
|
if (edge->GetFVarSharpness(fvaritem)) {
|
|
break;
|
|
}
|
|
nextedge = v->GetNextEdge(edge);
|
|
if (nextedge == start) {
|
|
assert(0); // we should have found it by now
|
|
break;
|
|
} else if (!nextedge) {
|
|
// should never get into this case - if the vertex is
|
|
// on a boundary, it can never be a facevarying dart
|
|
// vertex
|
|
assert(0);
|
|
edge = edge->GetPrev();
|
|
break;
|
|
} else {
|
|
edge = nextedge;
|
|
}
|
|
}
|
|
HbrVertex<T>* w = edge->GetDestVertex();
|
|
HbrFace<T>* bestface = edge->GetLeftFace();
|
|
int j;
|
|
for (j = 0; j < bestface->GetNumVertices(); ++j) {
|
|
if (bestface->GetVertex(j) == w) break;
|
|
}
|
|
assert(j != bestface->GetNumVertices());
|
|
fv0.AddWithWeight(bestface->GetFVarData(j), fvarindex, fvarwidth, 0.125f);
|
|
bestface = edge->GetRightFace();
|
|
for (j = 0; j < bestface->GetNumVertices(); ++j) {
|
|
if (bestface->GetVertex(j) == w) break;
|
|
}
|
|
assert(j != bestface->GetNumVertices());
|
|
fv0.AddWithWeight(bestface->GetFVarData(j), fvarindex, fvarwidth, 0.125f);
|
|
}
|
|
// Boundary vertex rule
|
|
else if (fvarmask != 0) {
|
|
|
|
// Use 0.75 of the current vert
|
|
fv0.SetWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, 0.75f);
|
|
|
|
// Compute 0.125 of two adjacent edge vertices. However the
|
|
// two adjacent edge vertices we use must be part of the
|
|
// facevarying "boundary". To find the first edge we cycle
|
|
// counterclockwise around the current vertex v and look for
|
|
// the first boundary edge
|
|
|
|
HbrFace<T>* bestface = face;
|
|
HbrHalfedge<T>* bestedge = face->GetEdge(index)->GetPrev();
|
|
HbrHalfedge<T>* starte = bestedge->GetOpposite();
|
|
HbrVertex<T>* w = 0;
|
|
if (!starte) {
|
|
w = face->GetEdge(index)->GetPrev()->GetOrgVertex();
|
|
} else {
|
|
HbrHalfedge<T>* e = starte, *next;
|
|
assert(starte->GetOrgVertex() == v);
|
|
do {
|
|
if (e->GetFVarSharpness(fvaritem) || !e->GetLeftFace()) {
|
|
bestface = e->GetRightFace();
|
|
bestedge = e;
|
|
break;
|
|
}
|
|
next = v->GetNextEdge(e);
|
|
if (!next) {
|
|
bestface = e->GetLeftFace();
|
|
w = e->GetPrev()->GetOrgVertex();
|
|
break;
|
|
}
|
|
e = next;
|
|
} while (e && e != starte);
|
|
}
|
|
if (!w) w = bestedge->GetDestVertex();
|
|
int j;
|
|
for (j = 0; j < bestface->GetNumVertices(); ++j) {
|
|
if (bestface->GetVertex(j) == w) break;
|
|
}
|
|
assert(j != bestface->GetNumVertices());
|
|
fv0.AddWithWeight(bestface->GetFVarData(j), fvarindex, fvarwidth, 0.125f);
|
|
|
|
// Look for the other edge by cycling clockwise around v
|
|
bestface = face;
|
|
bestedge = face->GetEdge(index);
|
|
starte = bestedge;
|
|
w = 0;
|
|
if (HbrHalfedge<T>* e = starte) {
|
|
assert(starte->GetOrgVertex() == v);
|
|
do {
|
|
if (e->GetFVarSharpness(fvaritem) || !e->GetRightFace()) {
|
|
bestface = e->GetLeftFace();
|
|
bestedge = e;
|
|
break;
|
|
}
|
|
assert(e->GetOpposite());
|
|
e = v->GetPreviousEdge(e);
|
|
} while (e && e != starte);
|
|
}
|
|
if (!w) w = bestedge->GetDestVertex();
|
|
for (j = 0; j < bestface->GetNumVertices(); ++j) {
|
|
if (bestface->GetVertex(j) == w) break;
|
|
}
|
|
assert(j != bestface->GetNumVertices());
|
|
fv0.AddWithWeight(bestface->GetFVarData(j), fvarindex, fvarwidth, 0.125f);
|
|
|
|
}
|
|
// Smooth rule. Here, we can take a shortcut if we know that
|
|
// the vertex is smooth and some other vertex has completely
|
|
// computed the facevarying values
|
|
else if (!fv0IsSmooth || !fv0.IsInitialized()) {
|
|
int valence = v->GetValence();
|
|
float invvalencesquared = 1.0f / (valence * valence);
|
|
|
|
// Use n-2/n of the current vertex value
|
|
fv0.SetWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, invvalencesquared * valence * (valence - 2));
|
|
|
|
// Add 1/n^2 of surrounding edge vertices and surrounding face
|
|
// averages. We loop over all surrounding faces..
