OpenSubdiv/opensubdiv/osd/glslPatchGregory.glsl
manuelk 10c687ecd5 Release Candidate 1.0 :
- [Feature Adaptive GPU Rendering of Catmull-Clark Surfaces](http://research.microsoft.com/en-us/um/people/cloop/tog2012.pdf).

- New API architecture : we are planning to lock on to this new framework as the basis for backward compatibility, which we will enforce from Release 1.0 onward. Subsequent releases of OpenSubdiv should not break client code.

- DirectX 11 support

- and much more...
2012-12-10 17:15:13 -08:00

409 lines
14 KiB
GLSL

//
// Copyright (C) Pixar. All rights reserved.
//
// This license governs use of the accompanying software. If you
// use the software, you accept this license. If you do not accept
// the license, do not use the software.
//
// 1. Definitions
// The terms "reproduce," "reproduction," "derivative works," and
// "distribution" have the same meaning here as under U.S.
// copyright law. A "contribution" is the original software, or
// any additions or changes to the software.
// A "contributor" is any person or entity that distributes its
// contribution under this license.
// "Licensed patents" are a contributor's patent claims that read
// directly on its contribution.
//
// 2. Grant of Rights
// (A) Copyright Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free copyright license to reproduce its contribution,
// prepare derivative works of its contribution, and distribute
// its contribution or any derivative works that you create.
// (B) Patent Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free license under its licensed patents to make, have
// made, use, sell, offer for sale, import, and/or otherwise
// dispose of its contribution in the software or derivative works
// of the contribution in the software.
//
// 3. Conditions and Limitations
// (A) No Trademark License- This license does not grant you
// rights to use any contributor's name, logo, or trademarks.
// (B) If you bring a patent claim against any contributor over
// patents that you claim are infringed by the software, your
// patent license from such contributor to the software ends
// automatically.
// (C) If you distribute any portion of the software, you must
// retain all copyright, patent, trademark, and attribution
// notices that are present in the software.
// (D) If you distribute any portion of the software in source
// code form, you may do so only under this license by including a
// complete copy of this license with your distribution. If you
// distribute any portion of the software in compiled or object
// code form, you may only do so under a license that complies
// with this license.
// (E) The software is licensed "as-is." You bear the risk of
// using it. The contributors give no express warranties,
// guarantees or conditions. You may have additional consumer
// rights under your local laws which this license cannot change.
// To the extent permitted under your local laws, the contributors
// exclude the implied warranties of merchantability, fitness for
// a particular purpose and non-infringement.
//
#extension GL_EXT_gpu_shader4 : require
