mirror of
https://github.com/PixarAnimationStudios/OpenSubdiv
synced 2024-12-13 20:40:09 +00:00
1cdbb7246a
- negate derivative terms when evaluating points on edge where u + v = 1
1263 lines
39 KiB
GLSL
1263 lines
39 KiB
GLSL
//
|
|
// Copyright 2013 Pixar
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "Apache License")
|
|
// with the following modification; you may not use this file except in
|
|
// compliance with the Apache License and the following modification to it:
|
|
// Section 6. Trademarks. is deleted and replaced with:
|
|
//
|
|
// 6. Trademarks. This License does not grant permission to use the trade
|
|
// names, trademarks, service marks, or product names of the Licensor
|
|
// and its affiliates, except as required to comply with Section 4(c) of
|
|
// the License and to reproduce the content of the NOTICE file.
|
|
//
|
|
// You may obtain a copy of the Apache License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the Apache License with the above modification is
|
|
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the Apache License for the specific
|
|
// language governing permissions and limitations under the Apache License.
|
|
//
|
|
|
|
//
|
|
// typical shader composition ordering (see glDrawRegistry:_CompileShader)
|
|
//
|
|
//
|
|
// - glsl version string (#version 430)
|
|
//
|
|
// - common defines (#define OSD_ENABLE_PATCH_CULL, ...)
|
|
// - source defines (#define VERTEX_SHADER, ...)
|
|
//
|
|
// - osd headers (glslPatchCommon: varying structs,
|
|
// glslPtexCommon: ptex functions)
|
|
// - client header (Osd*Matrix(), displacement callback, ...)
|
|
//
|
|
// - osd shader source (glslPatchBSpline, glslPatchGregory, ...)
|
|
// or
|
|
// client shader source (vertex/geometry/fragment shader)
|
|
//
|
|
|
|
//----------------------------------------------------------
|
|
// Patches.Common
|
|
//----------------------------------------------------------
|
|
|
|
// XXXdyu all handling of varying data can be managed by client code
|
|
#ifndef OSD_USER_VARYING_DECLARE
|
|
#define OSD_USER_VARYING_DECLARE
|
|
// type var;
|
|
#endif
|
|
|
|
#ifndef OSD_USER_VARYING_ATTRIBUTE_DECLARE
|
|
#define OSD_USER_VARYING_ATTRIBUTE_DECLARE
|
|
// layout(location = loc) in type var;
|
|
#endif
|
|
|
|
#ifndef OSD_USER_VARYING_PER_VERTEX
|
|
#define OSD_USER_VARYING_PER_VERTEX()
|
|
// output.var = var;
|
|
#endif
|
|
|
|
#ifndef OSD_USER_VARYING_PER_CONTROL_POINT
|
|
#define OSD_USER_VARYING_PER_CONTROL_POINT(ID_OUT, ID_IN)
|
|
// output[ID_OUT].var = input[ID_IN].var
|
|
#endif
|
|
|
|
#ifndef OSD_USER_VARYING_PER_EVAL_POINT
|
|
#define OSD_USER_VARYING_PER_EVAL_POINT(UV, a, b, c, d)
|
|
// output.var =
|
|
// mix(mix(input[a].var, input[b].var, UV.x),
|
|
// mix(input[c].var, input[d].var, UV.x), UV.y)
|
|
#endif
|
|
|
|
#ifndef OSD_USER_VARYING_PER_EVAL_POINT_TRIANGLE
|
|
#define OSD_USER_VARYING_PER_EVAL_POINT_TRIANGLE(UV, a, b, c)
|
|
// output.var =
|
|
// input[a].var * (1.0f-UV.x-UV.y) +
|
|
// input[b].var * UV.x +
|
|
// input[c].var * UV.y;
|
|
#endif
|
|
|
|
#if __VERSION__ < 420
|
|
#define centroid
|
|
#endif
|
|
|
|
struct ControlVertex {
|
|
vec4 position;
|
|
#ifdef OSD_ENABLE_PATCH_CULL
|
|
ivec3 clipFlag;
|
|
#endif
|
|
};
|
|
|
|
// XXXdyu all downstream data can be handled by client code
|
|
struct OutputVertex {
|
|
vec4 position;
|
|
vec3 normal;
|
|
vec3 tangent;
|
|
vec3 bitangent;
|
|
centroid vec4 patchCoord; // u, v, faceLevel, faceId
|
|
centroid vec2 tessCoord; // tesscoord.st
|
|
#if defined OSD_COMPUTE_NORMAL_DERIVATIVES
|
|
vec3 Nu;
|
|
vec3 Nv;
|
|
#endif
|
|
};
|
|
|
|
// osd shaders need following functions defined
|
|
mat4 OsdModelViewMatrix();
|
|
mat4 OsdProjectionMatrix();
|
|
mat4 OsdModelViewProjectionMatrix();
|
|
float OsdTessLevel();
|
|
int OsdGregoryQuadOffsetBase();
|
|
int OsdPrimitiveIdBase();
|
|
int OsdBaseVertex();
|
|
|
|
#ifndef OSD_DISPLACEMENT_CALLBACK
|
|
#define OSD_DISPLACEMENT_CALLBACK
|
|
#endif
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Patch Parameters
|
|
// ----------------------------------------------------------------------------
|
|
|
|
//
|
|
// Each patch has a corresponding patchParam. This is a set of three values
|
|
// specifying additional information about the patch:
|
|
//
|
|
// faceId -- topological face identifier (e.g. Ptex FaceId)
|
|
// bitfield -- refinement-level, non-quad, boundary, transition, uv-offset
|
|
// sharpness -- crease sharpness for single-crease patches
|
|
//
|
|
// These are stored in OsdPatchParamBuffer indexed by the value returned
|
|
// from OsdGetPatchIndex() which is a function of the current PrimitiveID
|
|
// along with an optional client provided offset.