|
|
HbrHalfedge<T>* start = v->GetIncidentEdge(), *edge;
|
|
edge = start;
|
|
while (edge) {
|
|
HbrFace<T>* g = edge->GetLeftFace();
|
|
weight = invvalencesquared / g->GetNumVertices();
|
|
// .. and compute the average of each face. At the same
|
|
// time, we look for the edge on that face whose origin is
|
|
// the same as v, and add a contribution from its
|
|
// destination vertex value; this takes care of the
|
|
// surrounding edge vertex addition.
|
|
for (int j = 0; j < g->GetNumVertices(); ++j) {
|
|
fv0.AddWithWeight(g->GetFVarData(j), fvarindex, fvarwidth, weight);
|
|
if (g->GetEdge(j)->GetOrgVertex() == v) {
|
|
fv0.AddWithWeight(g->GetFVarData((j + 1) % g->GetNumVertices()), fvarindex, fvarwidth, invvalencesquared);
|
|
}
|
|
}
|
|
edge = v->GetNextEdge(edge);
|
|
if (edge == start) break;
|
|
}
|
|
}
|
|
|
|
// Edge subdivision rule
|
|
edge = face->GetEdge(index);
|
|
|
|
if (fvarinterp == HbrMesh<T>::k_InterpolateBoundaryNone ||
|
|
edge->GetFVarSharpness(fvaritem) || edge->IsBoundary()) {
|
|
|
|
// Sharp edge rule
|
|
fv1.SetWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, 0.5f);
|
|
fv1.AddWithWeight(face->GetFVarData((index + 1) % nv), fvarindex, fvarwidth, 0.5f);
|
|
} else if (!fv1IsSmooth || !fv1.IsInitialized()) {
|
|
// Smooth edge subdivision. Add 0.25 of adjacent vertices
|
|
fv1.SetWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, 0.25f);
|
|
fv1.AddWithWeight(face->GetFVarData((index + 1) % nv), fvarindex, fvarwidth, 0.25f);
|
|
// Local subdivided face vertex
|
|
fv1.AddWithWeight(fv2, fvarindex, fvarwidth, 0.25f);
|
|
// Add 0.25 * average of neighboring face vertices
|
|
HbrFace<T>* oppFace = edge->GetRightFace();
|
|
weight = 0.25f / oppFace->GetNumVertices();
|
|
for (int j = 0; j < oppFace->GetNumVertices(); ++j) {
|
|
fv1.AddWithWeight(oppFace->GetFVarData(j), fvarindex, fvarwidth, weight);
|
|
}
|
|
}
|
|
|
|
|
|
// Edge subdivision rule
|
|
edge = edge->GetPrev();
|
|
|
|
if (fvarinterp == HbrMesh<T>::k_InterpolateBoundaryNone ||
|
|
edge->GetFVarSharpness(fvaritem) || edge->IsBoundary()) {
|
|
|
|
// Sharp edge rule
|
|
fv3.SetWithWeight(face->GetFVarData((index + nv - 1) % nv), fvarindex, fvarwidth, 0.5f);
|
|
fv3.AddWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, 0.5f);
|
|
} else if (!fv3IsSmooth || !fv3.IsInitialized()) {
|
|
// Smooth edge subdivision. Add 0.25 of adjacent vertices
|
|
fv3.SetWithWeight(face->GetFVarData((index + nv - 1) % nv), fvarindex, fvarwidth, 0.25f);
|
|
fv3.AddWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, 0.25f);
|
|
// Local subdivided face vertex
|
|
fv3.AddWithWeight(fv2, fvarindex, fvarwidth, 0.25f);
|
|
// Add 0.25 * average of neighboring face vertices
|
|
HbrFace<T>* oppFace = edge->GetRightFace();
|
|
weight = 0.25f / oppFace->GetNumVertices();
|
|
for (int j = 0; j < oppFace->GetNumVertices(); ++j) {
|
|
fv3.AddWithWeight(oppFace->GetFVarData(j), fvarindex, fvarwidth, weight);
|
|
}
|
|
}
|
|
|
|
fvarindex += fvarwidth;
|
|
}
|
|
fv0.SetInitialized();
|
|
fv1.SetInitialized();
|
|
fv3.SetInitialized();
|
|
|
|
}
|
|
|
|
template <class T>
|
|
void
|
|
HbrCatmarkSubdivision<T>::transferEditsToChild(HbrFace<T>* face, HbrFace<T>* child, int index) {
|
|
|
|
// Hand down hole tag
|
|
child->SetHole(face->IsHole());
|
|
|
|
// Hand down pointers to hierarchical edits
|
|
if (HbrHierarchicalEdit<T>** edits = face->GetHierarchicalEdits()) {
|
|
while (HbrHierarchicalEdit<T>* edit = *edits) {
|
|
if (!edit->IsRelevantToFace(face)) break;
|
|
if (edit->GetNSubfaces() > face->GetDepth() &&
|
|
(edit->GetSubface(face->GetDepth()) == index)) {
|
|
child->SetHierarchicalEdits(edits);
|
|
break;
|
|
}
|
|
edits++;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template <class T>
|
|
void
|
|
HbrCatmarkSubdivision<T>::Refine(HbrMesh<T>* mesh, HbrFace<T>* face) {
|
|
|
|
// Create new quadrilateral children faces from this face
|
|
HbrFace<T>* child;
|
|
HbrVertex<T>* vertices[4];
|
|
HbrHalfedge<T>* edge = face->GetFirstEdge();
|
|
HbrHalfedge<T>* prevedge = edge->GetPrev();
|
|
HbrHalfedge<T>* childedge;
|
|
int nv = face->GetNumVertices();
|
|
float sharpness;
|
|
bool extraordinary = (nv != 4);
|
|
// The funny indexing on vertices is done only for
|
|
// non-extraordinary faces in order to correctly preserve
|
|
// parametric space through the refinement. If we split an
|
|
// extraordinary face then it doesn't matter.