//----------------------------------------------------------
// Patches.TessVertexGregory
//----------------------------------------------------------
#ifdef PATCH_VERTEX_GREGORY_SHADER
uniform samplerBuffer g_VertexBuffer;
uniform isamplerBuffer g_ValenceBuffer;
layout (location=0) in vec4 position;
out block {
GregControlVertex v;
} output;
void main()
{
int vID = gl_VertexID;
output.v.hullPosition = (ModelViewMatrix * position).xyz;
OSD_PATCH_CULL_COMPUTE_CLIPFLAGS(position);
uint valence = uint(texelFetchBuffer(g_ValenceBuffer,int(vID * (2 * OSD_MAX_VALENCE + 1))).x);
output.v.valence = int(valence);
vec3 f[OSD_MAX_VALENCE];
vec3 pos = position.xyz;
vec3 opos = vec3(0,0,0);
for (uint i=0; i<valence; ++i) {
uint im=(i+valence-1)%valence;
uint ip=(i+1)%valence;
uint idx_neighbor = uint(texelFetchBuffer(g_ValenceBuffer, int(vID * (2*OSD_MAX_VALENCE+1) + 2*i + 0 + 1)).x);
vec3 neighbor =
vec3(texelFetchBuffer(g_VertexBuffer, int(OSD_NUM_ELEMENTS*idx_neighbor)).x,
texelFetchBuffer(g_VertexBuffer, int(OSD_NUM_ELEMENTS*idx_neighbor+1)).x,
texelFetchBuffer(g_VertexBuffer, int(OSD_NUM_ELEMENTS*idx_neighbor+2)).x);
uint idx_diagonal = uint(texelFetchBuffer(g_ValenceBuffer, int(vID * (2*OSD_MAX_VALENCE+1) + 2*i + 1 + 1)).x);
vec3 diagonal =
vec3(texelFetchBuffer(g_VertexBuffer, int(OSD_NUM_ELEMENTS*idx_diagonal)).x,
texelFetchBuffer(g_VertexBuffer, int(OSD_NUM_ELEMENTS*idx_diagonal+1)).x,
texelFetchBuffer(g_VertexBuffer, int(OSD_NUM_ELEMENTS*idx_diagonal+2)).x);
uint idx_neighbor_p = uint(texelFetchBuffer(g_ValenceBuffer, int(vID * (2*OSD_MAX_VALENCE+1) + 2*ip + 0 + 1)).x);
vec3 neighbor_p =
vec3(texelFetchBuffer(g_VertexBuffer, int(OSD_NUM_ELEMENTS*idx_neighbor_p)).x,
texelFetchBuffer(g_VertexBuffer, int(OSD_NUM_ELEMENTS*idx_neighbor_p+1)).x,
texelFetchBuffer(g_VertexBuffer, int(OSD_NUM_ELEMENTS*idx_neighbor_p+2)).x);
uint idx_neighbor_m = uint(texelFetchBuffer(g_ValenceBuffer, int(vID * (2*OSD_MAX_VALENCE+1) + 2*im + 0 + 1)).x);
vec3 neighbor_m =
vec3(texelFetchBuffer(g_VertexBuffer, int(OSD_NUM_ELEMENTS*idx_neighbor_m)).x,
texelFetchBuffer(g_VertexBuffer, int(OSD_NUM_ELEMENTS*idx_neighbor_m+1)).x,
texelFetchBuffer(g_VertexBuffer, int(OSD_NUM_ELEMENTS*idx_neighbor_m+2)).x);
uint idx_diagonal_m = uint(texelFetchBuffer(g_ValenceBuffer, int(vID * (2*OSD_MAX_VALENCE+1) + 2*im + 1 + 1)).x);
vec3 diagonal_m =
vec3(texelFetchBuffer(g_VertexBuffer, int(OSD_NUM_ELEMENTS*idx_diagonal_m)).x,
texelFetchBuffer(g_VertexBuffer, int(OSD_NUM_ELEMENTS*idx_diagonal_m+1)).x,
texelFetchBuffer(g_VertexBuffer, int(OSD_NUM_ELEMENTS*idx_diagonal_m+2)).x);
f[i] = (pos * float(valence) + (neighbor_p + neighbor)*2.0 + diagonal) / (float(valence)+5.0);
opos += f[i];
output.v.r[i] = (neighbor_p-neighbor_m)/3.0 + (diagonal - diagonal_m)/6.0;
}
opos /= valence;
output.v.position = vec4(opos, 1.0f).xyz;
#if OSD_NUM_VARYINGS > 0
for (int i = 0; i < OSD_NUM_VARYINGS; ++i)
output.v.varyings[i] = varyings[i];
#endif
vec3 e;
output.v.e0 = vec3(0,0,0);
output.v.e1 = vec3(0,0,0);
for(uint i=0; i<valence; ++i) {
uint im = (i + valence -1) % valence;
e = 0.5 * (f[i] + f[im]);
output.v.e0 += csf(valence-3, 2*i) *e;