|
|
//
|
|
|
|
uniform isamplerBuffer OsdPatchParamBuffer;
|
|
|
|
int OsdGetPatchIndex(int primitiveId)
|
|
{
|
|
return (primitiveId + OsdPrimitiveIdBase());
|
|
}
|
|
|
|
ivec3 OsdGetPatchParam(int patchIndex)
|
|
{
|
|
return texelFetch(OsdPatchParamBuffer, patchIndex).xyz;
|
|
}
|
|
|
|
int OsdGetPatchFaceId(ivec3 patchParam)
|
|
{
|
|
return (patchParam.x & 0xfffffff);
|
|
}
|
|
|
|
int OsdGetPatchFaceLevel(ivec3 patchParam)
|
|
{
|
|
return (1 << ((patchParam.y & 0xf) - ((patchParam.y >> 4) & 1)));
|
|
}
|
|
|
|
int OsdGetPatchRefinementLevel(ivec3 patchParam)
|
|
{
|
|
return (patchParam.y & 0xf);
|
|
}
|
|
|
|
int OsdGetPatchBoundaryMask(ivec3 patchParam)
|
|
{
|
|
return ((patchParam.y >> 7) & 0x1f);
|
|
}
|
|
|
|
int OsdGetPatchTransitionMask(ivec3 patchParam)
|
|
{
|
|
return ((patchParam.x >> 28) & 0xf);
|
|
}
|
|
|
|
ivec2 OsdGetPatchFaceUV(ivec3 patchParam)
|
|
{
|
|
int u = (patchParam.y >> 22) & 0x3ff;
|
|
int v = (patchParam.y >> 12) & 0x3ff;
|
|
return ivec2(u,v);
|
|
}
|
|
|
|
bool OsdGetPatchIsRegular(ivec3 patchParam)
|
|
{
|
|
return ((patchParam.y >> 5) & 0x1) != 0;
|
|
}
|
|
|
|
bool OsdGetPatchIsTriangleRotated(ivec3 patchParam)
|
|
{
|
|
ivec2 uv = OsdGetPatchFaceUV(patchParam);
|
|
return (uv.x + uv.y) >= OsdGetPatchFaceLevel(patchParam);
|
|
}
|
|
|
|
float OsdGetPatchSharpness(ivec3 patchParam)
|
|
{
|
|
return intBitsToFloat(patchParam.z);
|
|
}
|
|
|
|
float OsdGetPatchSingleCreaseSegmentParameter(ivec3 patchParam, vec2 uv)
|
|
{
|
|
int boundaryMask = OsdGetPatchBoundaryMask(patchParam);
|
|
float s = 0;
|
|
if ((boundaryMask & 1) != 0) {
|
|
s = 1 - uv.y;
|
|
} else if ((boundaryMask & 2) != 0) {
|
|
s = uv.x;
|
|
} else if ((boundaryMask & 4) != 0) {
|
|
s = uv.y;
|
|
} else if ((boundaryMask & 8) != 0) {
|
|
s = 1 - uv.x;
|
|
}
|
|
return s;
|
|
}
|
|
|
|
ivec4 OsdGetPatchCoord(ivec3 patchParam)
|
|
{
|
|
int faceId = OsdGetPatchFaceId(patchParam);
|
|
int faceLevel = OsdGetPatchFaceLevel(patchParam);
|
|
ivec2 faceUV = OsdGetPatchFaceUV(patchParam);
|
|
return ivec4(faceUV.x, faceUV.y, faceLevel, faceId);
|
|
}
|
|
|
|
vec4 OsdInterpolatePatchCoord(vec2 localUV, ivec3 patchParam)
|
|
{
|
|
ivec4 perPrimPatchCoord = OsdGetPatchCoord(patchParam);
|
|
int faceId = perPrimPatchCoord.w;
|
|
int faceLevel = perPrimPatchCoord.z;
|
|
vec2 faceUV = vec2(perPrimPatchCoord.x, perPrimPatchCoord.y);
|
|
vec2 uv = localUV/faceLevel + faceUV/faceLevel;
|
|
// add 0.5 to integer values for more robust interpolation
|
|
return vec4(uv.x, uv.y, faceLevel+0.5f, faceId+0.5f);
|
|
}
|
|
|
|
vec4 OsdInterpolatePatchCoordTriangle(vec2 localUV, ivec3 patchParam)
|
|
{
|
|
vec4 result = OsdInterpolatePatchCoord(localUV, patchParam);
|
|
if (OsdGetPatchIsTriangleRotated(patchParam)) {
|
|
result.xy = vec2(1.0f) - result.xy;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// patch culling
|
|
// ----------------------------------------------------------------------------
|
|
|
|
#ifdef OSD_ENABLE_PATCH_CULL
|
|
|
|
#define OSD_PATCH_CULL_COMPUTE_CLIPFLAGS(P) \
|
|
vec4 clipPos = OsdModelViewProjectionMatrix() * P; \
|
|
bvec3 clip0 = lessThan(clipPos.xyz, vec3(clipPos.w)); \
|
|
bvec3 clip1 = greaterThan(clipPos.xyz, -vec3(clipPos.w)); \
|
|
outpt.v.clipFlag = ivec3(clip0) + 2*ivec3(clip1); \
|
|
|
|
#define OSD_PATCH_CULL(N) \
|
|
ivec3 clipFlag = ivec3(0); \
|
|
for(int i = 0; i < N; ++i) { \
|
|
clipFlag |= inpt[i].v.clipFlag; \
|
|
} \
|
|
if (clipFlag != ivec3(3) ) { \
|
|
gl_TessLevelInner[0] = 0; \
|
|
gl_TessLevelInner[1] = 0; \
|
|
gl_TessLevelOuter[0] = 0; \
|
|
gl_TessLevelOuter[1] = 0; \
|
|
gl_TessLevelOuter[2] = 0; \
|
|
gl_TessLevelOuter[3] = 0; \
|
|
return; \
|
|
}
|
|
|
|
#else
|
|
#define OSD_PATCH_CULL_COMPUTE_CLIPFLAGS(P)
|
|
#define OSD_PATCH_CULL(N)