|
|
for (int i = 0; i < nv; ++i) {
|
|
if (!face->GetChild(i)) {
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << "Kid " << i << "\n";
|
|
#endif
|
|
HbrVertex<T>* vertex = edge->GetOrgVertex();
|
|
if (extraordinary) {
|
|
vertices[0] = vertex->Subdivide();
|
|
vertices[1] = edge->Subdivide();
|
|
vertices[2] = face->Subdivide();
|
|
vertices[3] = prevedge->Subdivide();
|
|
} else {
|
|
vertices[i] = vertex->Subdivide();
|
|
vertices[(i+1)%4] = edge->Subdivide();
|
|
vertices[(i+2)%4] = face->Subdivide();
|
|
vertices[(i+3)%4] = prevedge->Subdivide();
|
|
}
|
|
child = mesh->NewFace(4, vertices, face, i);
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << "Creating face " << *child << " during refine\n";
|
|
#endif
|
|
|
|
// Hand down edge sharpnesses
|
|
childedge = vertex->Subdivide()->GetEdge(edge->Subdivide());
|
|
assert(childedge);
|
|
if ((sharpness = edge->GetSharpness()) > HbrHalfedge<T>::k_Smooth) {
|
|
HbrSubdivision<T>::SubdivideCreaseWeight(
|
|
edge, edge->GetOrgVertex(), childedge);
|
|
}
|
|
childedge->CopyFVarInfiniteSharpness(edge);
|
|
|
|
childedge = prevedge->Subdivide()->GetEdge(vertex->Subdivide());
|
|
assert(childedge);
|
|
if ((sharpness = prevedge->GetSharpness()) > HbrHalfedge<T>::k_Smooth) {
|
|
HbrSubdivision<T>::SubdivideCreaseWeight(
|
|
prevedge, prevedge->GetDestVertex(), childedge);
|
|
}
|
|
childedge->CopyFVarInfiniteSharpness(prevedge);
|
|
|
|
if (mesh->GetTotalFVarWidth()) {
|
|
transferFVarToChild(mesh, face, child, i);
|
|
}
|
|
|
|
// Special handling of ptex index for extraordinary faces: make
|
|
// sure the children get their indices reassigned to be
|
|
// consecutive within the block reserved for the parent.
|
|
if (face->GetNumVertices() != 4 && face->GetPtexIndex() != -1) {
|
|
child->SetPtexIndex(face->GetPtexIndex() + i);
|
|
}
|
|
|
|
transferEditsToChild(face, child, i);
|
|
}
|
|
prevedge = edge;
|
|
edge = edge->GetNext();
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
HbrFace<T>*
|
|
HbrCatmarkSubdivision<T>::RefineFaceAtVertex(HbrMesh<T>* mesh, HbrFace<T>* face, HbrVertex<T>* vertex) {
|
|
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << " forcing refine on " << *face << " at " << *vertex << '\n';
|
|
#endif
|
|
|
|
// Create new quadrilateral children faces from this face
|
|
HbrHalfedge<T>* edge = face->GetFirstEdge();
|
|
HbrHalfedge<T>* prevedge = edge->GetPrev();
|
|
HbrHalfedge<T>* childedge;
|
|
int nv = face->GetNumVertices();
|
|
float sharpness;
|
|
bool extraordinary = (nv != 4);
|
|
// The funny indexing on vertices is done only for
|
|
// non-extraordinary faces in order to correctly preserve
|
|
// parametric space through the refinement. If we split an
|
|
// extraordinary face then it doesn't matter.