output.v.e1 += csf(valence-3, 2*i + 1)*e;
}
output.v.e0 *= ef[valence - 3];
output.v.e1 *= ef[valence - 3];
}
#endif
//----------------------------------------------------------
// Patches.TessControlGregory
//----------------------------------------------------------
#ifdef PATCH_TESS_CONTROL_GREGORY_SHADER
layout(vertices = 4) out;
uniform isamplerBuffer g_QuadOffsetBuffer;
in block {
GregControlVertex v;
} input[];
out block {
GregEvalVertex v;
} output[];
uniform isamplerBuffer g_patchLevelBuffer;
OSD_DECLARE_PTEX_INDICES_BUFFER;
#define ID gl_InvocationID
void main()
{
uint i = gl_InvocationID;
uint ip = (i+1)%4;
uint im = (i+3)%4;
uint n = uint(input[i].v.valence);
int base = GregoryQuadOffsetBase;
output[ID].v.position = input[ID].v.position;
uint start = texelFetchBuffer(g_QuadOffsetBuffer, int(4*(gl_PrimitiveID+base) + i)).x & 0x00ff;
uint prev = uint(texelFetchBuffer(g_QuadOffsetBuffer, int(4*(gl_PrimitiveID+base) + i)).x) & 0xff00;
prev=uint(prev/256);
vec3 Ep = input[i].v.position + input[i].v.e0 * csf(n-3, 2*start) + input[i].v.e1*csf(n-3, 2*start +1);
vec3 Em = input[i].v.position + input[i].v.e0 * csf(n-3, 2*prev ) + input[i].v.e1*csf(n-3, 2*prev + 1);
uint np = input[ip].v.valence;
uint nm = input[im].v.valence;
uint prev_p = uint(texelFetchBuffer(g_QuadOffsetBuffer, int(4*(gl_PrimitiveID+base) + ip)).x)&0xff00;
prev_p=uint(prev_p/256);
vec3 Em_ip = input[ip].v.position + input[ip].v.e0*csf(np-3,2*prev_p) +input[ip].v.e1*csf(np-3, 2*prev_p+1);
uint start_m = texelFetchBuffer(g_QuadOffsetBuffer, int(4*(gl_PrimitiveID+base) + im)).x&0x00ff;
vec3 Ep_im = input[im].v.position + input[im].v.e0*csf(nm-3, 2*start_m) + input[im].v.e1*csf(nm-3, 2*start_m+1);
float s1 = 3 - 2*csf(n-3,2)-csf(np-3,2);
float s2 = 2*csf(n-3,2);
vec3 Fp = (csf(np-3,2)*input[i].v.position + s1*Ep + s2*Em_ip + input[i].v.r[start])/3.0;
s1 = 3.0 -2.0*cos(2.0*M_PI/float(n)) - cos(2*M_PI/float(nm));
vec3 Fm = (csf(nm-3,2)*input[i].v.position + s1*Em +s2*Ep_im - input[i].v.r[prev])/3.0;
output[ID].v.Ep = Ep;
output[ID].v.Em = Em;
output[ID].v.Fp = Fp;
output[ID].v.Fm = Fm;
int patchLevel = texelFetchBuffer(g_patchLevelBuffer, gl_PrimitiveID + LevelBase).x;
output[ID].v.patchCoord = vec4(0, 0,
patchLevel+0.5,
gl_PrimitiveID+LevelBase+0.5);
OSD_COMPUTE_PTEX_COORD_TESSCONTROL_SHADER;
if (ID == 0) {
OSD_PATCH_CULL(4);
#if OSD_ENABLE_SCREENSPACE_TESSELLATION
gl_TessLevelOuter[0] =
TessAdaptive(input[0].v.hullPosition.xyz, input[1].v.hullPosition.xyz, patchLevel);
gl_TessLevelOuter[1] =
TessAdaptive(input[0].v.hullPosition.xyz, input[3].v.hullPosition.xyz, patchLevel);
gl_TessLevelOuter[2] =
TessAdaptive(input[2].v.hullPosition.xyz, input[3].v.hullPosition.xyz, patchLevel);
gl_TessLevelOuter[3] =
TessAdaptive(input[1].v.hullPosition.xyz, input[2].v.hullPosition.xyz, patchLevel);
gl_TessLevelInner[0] =
max(gl_TessLevelOuter[1], gl_TessLevelOuter[3]);
gl_TessLevelInner[1] =
max(gl_TessLevelOuter[0], gl_TessLevelOuter[2]);
#else
gl_TessLevelInner[0] = GetTessLevel(patchLevel);
gl_TessLevelInner[1] = GetTessLevel(patchLevel);
gl_TessLevelOuter[0] = GetTessLevel(patchLevel);