|
|
#endif
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
void
|
|
OsdUnivar4x4(in float u, out float B[4], out float D[4])
|
|
{
|
|
float t = u;
|
|
float s = 1.0f - u;
|
|
|
|
float A0 = s * s;
|
|
float A1 = 2 * s * t;
|
|
float A2 = t * t;
|
|
|
|
B[0] = s * A0;
|
|
B[1] = t * A0 + s * A1;
|
|
B[2] = t * A1 + s * A2;
|
|
B[3] = t * A2;
|
|
|
|
D[0] = - A0;
|
|
D[1] = A0 - A1;
|
|
D[2] = A1 - A2;
|
|
D[3] = A2;
|
|
}
|
|
|
|
void
|
|
OsdUnivar4x4(in float u, out float B[4], out float D[4], out float C[4])
|
|
{
|
|
float t = u;
|
|
float s = 1.0f - u;
|
|
|
|
float A0 = s * s;
|
|
float A1 = 2 * s * t;
|
|
float A2 = t * t;
|
|
|
|
B[0] = s * A0;
|
|
B[1] = t * A0 + s * A1;
|
|
B[2] = t * A1 + s * A2;
|
|
B[3] = t * A2;
|
|
|
|
D[0] = - A0;
|
|
D[1] = A0 - A1;
|
|
D[2] = A1 - A2;
|
|
D[3] = A2;
|
|
|
|
A0 = - s;
|
|
A1 = s - t;
|
|
A2 = t;
|
|
|
|
C[0] = - A0;
|
|
C[1] = A0 - A1;
|
|
C[2] = A1 - A2;
|
|
C[3] = A2;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
struct OsdPerPatchVertexBezier {
|
|
ivec3 patchParam;
|
|
vec3 P;
|
|
#if defined OSD_PATCH_ENABLE_SINGLE_CREASE
|
|
vec3 P1;
|
|
vec3 P2;
|
|
vec2 vSegments;
|
|
#endif
|
|
};
|
|
|
|
vec3
|
|
OsdEvalBezier(vec3 cp[16], vec2 uv)
|
|
{
|
|
vec3 BUCP[4] = vec3[4](vec3(0), vec3(0), vec3(0), vec3(0));
|
|
|
|
float B[4], D[4];
|
|
|
|
OsdUnivar4x4(uv.x, B, D);
|
|
for (int i=0; i<4; ++i) {
|
|
for (int j=0; j<4; ++j) {
|
|
vec3 A = cp[4*i + j];
|
|
BUCP[i] += A * B[j];
|
|
}
|
|
}
|
|
|
|
vec3 P = vec3(0);
|
|
|
|
OsdUnivar4x4(uv.y, B, D);
|
|
for (int k=0; k<4; ++k) {
|
|
P += B[k] * BUCP[k];
|
|
}
|
|
|
|
return P;
|
|
}
|
|
|
|
// When OSD_PATCH_ENABLE_SINGLE_CREASE is defined,
|
|
// this function evaluates single-crease patch, which is segmented into
|
|
// 3 parts in the v-direction.
|
|
//
|
|
// v=0 vSegment.x vSegment.y v=1
|
|
// +------------------+-------------------+------------------+
|
|
// | cp 0 | cp 1 | cp 2 |
|
|
// | (infinite sharp) | (floor sharpness) | (ceil sharpness) |
|
|
// +------------------+-------------------+------------------+
|
|
//
|
|
vec3
|
|
OsdEvalBezier(OsdPerPatchVertexBezier cp[16], ivec3 patchParam, vec2 uv)
|
|
{
|
|
vec3 BUCP[4] = vec3[4](vec3(0), vec3(0), vec3(0), vec3(0));
|
|
|
|
float B[4], D[4];
|
|
float s = OsdGetPatchSingleCreaseSegmentParameter(patchParam, uv);
|
|
|
|
OsdUnivar4x4(uv.x, B, D);
|
|
#if defined OSD_PATCH_ENABLE_SINGLE_CREASE
|
|
vec2 vSegments = cp[0].vSegments;
|
|
if (s <= vSegments.x) {
|
|
for (int i=0; i<4; ++i) {
|
|
for (int j=0; j<4; ++j) {
|
|
vec3 A = cp[4*i + j].P;
|
|
BUCP[i] += A * B[j];
|
|
}
|
|
}
|
|
} else if (s <= vSegments.y) {
|
|
for (int i=0; i<4; ++i) {
|
|
for (int j=0; j<4; ++j) {
|
|
vec3 A = cp[4*i + j].P1;
|
|
BUCP[i] += A * B[j];
|
|
}
|
|
}
|
|
} else {
|
|
for (int i=0; i<4; ++i) {
|
|
for (int j=0; j<4; ++j) {
|
|
vec3 A = cp[4*i + j].P2;
|
|
BUCP[i] += A * B[j];
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
for (int i=0; i<4; ++i) {
|
|
for (int j=0; j<4; ++j) {
|
|
vec3 A = cp[4*i + j].P;
|
|
BUCP[i] += A * B[j];
|
|
}
|
|
}
|
|
#endif
|
|
|
|
vec3 P = vec3(0);
|
|
|
|
OsdUnivar4x4(uv.y, B, D);
|
|
for (int k=0; k<4; ++k) {
|
|
P += B[k] * BUCP[k];
|
|
}
|
|
|
|
return P;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Boundary Interpolation
|
|
// ----------------------------------------------------------------------------
|
|
|
|
void
|
|
OsdComputeBSplineBoundaryPoints(inout vec3 cpt[16], ivec3 patchParam)
|
|
{
|
|
int boundaryMask = OsdGetPatchBoundaryMask(patchParam);
|
|
|
|
// Don't extrpolate corner points until all boundary points in place
|
|
if ((boundaryMask & 1) != 0) {
|
|
cpt[1] = 2*cpt[5] - cpt[9];
|
|
cpt[2] = 2*cpt[6] - cpt[10];
|
|
}
|
|
if ((boundaryMask & 2) != 0) {