|
|
for (int i = 0; i < nv; ++i) {
|
|
if (edge->GetOrgVertex() == vertex) {
|
|
if (!face->GetChild(i)) {
|
|
HbrFace<T>* child;
|
|
HbrVertex<T>* vertices[4];
|
|
if (extraordinary) {
|
|
vertices[0] = vertex->Subdivide();
|
|
vertices[1] = edge->Subdivide();
|
|
vertices[2] = face->Subdivide();
|
|
vertices[3] = prevedge->Subdivide();
|
|
} else {
|
|
vertices[i] = vertex->Subdivide();
|
|
vertices[(i+1)%4] = edge->Subdivide();
|
|
vertices[(i+2)%4] = face->Subdivide();
|
|
vertices[(i+3)%4] = prevedge->Subdivide();
|
|
}
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << "Kid " << i << "\n";
|
|
std::cerr << " subdivision created " << *vertices[0] << '\n';
|
|
std::cerr << " subdivision created " << *vertices[1] << '\n';
|
|
std::cerr << " subdivision created " << *vertices[2] << '\n';
|
|
std::cerr << " subdivision created " << *vertices[3] << '\n';
|
|
#endif
|
|
child = mesh->NewFace(4, vertices, face, i);
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << "Creating face " << *child << " during refine\n";
|
|
#endif
|
|
// Hand down edge sharpness
|
|
childedge = vertex->Subdivide()->GetEdge(edge->Subdivide());
|
|
assert(childedge);
|
|
if ((sharpness = edge->GetSharpness()) > HbrHalfedge<T>::k_Smooth) {
|
|
HbrSubdivision<T>::SubdivideCreaseWeight(
|
|
edge, edge->GetOrgVertex(), childedge);
|
|
}
|
|
childedge->CopyFVarInfiniteSharpness(edge);
|
|
|
|
childedge = prevedge->Subdivide()->GetEdge(vertex->Subdivide());
|
|
assert(childedge);
|
|
if ((sharpness = prevedge->GetSharpness()) > HbrHalfedge<T>::k_Smooth) {
|
|
HbrSubdivision<T>::SubdivideCreaseWeight(
|
|
prevedge, prevedge->GetDestVertex(), childedge);
|
|
}
|
|
childedge->CopyFVarInfiniteSharpness(prevedge);
|
|
|
|
if (mesh->GetTotalFVarWidth()) {
|
|
transferFVarToChild(mesh, face, child, i);
|
|
}
|
|
|
|
// Special handling of ptex index for extraordinary faces: make
|
|
// sure the children get their indices reassigned to be
|
|
// consecutive within the block reserved for the parent.
|
|
if (face->GetNumVertices() != 4 && face->GetPtexIndex() != -1) {
|
|
child->SetPtexIndex(face->GetPtexIndex() + i);
|
|
}
|
|
|
|
transferEditsToChild(face, child, i);
|
|
return child;
|
|
} else {
|
|
return face->GetChild(i);
|
|
}
|
|
}
|
|
prevedge = edge;
|
|
edge = edge->GetNext();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
template <class T>
|
|
void
|
|
HbrCatmarkSubdivision<T>::GuaranteeNeighbor(HbrMesh<T>* mesh, HbrHalfedge<T>* edge) {
|
|
if (edge->GetOpposite()) {
|
|
return;
|
|
}
|
|
|
|
// For the given edge: if the parent of either of its incident
|
|
// vertices is itself a _face_, then ensuring that this parent
|
|
// face has refined at a particular vertex is sufficient to
|
|
// ensure that both of the faces on each side of the edge have
|
|
// been created.
|
|
bool destParentWasEdge = true;
|
|
HbrFace<T>* parentFace = edge->GetOrgVertex()->GetParentFace();
|
|
HbrHalfedge<T>* parentEdge = edge->GetDestVertex()->GetParentEdge();
|
|
if (!parentFace) {
|
|
destParentWasEdge = false;
|
|
parentFace = edge->GetDestVertex()->GetParentFace();
|
|
parentEdge = edge->GetOrgVertex()->GetParentEdge();
|
|
}
|
|
|
|
if (parentFace) {
|
|
|
|
// Make sure we deal with a parent halfedge which is
|
|
// associated with the parent face
|
|
if (parentEdge->GetFace() != parentFace) {
|
|
parentEdge = parentEdge->GetOpposite();
|
|
}
|
|
// If one of the vertices had a parent face, the other one MUST
|
|
// have been a child of an edge
|
|
assert(parentEdge && parentEdge->GetFace() == parentFace);
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << "\nparent edge is " << *parentEdge << "\n";
|
|
#endif
|
|
|
|
// The vertex to refine at depends on whether the
|
|
// destination or origin vertex of this edge had a parent
|
|
// edge
|
|
if (destParentWasEdge) {
|
|
RefineFaceAtVertex(mesh, parentFace, parentEdge->GetOrgVertex());
|
|
} else {
|
|
RefineFaceAtVertex(mesh, parentFace, parentEdge->GetDestVertex());
|
|
}
|
|
|
|
// It should always be the case that the opposite now exists -
|
|
// we can't have a boundary case here
|
|
assert(edge->GetOpposite());
|
|
} else {
|
|
HbrVertex<T>* parentVertex = edge->GetOrgVertex()->GetParentVertex();
|
|
parentEdge = edge->GetDestVertex()->GetParentEdge();
|
|
if (!parentVertex) {
|
|
parentVertex = edge->GetDestVertex()->GetParentVertex();
|
|
parentEdge = edge->GetOrgVertex()->GetParentEdge();
|
|
}
|
|
|
|
if (parentVertex) {
|
|
|
|
assert(parentEdge);
|
|
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << "\nparent edge is " << *parentEdge << "\n";
|
|
#endif
|
|
|
|
// 1. Go up to the parent of my face
|
|
|
|
parentFace = edge->GetFace()->GetParent();
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << "\nparent face is " << *parentFace << "\n";
|
|
#endif
|
|
|
|
// 2. Ask the opposite face (if it exists) to refine
|
|
if (parentFace) {
|
|
|
|
// A vertex can be associated with either of two
|
|
// parent halfedges. If the parent edge that we're
|
|
// interested in doesn't match then we should look at
|
|
// its opposite
|
|
if (parentEdge->GetFace() != parentFace)
|
|
parentEdge = parentEdge->GetOpposite();
|
|
assert(parentEdge->GetFace() == parentFace);
|
|
|
|
// Make sure the parent edge has its neighbor as well
|
|
GuaranteeNeighbor(mesh, parentEdge);
|
|
|
|
// Now access that neighbor and refine it
|
|
if (parentEdge->GetRightFace()) {
|
|
RefineFaceAtVertex(mesh, parentEdge->GetRightFace(), parentVertex);
|
|
|
|
// FIXME: assertion?