gl_TessLevelOuter[1] = GetTessLevel(patchLevel);
gl_TessLevelOuter[2] = GetTessLevel(patchLevel);
gl_TessLevelOuter[3] = GetTessLevel(patchLevel);
#endif
}
}
#endif
//----------------------------------------------------------
// Patches.TessEvalGregory
//----------------------------------------------------------
#ifdef PATCH_TESS_EVAL_GREGORY_SHADER
layout(quads) in;
layout(cw) in;
in block {
GregEvalVertex v;
} input[];
out block {
OutputVertex v;
} output;
void main()
{
float u = gl_TessCoord.x,
v = gl_TessCoord.y;
vec3 p[20];
p[0] = input[0].v.position;
p[1] = input[0].v.Ep;
p[2] = input[0].v.Em;
p[3] = input[0].v.Fp;
p[4] = input[0].v.Fm;
p[5] = input[1].v.position;
p[6] = input[1].v.Ep;
p[7] = input[1].v.Em;
p[8] = input[1].v.Fp;
p[9] = input[1].v.Fm;
p[10] = input[2].v.position;
p[11] = input[2].v.Ep;
p[12] = input[2].v.Em;
p[13] = input[2].v.Fp;
p[14] = input[2].v.Fm;
p[15] = input[3].v.position;
p[16] = input[3].v.Ep;
p[17] = input[3].v.Em;
p[18] = input[3].v.Fp;
p[19] = input[3].v.Fm;
vec3 q[16];
float U = 1-u, V=1-v;
float d11 = u+v; if(u+v==0.0f) d11 = 1.0f;
float d12 = U+v; if(U+v==0.0f) d12 = 1.0f;
float d21 = u+V; if(u+V==0.0f) d21 = 1.0f;
float d22 = U+V; if(U+V==0.0f) d22 = 1.0f;
q[ 5] = (u*p[3] + v*p[4])/d11;
q[ 6] = (U*p[9] + v*p[8])/d12;
q[ 9] = (u*p[19] + V*p[18])/d21;
q[10] = (U*p[13] + V*p[14])/d22;
q[ 0] = p[0];
q[ 1] = p[1];
q[ 2] = p[7];
q[ 3] = p[5];
q[ 4] = p[2];
q[ 7] = p[6];
q[ 8] = p[16];
q[11] = p[12];
q[12] = p[15];
q[13] = p[17];
q[14] = p[11];
q[15] = p[10];
float B[4], D[4];
Univar4x4(u, B, D);
vec3 BUCP[4], DUCP[4];
for (int i=0; i<4; ++i) {
BUCP[i] = vec3(0, 0, 0);
DUCP[i] = vec3(0, 0, 0);
for (uint j=0; j<4; ++j) {
// reverse face front
vec3 A = q[i + 4*j];
BUCP[i] += A * B[j];
DUCP[i] += A * D[j];
}
}
vec3 WorldPos = vec3(0, 0, 0);
vec3 Tangent = vec3(0, 0, 0);
vec3 BiTangent = vec3(0, 0, 0);
Univar4x4(v, B, D);
for (uint i=0; i<4; ++i) {
WorldPos += B[i] * BUCP[i];
Tangent += B[i] * DUCP[i];
BiTangent += D[i] * BUCP[i];
}
BiTangent = (ModelViewMatrix * vec4(BiTangent, 0)).xyz;
Tangent = (ModelViewMatrix * vec4(Tangent, 0)).xyz;
vec3 normal = normalize(cross(BiTangent, Tangent));
output.v.position = ModelViewMatrix * vec4(WorldPos, 1.0);
output.v.normal = normal;
output.v.tangent = BiTangent;
output.v.patchCoord = input[0].v.patchCoord;
output.v.patchCoord.xy = vec2(v, u);
OSD_COMPUTE_PTEX_COORD_TESSEVAL_SHADER;
OSD_DISPLACEMENT_CALLBACK;
gl_Position = ProjectionMatrix * output.v.position;
}
#endif
//----------------------------------------------------------
// Patches.Vertex
//----------------------------------------------------------
#ifdef VERTEX_SHADER
layout (location=0) in vec4 position;
layout (location=1) in vec3 normal;
layout (location=2) in vec4 color;
out block {
OutputVertex v;
} output;
void main() {
gl_Position = ModelViewProjectionMatrix * position;
output.v.color = color;
}
#endif
//----------------------------------------------------------
// Patches.FragmentColor
//----------------------------------------------------------
#ifdef FRAGMENT_SHADER
in block {
OutputVertex v;
} input;
void main() {
gl_FragColor = input.v.color;
}
#endif