|
|
cpt[7] = 2*cpt[6] - cpt[5];
|
|
cpt[11] = 2*cpt[10] - cpt[9];
|
|
}
|
|
if ((boundaryMask & 4) != 0) {
|
|
cpt[13] = 2*cpt[9] - cpt[5];
|
|
cpt[14] = 2*cpt[10] - cpt[6];
|
|
}
|
|
if ((boundaryMask & 8) != 0) {
|
|
cpt[4] = 2*cpt[5] - cpt[6];
|
|
cpt[8] = 2*cpt[9] - cpt[10];
|
|
}
|
|
|
|
// Now safe to extrapolate corner points:
|
|
if ((boundaryMask & 1) != 0) {
|
|
cpt[0] = 2*cpt[4] - cpt[8];
|
|
cpt[3] = 2*cpt[7] - cpt[11];
|
|
}
|
|
if ((boundaryMask & 2) != 0) {
|
|
cpt[3] = 2*cpt[2] - cpt[1];
|
|
cpt[15] = 2*cpt[14] - cpt[13];
|
|
}
|
|
if ((boundaryMask & 4) != 0) {
|
|
cpt[12] = 2*cpt[8] - cpt[4];
|
|
cpt[15] = 2*cpt[11] - cpt[7];
|
|
}
|
|
if ((boundaryMask & 8) != 0) {
|
|
cpt[0] = 2*cpt[1] - cpt[2];
|
|
cpt[12] = 2*cpt[13] - cpt[14];
|
|
}
|
|
}
|
|
|
|
void
|
|
OsdComputeBoxSplineTriangleBoundaryPoints(inout vec3 cpt[12], ivec3 patchParam)
|
|
{
|
|
int boundaryMask = OsdGetPatchBoundaryMask(patchParam);
|
|
if (boundaryMask == 0) return;
|
|
|
|
int upperBits = (boundaryMask >> 3) & 0x3;
|
|
int lowerBits = boundaryMask & 7;
|
|
|
|
int eBits = lowerBits;
|
|
int vBits = 0;
|
|
|
|
if (upperBits == 1) {
|
|
vBits = eBits;
|
|
eBits = 0;
|
|
} else if (upperBits == 2) {
|
|
// Opposite vertex bit is edge bit rotated one to the right:
|
|
vBits = ((eBits & 1) << 2) | (eBits >> 1);
|
|
}
|
|
|
|
bool edge0IsBoundary = (eBits & 1) != 0;
|
|
bool edge1IsBoundary = (eBits & 2) != 0;
|
|
bool edge2IsBoundary = (eBits & 4) != 0;
|
|
|
|
if (edge0IsBoundary) {
|
|
if (edge2IsBoundary) {
|
|
cpt[0] = cpt[4] + (cpt[4] - cpt[8]);
|
|
} else {
|
|
cpt[0] = cpt[4] + (cpt[3] - cpt[7]);
|
|
}
|
|
cpt[1] = cpt[4] + cpt[5] - cpt[8];
|
|
if (edge1IsBoundary) {
|
|
cpt[2] = cpt[5] + (cpt[5] - cpt[8]);
|
|
} else {
|
|
cpt[2] = cpt[5] + (cpt[6] - cpt[9]);
|
|
}
|
|
}
|
|
if (edge1IsBoundary) {
|
|
if (edge0IsBoundary) {
|
|
cpt[6] = cpt[5] + (cpt[5] - cpt[4]);
|
|
} else {
|
|
cpt[6] = cpt[5] + (cpt[2] - cpt[1]);
|
|
}
|
|
cpt[9] = cpt[5] + cpt[8] - cpt[4];
|
|
if (edge2IsBoundary) {
|
|
cpt[11] = cpt[8] + (cpt[8] - cpt[4]);
|
|
} else {
|
|
cpt[11] = cpt[8] + (cpt[10] - cpt[7]);
|
|
}
|
|
}
|
|
if (edge2IsBoundary) {
|
|
if (edge1IsBoundary) {
|
|
cpt[10] = cpt[8] + (cpt[8] - cpt[5]);
|
|
} else {
|
|
cpt[10] = cpt[8] + (cpt[11] - cpt[9]);
|
|
}
|
|
cpt[7] = cpt[8] + cpt[4] - cpt[5];
|
|
if (edge0IsBoundary) {
|
|
cpt[3] = cpt[4] + (cpt[4] - cpt[5]);
|
|
} else {
|
|
cpt[3] = cpt[4] + (cpt[0] - cpt[1]);
|
|
}
|
|
}
|
|
|
|
if ((vBits & 1) != 0) {
|
|
cpt[3] = cpt[4] + cpt[7] - cpt[8];
|
|
cpt[0] = cpt[4] + cpt[1] - cpt[5];
|
|
}
|
|
if ((vBits & 2) != 0) {
|
|
cpt[2] = cpt[5] + cpt[1] - cpt[4];
|
|
cpt[6] = cpt[5] + cpt[9] - cpt[8];
|
|
}
|
|
if ((vBits & 4) != 0) {
|
|
cpt[11] = cpt[8] + cpt[9] - cpt[5];
|
|
cpt[10] = cpt[8] + cpt[7] - cpt[4];
|
|
}
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// BSpline
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// compute single-crease patch matrix
|
|
mat4
|
|
OsdComputeMs(float sharpness)
|
|
{
|
|
float s = pow(2.0f, sharpness);
|
|
float s2 = s*s;
|
|
float s3 = s2*s;
|
|
|
|
mat4 m = mat4(
|
|
0, s + 1 + 3*s2 - s3, 7*s - 2 - 6*s2 + 2*s3, (1-s)*(s-1)*(s-1),
|
|
0, (1+s)*(1+s), 6*s - 2 - 2*s2, (s-1)*(s-1),
|
|
0, 1+s, 6*s - 2, 1-s,
|
|
0, 1, 6*s - 2, 1);
|
|
|
|
m /= (s*6.0);
|
|
m[0][0] = 1.0/6.0;
|
|
|
|
return m;
|
|
}
|
|
|
|
// flip matrix orientation
|
|
mat4
|
|
OsdFlipMatrix(mat4 m)
|
|
{
|
|
return mat4(m[3][3], m[3][2], m[3][1], m[3][0],
|
|
m[2][3], m[2][2], m[2][1], m[2][0],
|
|
m[1][3], m[1][2], m[1][1], m[1][0],
|
|
m[0][3], m[0][2], m[0][1], m[0][0]);
|
|
}
|
|
|
|
// Regular BSpline to Bezier
|
|
uniform mat4 Q = mat4(
|
|
1.f/6.f, 4.f/6.f, 1.f/6.f, 0.f,
|
|
0.f, 4.f/6.f, 2.f/6.f, 0.f,
|
|
0.f, 2.f/6.f, 4.f/6.f, 0.f,