|
|
assert(edge->GetOpposite());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
void
|
|
HbrCatmarkSubdivision<T>::GuaranteeNeighbors(HbrMesh<T>* mesh, HbrVertex<T>* vertex) {
|
|
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << "\n\nneighbor guarantee at " << *vertex << " invoked\n";
|
|
#endif
|
|
|
|
// If the vertex is a child of a face, guaranteeing the neighbors
|
|
// of the vertex is simply a matter of ensuring the parent face
|
|
// has refined.
|
|
HbrFace<T>* parentFace = vertex->GetParentFace();
|
|
if (parentFace) {
|
|
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << " forcing full refine on parent face\n";
|
|
#endif
|
|
Refine(mesh, parentFace);
|
|
return;
|
|
}
|
|
|
|
// Otherwise if the vertex is a child of an edge, we need to
|
|
// ensure that the parent faces on either side of the parent edge
|
|
// 1) exist, and 2) have refined at both vertices of the parent
|
|
// edge
|
|
HbrHalfedge<T>* parentEdge = vertex->GetParentEdge();
|
|
if (parentEdge) {
|
|
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << " forcing full refine on adjacent faces of parent edge\n";
|
|
#endif
|
|
HbrVertex<T>* dest = parentEdge->GetDestVertex();
|
|
HbrVertex<T>* org = parentEdge->GetOrgVertex();
|
|
GuaranteeNeighbor(mesh, parentEdge);
|
|
parentFace = parentEdge->GetLeftFace();
|
|
RefineFaceAtVertex(mesh, parentFace, dest);
|
|
RefineFaceAtVertex(mesh, parentFace, org);
|
|
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << " on the right face?\n";
|
|
#endif
|
|
parentFace = parentEdge->GetRightFace();
|
|
// The right face may not necessarily exist even after
|
|
// GuaranteeNeighbor
|
|
if (parentFace) {
|
|
RefineFaceAtVertex(mesh, parentFace, dest);
|
|
RefineFaceAtVertex(mesh, parentFace, org);
|
|
}
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << " end force\n";
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
// The last case: the vertex is a child of a vertex. In this case
|
|
// we have to first recursively guarantee that the parent's
|
|
// adjacent faces also exist.
|
|
HbrVertex<T>* parentVertex = vertex->GetParentVertex();
|
|
if (parentVertex) {
|
|
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << " recursive parent vertex guarantee call\n";
|
|
#endif
|
|
parentVertex->GuaranteeNeighbors();
|
|
|
|
// And then we refine all the face neighbors of the
|
|
// parentVertex
|
|
HbrHalfedge<T>* start = parentVertex->GetIncidentEdge(), *edge;
|
|
edge = start;
|
|
while (edge) {
|
|
HbrFace<T>* f = edge->GetLeftFace();
|
|
RefineFaceAtVertex(mesh, f, parentVertex);
|
|
edge = parentVertex->GetNextEdge(edge);
|
|
if (edge == start) break;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
bool
|
|
HbrCatmarkSubdivision<T>::HasLimit(HbrMesh<T>* mesh, HbrFace<T>* face) {
|
|
|
|
if (face->IsHole()) return false;
|
|
// A limit face exists if all the bounding edges have limit curves
|
|
for (int i = 0; i < face->GetNumVertices(); ++i) {
|
|
if (!HasLimit(mesh, face->GetEdge(i))) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <class T>
|
|
bool
|
|
HbrCatmarkSubdivision<T>::HasLimit(HbrMesh<T>* mesh, HbrHalfedge<T>* edge) {
|
|
// A sharp edge has a limit curve if both endpoints have limits.
|
|
// A smooth edge has a limit if both endpoints have limits and
|
|
// the edge isn't on the boundary.