|
|
0.f, 1.f/6.f, 4.f/6.f, 1.f/6.f
|
|
);
|
|
|
|
// Infinitely Sharp (boundary)
|
|
uniform mat4 Mi = mat4(
|
|
1.f/6.f, 4.f/6.f, 1.f/6.f, 0.f,
|
|
0.f, 4.f/6.f, 2.f/6.f, 0.f,
|
|
0.f, 2.f/6.f, 4.f/6.f, 0.f,
|
|
0.f, 0.f, 1.f, 0.f
|
|
);
|
|
|
|
// convert BSpline cv to Bezier cv
|
|
void
|
|
OsdComputePerPatchVertexBSpline(ivec3 patchParam, int ID, vec3 cv[16],
|
|
out OsdPerPatchVertexBezier result)
|
|
{
|
|
result.patchParam = patchParam;
|
|
|
|
int i = ID%4;
|
|
int j = ID/4;
|
|
|
|
#if defined OSD_PATCH_ENABLE_SINGLE_CREASE
|
|
|
|
vec3 P = vec3(0); // 0 to 1-2^(-Sf)
|
|
vec3 P1 = vec3(0); // 1-2^(-Sf) to 1-2^(-Sc)
|
|
vec3 P2 = vec3(0); // 1-2^(-Sc) to 1
|
|
|
|
float sharpness = OsdGetPatchSharpness(patchParam);
|
|
if (sharpness > 0) {
|
|
float Sf = floor(sharpness);
|
|
float Sc = ceil(sharpness);
|
|
float Sr = fract(sharpness);
|
|
mat4 Mf = OsdComputeMs(Sf);
|
|
mat4 Mc = OsdComputeMs(Sc);
|
|
mat4 Mj = (1-Sr) * Mf + Sr * Mi;
|
|
mat4 Ms = (1-Sr) * Mf + Sr * Mc;
|
|
float s0 = 1 - pow(2, -floor(sharpness));
|
|
float s1 = 1 - pow(2, -ceil(sharpness));
|
|
result.vSegments = vec2(s0, s1);
|
|
|
|
mat4 MUi = Q, MUj = Q, MUs = Q;
|
|
mat4 MVi = Q, MVj = Q, MVs = Q;
|
|
|
|
int boundaryMask = OsdGetPatchBoundaryMask(patchParam);
|
|
if ((boundaryMask & 1) != 0) {
|
|
MVi = OsdFlipMatrix(Mi);
|
|
MVj = OsdFlipMatrix(Mj);
|
|
MVs = OsdFlipMatrix(Ms);
|
|
}
|
|
if ((boundaryMask & 2) != 0) {
|
|
MUi = Mi;
|
|
MUj = Mj;
|
|
MUs = Ms;
|
|
}
|
|
if ((boundaryMask & 4) != 0) {
|
|
MVi = Mi;
|
|
MVj = Mj;
|
|
MVs = Ms;
|
|
}
|
|
if ((boundaryMask & 8) != 0) {
|
|
MUi = OsdFlipMatrix(Mi);
|
|
MUj = OsdFlipMatrix(Mj);
|
|
MUs = OsdFlipMatrix(Ms);
|
|
}
|
|
|
|
vec3 Hi[4], Hj[4], Hs[4];
|
|
for (int l=0; l<4; ++l) {
|
|
Hi[l] = Hj[l] = Hs[l] = vec3(0);
|
|
for (int k=0; k<4; ++k) {
|
|
Hi[l] += MUi[i][k] * cv[l*4 + k];
|
|
Hj[l] += MUj[i][k] * cv[l*4 + k];
|
|
Hs[l] += MUs[i][k] * cv[l*4 + k];
|
|
}
|
|
}
|
|
for (int k=0; k<4; ++k) {
|
|
P += MVi[j][k]*Hi[k];
|
|
P1 += MVj[j][k]*Hj[k];
|
|
P2 += MVs[j][k]*Hs[k];
|
|
}
|
|
|
|
result.P = P;
|
|
result.P1 = P1;
|
|
result.P2 = P2;
|
|
} else {
|
|
result.vSegments = vec2(0);
|
|
|
|
OsdComputeBSplineBoundaryPoints(cv, patchParam);
|
|
|
|
vec3 Hi[4];
|
|
for (int l=0; l<4; ++l) {
|
|
Hi[l] = vec3(0);
|
|
for (int k=0; k<4; ++k) {
|
|
Hi[l] += Q[i][k] * cv[l*4 + k];
|
|
}
|
|
}
|
|
for (int k=0; k<4; ++k) {
|
|
P += Q[j][k]*Hi[k];
|
|
}
|
|
|
|
result.P = P;
|
|
result.P1 = P;
|
|
result.P2 = P;
|
|
}
|
|
#else
|
|
OsdComputeBSplineBoundaryPoints(cv, patchParam);
|
|
|
|
vec3 H[4];
|
|
for (int l=0; l<4; ++l) {
|
|
H[l] = vec3(0);
|
|
for (int k=0; k<4; ++k) {
|
|
H[l] += Q[i][k] * cv[l*4 + k];
|
|
}
|
|
}
|
|
{
|
|
result.P = vec3(0);
|
|
for (int k=0; k<4; ++k) {
|
|
result.P += Q[j][k]*H[k];
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
OsdEvalPatchBezier(ivec3 patchParam, vec2 UV,
|
|
OsdPerPatchVertexBezier cv[16],
|
|
out vec3 P, out vec3 dPu, out vec3 dPv,
|
|
out vec3 N, out vec3 dNu, out vec3 dNv)
|
|
{
|
|
//
|
|
// Use the recursive nature of the basis functions to compute a 2x2 set
|
|
// of intermediate points (via repeated linear interpolation). These
|
|
// points define a bilinear surface tangent to the desired surface at P
|
|
// and so containing dPu and dPv. The cost of computing P, dPu and dPv
|
|
// this way is comparable to that of typical tensor product evaluation
|
|
// (if not faster).
|
|
//
|
|
// If N = dPu X dPv degenerates, it often results from an edge of the
|
|
// 2x2 bilinear hull collapsing or two adjacent edges colinear. In both
|
|
// cases, the expected non-planar quad degenerates into a triangle, and
|
|
// the tangent plane of that triangle provides the desired normal N.
|
|
//
|
|
|
|
// Reduce 4x4 points to 2x4 -- two levels of linear interpolation in U
|
|
// and so 3 original rows contributing to each of the 2 resulting rows:
|
|
float u = UV.x;
|
|
float uinv = 1.0f - u;
|
|
|
|
float u0 = uinv * uinv;
|
|
float u1 = u * uinv * 2.0f;
|
|
float u2 = u * u;
|
|
|
|
vec3 LROW[4], RROW[4];
|
|
#ifndef OSD_PATCH_ENABLE_SINGLE_CREASE
|
|
LROW[0] = u0 * cv[ 0].P + u1 * cv[ 1].P + u2 * cv[ 2].P;
|
|
LROW[1] = u0 * cv[ 4].P + u1 * cv[ 5].P + u2 * cv[ 6].P;
|
|
LROW[2] = u0 * cv[ 8].P + u1 * cv[ 9].P + u2 * cv[10].P;
|
|
LROW[3] = u0 * cv[12].P + u1 * cv[13].P + u2 * cv[14].P;
|
|
|
|
RROW[0] = u0 * cv[ 1].P + u1 * cv[ 2].P + u2 * cv[ 3].P;
|
|
RROW[1] = u0 * cv[ 5].P + u1 * cv[ 6].P + u2 * cv[ 7].P;
|
|
RROW[2] = u0 * cv[ 9].P + u1 * cv[10].P + u2 * cv[11].P;
|
|
RROW[3] = u0 * cv[13].P + u1 * cv[14].P + u2 * cv[15].P;
|
|
#else
|
|
vec2 vSegments = cv[0].vSegments;
|
|
float s = OsdGetPatchSingleCreaseSegmentParameter(patchParam, UV);
|
|
|
|
for (int i = 0; i < 4; ++i) {
|
|
int j = i*4;
|
|
if (s <= vSegments.x) {
|
|
LROW[i] = u0 * cv[ j ].P + u1 * cv[j+1].P + u2 * cv[j+2].P;
|
|
RROW[i] = u0 * cv[j+1].P + u1 * cv[j+2].P + u2 * cv[j+3].P;
|
|
} else if (s <= vSegments.y) {
|
|
LROW[i] = u0 * cv[ j ].P1 + u1 * cv[j+1].P1 + u2 * cv[j+2].P1;
|
|
RROW[i] = u0 * cv[j+1].P1 + u1 * cv[j+2].P1 + u2 * cv[j+3].P1;
|
|
} else {
|
|
LROW[i] = u0 * cv[ j ].P2 + u1 * cv[j+1].P2 + u2 * cv[j+2].P2;
|
|
RROW[i] = u0 * cv[j+1].P2 + u1 * cv[j+2].P2 + u2 * cv[j+3].P2;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Reduce 2x4 points to 2x2 -- two levels of linear interpolation in V
|
|
// and so 3 original pairs contributing to each of the 2 resulting:
|
|
float v = UV.y;
|
|
float vinv = 1.0f - v;
|
|
|
|
float v0 = vinv * vinv;
|
|
float v1 = v * vinv * 2.0f;
|
|
float v2 = v * v;
|
|
|
|
vec3 LPAIR[2], RPAIR[2];
|
|
LPAIR[0] = v0 * LROW[0] + v1 * LROW[1] + v2 * LROW[2];
|
|
RPAIR[0] = v0 * RROW[0] + v1 * RROW[1] + v2 * RROW[2];
|
|
|
|
LPAIR[1] = v0 * LROW[1] + v1 * LROW[2] + v2 * LROW[3];
|
|
RPAIR[1] = v0 * RROW[1] + v1 * RROW[2] + v2 * RROW[3];
|
|
|
|
// Interpolate points on the edges of the 2x2 bilinear hull from which
|
|
// both position and partials are trivially determined:
|
|
vec3 DU0 = vinv * LPAIR[0] + v * LPAIR[1];
|
|
vec3 DU1 = vinv * RPAIR[0] + v * RPAIR[1];
|
|
vec3 DV0 = uinv * LPAIR[0] + u * RPAIR[0];
|
|
vec3 DV1 = uinv * LPAIR[1] + u * RPAIR[1];
|
|
|
|
int level = OsdGetPatchFaceLevel(patchParam);
|
|
dPu = (DU1 - DU0) * 3 * level;
|
|
dPv = (DV1 - DV0) * 3 * level;
|
|
|
|
P = u * DU1 + uinv * DU0;
|
|
|
|
// Compute the normal and test for degeneracy:
|
|
//
|
|
// We need a geometric measure of the size of the patch for a suitable
|
|
// tolerance. Magnitudes of the partials are generally proportional to
|
|
// that size -- the sum of the partials is readily available, cheap to
|
|
// compute, and has proved effective in most cases (though not perfect).
|
|
// The size of the bounding box of the patch, or some approximation to
|
|
// it, would be better but more costly to compute.
|
|
//
|
|
float proportionalNormalTolerance = 0.00001f;
|
|
|
|
float nEpsilon = (length(dPu) + length(dPv)) * proportionalNormalTolerance;
|
|
|
|
N = cross(dPu, dPv);
|
|
|
|
float nLength = length(N);
|
|
if (nLength > nEpsilon) {
|
|
N = N / nLength;
|
|
} else {
|
|
vec3 diagCross = cross(RPAIR[1] - LPAIR[0], LPAIR[1] - RPAIR[0]);
|
|
float diagCrossLength = length(diagCross);
|
|
if (diagCrossLength > nEpsilon) {
|
|
N = diagCross / diagCrossLength;
|
|
}
|
|
}
|
|
|
|
#ifndef OSD_COMPUTE_NORMAL_DERIVATIVES
|
|
dNu = vec3(0);
|
|
dNv = vec3(0);
|
|
#else
|
|
//
|
|
// Compute 2nd order partials of P(u,v) in order to compute 1st order partials
|
|
// for the un-normalized n(u,v) = dPu X dPv, then project into the tangent
|
|
// plane of normalized N. With resulting dNu and dNv we can make another
|
|
// attempt to resolve a still-degenerate normal.
|
|
//
|
|
// We don't use the Weingarten equations here as they require N != 0 and also
|
|
// are a little less numerically stable/accurate in single precision.
|
|
//
|
|
float B0u[4], B1u[4], B2u[4];
|
|
float B0v[4], B1v[4], B2v[4];
|
|
|
|
OsdUnivar4x4(UV.x, B0u, B1u, B2u);
|
|
OsdUnivar4x4(UV.y, B0v, B1v, B2v);
|
|
|
|
vec3 dUU = vec3(0);
|
|
vec3 dVV = vec3(0);
|
|
vec3 dUV = vec3(0);
|
|
|
|
for (int i=0; i<4; ++i) {
|
|
for (int j=0; j<4; ++j) {
|
|
#ifdef OSD_PATCH_ENABLE_SINGLE_CREASE
|
|
int k = 4*i + j;
|
|
vec3 CV = (s <= vSegments.x) ? cv[k].P
|
|
: ((s <= vSegments.y) ? cv[k].P1
|
|
: cv[k].P2);
|
|
#else
|
|
vec3 CV = cv[4*i + j].P;
|
|
#endif
|
|
dUU += (B0v[i] * B2u[j]) * CV;
|
|
dVV += (B2v[i] * B0u[j]) * CV;
|
|
dUV += (B1v[i] * B1u[j]) * CV;
|
|
}
|
|
}
|
|
|
|
dUU *= 6 * level;
|
|
dVV *= 6 * level;
|
|
dUV *= 9 * level;
|
|
|
|
dNu = cross(dUU, dPv) + cross(dPu, dUV);
|
|
dNv = cross(dUV, dPv) + cross(dPu, dVV);
|
|
|
|
float nLengthInv = 1.0;
|
|
if (nLength > nEpsilon) {
|
|
nLengthInv = 1.0 / nLength;
|
|
} else {
|
|
// N may have been resolved above if degenerate, but if N was resolved
|
|
// we don't have an accurate length for its un-normalized value, and that
|
|
// length is needed to project the un-normalized dNu and dNv into the
|
|
// tangent plane of N.