|
|
|
|
if (edge->GetSharpness() >= HbrHalfedge<T>::k_InfinitelySharp) return true;
|
|
|
|
if (!HasLimit(mesh, edge->GetOrgVertex()) || !HasLimit(mesh, edge->GetDestVertex())) return false;
|
|
|
|
return !edge->IsBoundary();
|
|
}
|
|
|
|
template <class T>
|
|
bool
|
|
HbrCatmarkSubdivision<T>::HasLimit(HbrMesh<T>* /* mesh */, HbrVertex<T>* vertex) {
|
|
vertex->GuaranteeNeighbors();
|
|
switch (vertex->GetMask(false)) {
|
|
case HbrVertex<T>::k_Smooth:
|
|
case HbrVertex<T>::k_Dart:
|
|
return !vertex->OnBoundary();
|
|
break;
|
|
case HbrVertex<T>::k_Crease:
|
|
case HbrVertex<T>::k_Corner:
|
|
default:
|
|
if (vertex->IsVolatile()) {
|
|
// Search for any incident semisharp boundary edge
|
|
HbrHalfedge<T>* start = vertex->GetIncidentEdge(), *edge, *next;
|
|
edge = start;
|
|
while (edge) {
|
|
if (edge->IsBoundary() && edge->GetSharpness() < HbrHalfedge<T>::k_InfinitelySharp) {
|
|
return false;
|
|
}
|
|
next = vertex->GetNextEdge(edge);
|
|
if (next == start) {
|
|
break;
|
|
} else if (!next) {
|
|
edge = edge->GetPrev();
|
|
if (edge->IsBoundary() && edge->GetSharpness() < HbrHalfedge<T>::k_InfinitelySharp) {
|
|
return false;
|
|
}
|
|
break;
|
|
} else {
|
|
edge = next;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
HbrVertex<T>*
|
|
HbrCatmarkSubdivision<T>::Subdivide(HbrMesh<T>* mesh, HbrFace<T>* face) {
|
|
|
|
// Face rule: simply average all vertices on the face
|
|
HbrVertex<T>* v = mesh->NewVertex();
|
|
T& data = v->GetData();
|
|
int nv = face->GetNumVertices();
|
|
float weight = 1.0f / nv;
|
|
|
|
HbrHalfedge<T>* edge = face->GetFirstEdge();
|
|
for (int i = 0; i < face->GetNumVertices(); ++i) {
|
|
HbrVertex<T>* w = edge->GetOrgVertex();
|
|
// If there are vertex edits we have to make sure the edit
|
|
// has been applied
|
|
if (mesh->HasVertexEdits()) {
|
|
w->GuaranteeNeighbors();
|
|
}
|
|
data.AddWithWeight(w->GetData(), weight);
|
|
data.AddVaryingWithWeight(w->GetData(), weight);
|
|
edge = edge->GetNext();
|
|
}
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << "Subdividing at " << *face << "\n";
|
|
#endif
|
|
|
|
// Set the extraordinary flag if the face had anything other than
|
|
// 4 vertices
|
|
if (nv != 4) v->SetExtraordinary();
|
|
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << " created " << *v << "\n";
|
|
#endif
|
|
return v;
|
|
}
|
|
|
|
#if 0
|
|
// The "old" triangle subdivision method modifies the face subdivision
|
|
// rule. Unfortunately we can't put simply put this code into the
|
|
// standard face Subdivide method, because that would disrupt the
|
|
// averages computed for adjacent edges and vertices (which rely on
|
|
// face averages computed using the standard Catmull-Clark method).
|
|
// Instead we must call this after a face has been Subdivided using
|
|
// the normal rule; this code will modify that face's subdivided
|
|
// vertex value only.
|
|
template <class T>
|
|
HbrVertex<T>*
|
|
HbrCatmarkSubdivision<T>::OldTriangleSubdivide(HbrMesh<T>* mesh, HbrFace<T>* face) {
|
|
assert(face->GetNumVertices() == 3 && triangleSubdivision == k_Old);
|
|
HbrVertex<T>* w = face->Subdivide();
|
|
NgpVVectorItem& data = w->GetData();
|
|
data.Clear();
|
|
|
|
float weight = 1.0f / 6.0f;
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
HbrVertex<T>* w = face->GetVertex(i);
|
|
HbrHalfedge<T>* e = face->GetEdge(i);
|
|
data.AddWithWeight(w->Subdivide()->GetData(), weight);
|
|
data.AddWithWeight(e->Subdivide()->GetData(), weight);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* This comment describe the "new" triangle subdivision method, which
|
|
modifies only the edge subdivision rule:
|
|
|
|
The "smoothtriangles" tag makes triangular faces smoother. This is done
|
|
by modifying the first level of subdivision in order to generate a limit
|
|
surface that is closer to what Loop subdivision would yield. Note that
|
|
there is no extra expense in forcing one level of subdivision, since
|
|
extraordinary faces need to be subdivided at least once anyway.
|
|
|
|
We have two degrees of freedom to play with, namely the weight assigned
|
|
to each neighbouring vertex when subdividing a vertex, and the weight
|
|
assigned to each neighbouring face vertex when subdividing an edge. Our
|
|
initial strategy for choosing these parameters was to derive the limit
|
|
masks (position and tangent) for the Catmull-Clark and Loop schemes at
|
|
three representative points: each original vertex, the center of each
|
|
original edge, and the center of each original face. The parameter
|
|
values were then optimized to get the best least-squares match to the
|
|
limit positions and tangents of the Loop surface at these chosen points.
|
|
(In the case of tangents an extra scale factor was used so that only the
|
|
tangent direction is optimized rather than its magnitude.) All this was
|
|
done using Mathematica.