|
|
//
|
|
// So compute N more accurately with available second derivatives, i.e.
|
|
// with a 1st order Taylor approximation to un-normalized N(u,v).
|
|
|
|
float DU = (UV.x == 1.0f) ? -1.0f : 1.0f;
|
|
float DV = (UV.y == 1.0f) ? -1.0f : 1.0f;
|
|
|
|
N = DU * dNu + DV * dNv;
|
|
|
|
nLength = length(N);
|
|
if (nLength > nEpsilon) {
|
|
nLengthInv = 1.0f / nLength;
|
|
N = N * nLengthInv;
|
|
}
|
|
}
|
|
|
|
// Project derivatives of non-unit normals into tangent plane of N:
|
|
dNu = (dNu - dot(dNu,N) * N) * nLengthInv;
|
|
dNv = (dNv - dot(dNv,N) * N) * nLengthInv;
|
|
#endif
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Gregory Basis
|
|
// ----------------------------------------------------------------------------
|
|
|
|
struct OsdPerPatchVertexGregoryBasis {
|
|
ivec3 patchParam;
|
|
vec3 P;
|
|
};
|
|
|
|
void
|
|
OsdComputePerPatchVertexGregoryBasis(ivec3 patchParam, int ID, vec3 cv,
|
|
out OsdPerPatchVertexGregoryBasis result)
|
|
{
|
|
result.patchParam = patchParam;
|
|
result.P = cv;
|
|
}
|
|
|
|
void
|
|
OsdEvalPatchGregory(ivec3 patchParam, vec2 UV, vec3 cv[20],
|
|
out vec3 P, out vec3 dPu, out vec3 dPv,
|
|
out vec3 N, out vec3 dNu, out vec3 dNv)
|
|
{
|
|
float u = UV.x, v = UV.y;
|
|
float U = 1-u, V = 1-v;
|
|
|
|
//(0,1) (1,1)
|
|
// P3 e3- e2+ P2
|
|
// 15------17-------11-------10
|
|
// | | | |
|
|
// | | | |
|
|
// | | f3- | f2+ |
|
|
// | 19 13 |
|
|
// e3+ 16-----18 14-----12 e2-
|
|
// | f3+ f2- |
|
|
// | |
|
|
// | |
|
|
// | f0- f1+ |
|
|
// e0- 2------4 8------6 e1+
|
|
// | 3 f0+ 9 |
|
|
// | | | f1- |
|
|
// | | | |
|
|
// | | | |
|
|
// 0--------1--------7--------5
|
|
// P0 e0+ e1- P1
|
|
//(0,0) (1,0)
|
|
|
|
float d11 = u+v;
|
|
float d12 = U+v;
|
|
float d21 = u+V;
|
|
float d22 = U+V;
|
|
|
|
OsdPerPatchVertexBezier bezcv[16];
|
|
|
|
bezcv[ 5].P = (d11 == 0.0) ? cv[3] : (u*cv[3] + v*cv[4])/d11;
|
|
bezcv[ 6].P = (d12 == 0.0) ? cv[8] : (U*cv[9] + v*cv[8])/d12;
|
|
bezcv[ 9].P = (d21 == 0.0) ? cv[18] : (u*cv[19] + V*cv[18])/d21;
|
|
bezcv[10].P = (d22 == 0.0) ? cv[13] : (U*cv[13] + V*cv[14])/d22;
|
|
|
|
bezcv[ 0].P = cv[0];
|
|
bezcv[ 1].P = cv[1];
|
|
bezcv[ 2].P = cv[7];
|
|
bezcv[ 3].P = cv[5];
|
|
bezcv[ 4].P = cv[2];
|
|
bezcv[ 7].P = cv[6];
|
|
bezcv[ 8].P = cv[16];
|
|
bezcv[11].P = cv[12];
|
|
bezcv[12].P = cv[15];
|
|
bezcv[13].P = cv[17];
|
|
bezcv[14].P = cv[11];
|
|
bezcv[15].P = cv[10];
|
|
|
|
OsdEvalPatchBezier(patchParam, UV, bezcv, P, dPu, dPv, N, dNu, dNv);
|
|
}
|
|
|
|
//
|
|
// Convert the 12 points of a regular patch resulting from Loop subdivision
|
|
// into a more accessible Bezier patch for both tessellation assessment and
|
|
// evaluation.
|
|
//
|
|
// Regular patch for Loop subdivision -- quartic triangular Box spline:
|
|
//
|
|
// 10 --- 11
|
|
// . . . .
|
|
// . . . .
|
|
// 7 --- 8 --- 9
|
|
// . . . . . .
|
|
// . . . . . .
|
|
// 3 --- 4 --- 5 --- 6
|
|
// . . . . . .
|
|
// . . . . . .
|
|
// 0 --- 1 --- 2
|
|
//
|
|
// The equivalant quartic Bezier triangle (15 points):
|
|
//
|
|
// 14
|
|
// . .
|
|
// . .
|
|
// 12 --- 13
|
|
// . . . .
|
|
// . . . .
|
|
// 9 -- 10 --- 11
|
|
// . . . . . .
|
|
// . . . . . .
|
|
// 5 --- 6 --- 7 --- 8
|
|
// . . . . . . . .
|
|
// . . . . . . . .
|
|
// 0 --- 1 --- 2 --- 3 --- 4
|
|
//
|
|
// A hybrid cubic/quartic Bezier patch with cubic boundaries is a close
|
|
// approximation and would only use 12 control points, but we need a full
|
|
// quartic patch to maintain accuracy along boundary curves -- especially
|
|
// between subdivision levels.