|
|
|
|
Although the resulting surfaces were much smoother, there was still some
|
|
degree of "ringing" (probably due to the fact that the surface was
|
|
optimized at a discrete set of points, rather than by integrating over
|
|
the surface). We then tried a second strategy, namely choosing the
|
|
vertex weights to minimize surface curvature. This was done by setting
|
|
up test cases for extraordinary vertices of each degree, rendering an
|
|
animation using a range of parameter values, and integrating the
|
|
curvature over each surface (with a shader and some scripts). We chose
|
|
to minimize the squared mean curvature, which seemed to have the best
|
|
correspondence to surfaces that look "smooth".
|
|
|
|
Surprisingly, the vertex weights obtained in this way were not
|
|
significantly different than the standard Catmull-Clark weights.
|
|
Thus the final "smooth triangles" technique only modifies the edge
|
|
subdivision rule: the adjacent face vertices are weighted by
|
|
HBR_SMOOTH_TRI_EDGE_WEIGHT rather than the standard CC value of 0.25.
|
|
If there is a mixture of triangular and non-triangular faces, the
|
|
weights are interpolated. */
|
|
|
|
#define HBR_SMOOTH_TRI_EDGE_WEIGHT 0.470f /* from Mathematica */
|
|
|
|
template <class T>
|
|
HbrVertex<T>*
|
|
HbrCatmarkSubdivision<T>::Subdivide(HbrMesh<T>* mesh, HbrHalfedge<T>* edge) {
|
|
|
|
// Ensure the opposite face exists.
|
|
GuaranteeNeighbor(mesh, edge);
|
|
|
|
float esharp = edge->GetSharpness();
|
|
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << "Subdividing at " << *edge << " (sharpness = " << esharp << ")";
|
|
#endif
|
|
|
|
HbrVertex<T>* v = mesh->NewVertex();
|
|
T& data = v->GetData();
|
|
|
|
// If there's the possibility of vertex edits on either vertex, we
|
|
// have to make sure the edit has been applied
|
|
if (mesh->HasVertexEdits()) {
|
|
edge->GetOrgVertex()->GuaranteeNeighbors();
|
|
edge->GetDestVertex()->GuaranteeNeighbors();
|
|
}
|
|
|
|
if (!edge->IsBoundary() && esharp <= 1.0f) {
|
|
|
|
// Of the two half-edges, pick one of them consistently such
|
|
// that the left and right faces are also consistent through
|
|
// multi-threading. It doesn't matter as far as the
|
|
// theoretical calculation is concerned, but it is desirable
|
|
// to be consistent about it in the face of the limitations of
|
|
// floating point commutativity. So we always pick the
|
|
// half-edge such that its incident face is the smallest of
|
|
// the two faces, as far as the face paths are concerned.
|
|
if (edge->GetOpposite() && edge->GetOpposite()->GetFace()->GetPath() < edge->GetFace()->GetPath()) {
|
|
edge = edge->GetOpposite();
|
|
}
|
|
|
|
// Handle both the smooth and fractional sharpness cases. We
|
|
// lerp between the sharp case (average of the two end points)
|
|
// and the unsharp case (average of two end points plus two
|
|
// face averages).
|
|
|
|
float leftWeight, rightWeight, faceWeight, vertWeight;
|
|
HbrFace<T>* rf = edge->GetRightFace();
|
|
HbrFace<T>* lf = edge->GetLeftFace();
|
|
|
|
// The standard catmull-clark rule for face weights is 0.25.
|
|
// The modified, new triangle subdivision rule uses a value of
|
|
// SMOOTH_TRI_EDGE_WEIGHT as defined above. We lerp between
|
|
// the right and left weights as needed.
|
|
leftWeight = (triangleSubdivision == k_New && lf->GetNumVertices() == 3) ? HBR_SMOOTH_TRI_EDGE_WEIGHT : 0.25f;
|
|
rightWeight = (triangleSubdivision == k_New && rf->GetNumVertices() == 3) ? HBR_SMOOTH_TRI_EDGE_WEIGHT : 0.25f;
|
|
faceWeight = 0.5f * (leftWeight + rightWeight);
|
|
vertWeight = 0.5f * (1.0f - 2.0f * faceWeight);
|
|
|
|
// Lerp the face weight between non sharp contribution and
|
|
// sharp contribution (which is zero)
|
|
faceWeight *= (1.0f - esharp);
|
|
|
|
// Lerp the vert weight between non sharp contribution and
|
|
// sharp contribution of 0.5f
|
|
vertWeight = 0.5f * esharp + (1.0f - esharp) * vertWeight;
|
|
|
|
data.AddWithWeight(edge->GetOrgVertex()->GetData(), vertWeight);
|
|
data.AddWithWeight(edge->GetDestVertex()->GetData(), vertWeight);
|
|
|
|
data.AddWithWeight(lf->Subdivide()->GetData(), faceWeight);
|
|
data.AddWithWeight(rf->Subdivide()->GetData(), faceWeight);
|
|
} else {
|
|
// Fully sharp edge, just average the two end points
|
|
data.AddWithWeight(edge->GetOrgVertex()->GetData(), 0.5f);
|
|
data.AddWithWeight(edge->GetDestVertex()->GetData(), 0.5f);
|
|
}
|
|
|
|
// Varying data is always the average of two end points
|
|
data.AddVaryingWithWeight(edge->GetOrgVertex()->GetData(), 0.5f);
|
|
data.AddVaryingWithWeight(edge->GetDestVertex()->GetData(), 0.5f);
|
|
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << " created " << *v << "\n";
|
|
#endif
|
|
return v;
|
|
}
|
|
|
|
template <class T>
|
|
HbrVertex<T>*
|
|
HbrCatmarkSubdivision<T>::Subdivide(HbrMesh<T>* mesh, HbrVertex<T>* vertex) {
|
|
|
|
// Ensure the ring of faces around this vertex exists before
|
|
// we compute the valence
|
|
vertex->GuaranteeNeighbors();
|
|
|
|
float valence = static_cast<float>(vertex->GetValence());
|
|
float invvalencesquared = 1.0f / (valence * valence);
|
|
|
|
|
|
HbrVertex<T>* v = mesh->NewVertex();
|
|
T& data = v->GetData();
|
|
|
|
// Due to fractional weights we may need to do two subdivision
|
|
// passes
|
|
int masks[2];
|
|
float weights[2];
|
|
int passes;
|
|
masks[0] = vertex->GetMask(false);
|
|
masks[1] = vertex->GetMask(true);
|
|
// If the masks are different, we subdivide twice: once using the
|
|
// current mask, once using the mask at the next level of
|
|
// subdivision, then use fractional mask weights to weigh
|
|
// each weighing
|
|
if (masks[0] != masks[1]) {
|
|
weights[1] = vertex->GetFractionalMask();
|
|
weights[0] = 1.0f - weights[1];
|
|
passes = 2;
|
|
} else {
|
|
weights[0] = 1.0f;
|
|
weights[1] = 0.0f;
|
|
passes = 1;
|
|
}
|
|
for (int i = 0; i < passes; ++i) {
|
|
switch (masks[i]) {
|
|
case HbrVertex<T>::k_Smooth:
|
|
case HbrVertex<T>::k_Dart: {
|
|
// Compute n-2/n of the old vertex value
|
|
data.AddWithWeight(vertex->GetData(), weights[i] * invvalencesquared * valence * (valence - 2));
|
|
// Add 1 / n^2 * surrounding edge vertices and surrounding face
|
|
// subdivided vertices
|
|
HbrSubdivision<T>::AddSurroundingVerticesWithWeight(
|
|
mesh, vertex, weights[i] * invvalencesquared, &data);
|
|
|
|
HbrHalfedge<T>* start = vertex->GetIncidentEdge(), *edge;
|
|
edge = start;
|
|
while (edge) {
|
|
HbrFace<T>* f = edge->GetLeftFace();
|
|
data.AddWithWeight(f->Subdivide()->GetData(), weights[i] * invvalencesquared);
|
|
edge = vertex->GetNextEdge(edge);
|
|
if (edge == start) break;
|
|
}
|
|
break;
|
|
}
|
|
case HbrVertex<T>::k_Crease: {
|
|
// Compute 3/4 of old vertex value
|
|
data.AddWithWeight(vertex->GetData(), weights[i] * 0.75f);
|
|
|
|
// Add 0.125f of the (hopefully only two!) neighbouring
|
|
// sharp edges
|
|
HbrSubdivision<T>::AddCreaseEdgesWithWeight(
|
|
mesh, vertex, i == 1, weights[i] * 0.125f, &data);
|
|
break;
|
|
}
|
|
case HbrVertex<T>::k_Corner:
|
|
default: {
|
|
// Just copy the old value
|
|
data.AddWithWeight(vertex->GetData(), weights[i]);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Varying data is always just propagated down
|
|
data.AddVaryingWithWeight(vertex->GetData(), 1.0f);
|
|
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << "Subdividing at " << *vertex << "\n";
|
|
std::cerr << " created " << *v << "\n";
|
|
#endif
|
|
// Inherit extraordinary flag and sharpness
|
|
if (vertex->IsExtraordinary()) v->SetExtraordinary();
|
|
float sharp = vertex->GetSharpness();
|
|
if (sharp >= HbrVertex<T>::k_InfinitelySharp) {
|
|
v->SetSharpness(HbrVertex<T>::k_InfinitelySharp);
|
|
} else if (sharp > HbrVertex<T>::k_Smooth) {
|
|
sharp -= 1.0f;
|
|
if (sharp < (float) HbrVertex<T>::k_Smooth) {
|
|
sharp = (float) HbrVertex<T>::k_Smooth;
|
|
}
|
|
v->SetSharpness(sharp);
|
|
} else {
|
|
v->SetSharpness(HbrVertex<T>::k_Smooth);
|
|
}
|
|
return v;
|
|
}
|
|
|
|
} // end namespace OPENSUBDIV_VERSION
|
|
using namespace OPENSUBDIV_VERSION;
|
|
|
|
} // end namespace OpenSubdiv
|
|
|
|
#endif /* OPENSUBDIV3_HBRCATMARK_H */
|