|
|
//
|
|
void
|
|
OsdComputePerPatchVertexBoxSplineTriangle(ivec3 patchParam, int ID, vec3 cv[12],
|
|
out OsdPerPatchVertexBezier result)
|
|
{
|
|
//
|
|
// Conversion matrix from 12-point Box spline to 15-point quartic Bezier
|
|
// patch and its common scale factor:
|
|
//
|
|
const float boxToBezierMatrix[12*15] = float[12*15](
|
|
// L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11
|
|
2, 2, 0, 2, 12, 2, 0, 2, 2, 0, 0, 0, // B0
|
|
1, 3, 0, 0, 12, 4, 0, 1, 3, 0, 0, 0, // B1
|
|
0, 4, 0, 0, 8, 8, 0, 0, 4, 0, 0, 0, // B2
|
|
0, 3, 1, 0, 4, 12, 0, 0, 3, 1, 0, 0, // B3
|
|
0, 2, 2, 0, 2, 12, 2, 0, 2, 2, 0, 0, // B4
|
|
0, 1, 0, 1, 12, 3, 0, 3, 4, 0, 0, 0, // B5
|
|
0, 1, 0, 0, 10, 6, 0, 1, 6, 0, 0, 0, // B6
|
|
0, 1, 0, 0, 6, 10, 0, 0, 6, 1, 0, 0, // B7
|
|
0, 1, 0, 0, 3, 12, 1, 0, 4, 3, 0, 0, // B8
|
|
0, 0, 0, 0, 8, 4, 0, 4, 8, 0, 0, 0, // B9
|
|
0, 0, 0, 0, 6, 6, 0, 1, 10, 1, 0, 0, // B10
|
|
0, 0, 0, 0, 4, 8, 0, 0, 8, 4, 0, 0, // B11
|
|
0, 0, 0, 0, 4, 3, 0, 3, 12, 1, 1, 0, // B12
|
|
0, 0, 0, 0, 3, 4, 0, 1, 12, 3, 0, 1, // B13
|
|
0, 0, 0, 0, 2, 2, 0, 2, 12, 2, 2, 2 // B14
|
|
);
|
|
const float boxToBezierMatrixScale = 1.0 / 24.0;
|
|
|
|
OsdComputeBoxSplineTriangleBoundaryPoints(cv, patchParam);
|
|
|
|
result.patchParam = patchParam;
|
|
result.P = vec3(0);
|
|
|
|
int cvCoeffBase = 12 * ID;
|
|
|
|
for (int i = 0; i < 12; ++i) {
|
|
result.P += boxToBezierMatrix[cvCoeffBase + i] * cv[i];
|
|
}
|
|
result.P *= boxToBezierMatrixScale;
|
|
}
|
|
|
|
void
|
|
OsdEvalPatchBezierTriangle(ivec3 patchParam, vec2 UV,
|
|
OsdPerPatchVertexBezier cv[15],
|
|
out vec3 P, out vec3 dPu, out vec3 dPv,
|
|
out vec3 N, out vec3 dNu, out vec3 dNv)
|
|
{
|
|
float u = UV.x;
|
|
float v = UV.y;
|
|
float w = 1.0 - u - v;
|
|
|
|
float uu = u * u;
|
|
float vv = v * v;
|
|
float ww = w * w;
|
|
|
|
#ifdef OSD_COMPUTE_NORMAL_DERIVATIVES
|
|
//
|
|
// When computing normal derivatives, we need 2nd derivatives, so compute
|
|
// an intermediate quadratic Bezier triangle from which 2nd derivatives
|
|
// can be easily computed, and which in turn yields the triangle that gives
|
|
// the position and 1st derivatives.
|
|
//
|
|
// Quadratic barycentric basis functions (in addition to those above):
|
|
float uv = u * v * 2.0;
|
|
float vw = v * w * 2.0;
|
|
float wu = w * u * 2.0;
|
|
|
|
vec3 Q0 = ww * cv[ 0].P + wu * cv[ 1].P + uu * cv[ 2].P +
|
|
uv * cv[ 6].P + vv * cv[ 9].P + vw * cv[ 5].P;
|
|
vec3 Q1 = ww * cv[ 1].P + wu * cv[ 2].P + uu * cv[ 3].P +
|
|
uv * cv[ 7].P + vv * cv[10].P + vw * cv[ 6].P;
|
|
vec3 Q2 = ww * cv[ 2].P + wu * cv[ 3].P + uu * cv[ 4].P +
|
|
uv * cv[ 8].P + vv * cv[11].P + vw * cv[ 7].P;
|
|
vec3 Q3 = ww * cv[ 5].P + wu * cv[ 6].P + uu * cv[ 7].P +
|
|
uv * cv[10].P + vv * cv[12].P + vw * cv[ 9].P;
|
|
vec3 Q4 = ww * cv[ 6].P + wu * cv[ 7].P + uu * cv[ 8].P +
|
|
uv * cv[11].P + vv * cv[13].P + vw * cv[10].P;
|
|
vec3 Q5 = ww * cv[ 9].P + wu * cv[10].P + uu * cv[11].P +
|
|
uv * cv[13].P + vv * cv[14].P + vw * cv[12].P;
|
|
|
|
vec3 V0 = w * Q0 + u * Q1 + v * Q3;
|
|
vec3 V1 = w * Q1 + u * Q2 + v * Q4;
|
|
vec3 V2 = w * Q3 + u * Q4 + v * Q5;
|
|
#else
|
|
//
|
|
// When 2nd derivatives are not required, factor the recursive evaluation
|
|
// of a point to directly provide the three points of the triangle at the
|
|
// last stage -- which then trivially provides both position and 1st
|
|
// derivatives. Each point of the triangle results from evaluating the
|
|
// corresponding cubic Bezier sub-triangle for each corner of the quartic:
|
|
//
|
|
// Cubic barycentric basis functions:
|
|
float uuu = uu * u;
|
|
float uuv = uu * v * 3.0;
|
|
float uvv = u * vv * 3.0;
|
|
float vvv = vv * v;
|
|
float vvw = vv * w * 3.0;
|
|
float vww = v * ww * 3.0;
|
|
float www = ww * w;
|
|
float wwu = ww * u * 3.0;
|
|
float wuu = w * uu * 3.0;
|
|
float uvw = u * v * w * 6.0;
|
|
|
|
vec3 V0 = www * cv[ 0].P + wwu * cv[ 1].P + wuu * cv[ 2].P
|
|
+ uuu * cv[ 3].P + uuv * cv[ 7].P + uvv * cv[10].P
|
|
+ vvv * cv[12].P + vvw * cv[ 9].P + vww * cv[ 5].P + uvw * cv[ 6].P;
|
|
|
|
vec3 V1 = www * cv[ 1].P + wwu * cv[ 2].P + wuu * cv[ 3].P
|
|
+ uuu * cv[ 4].P + uuv * cv[ 8].P + uvv * cv[11].P
|
|
+ vvv * cv[13].P + vvw * cv[10].P + vww * cv[ 6].P + uvw * cv[ 7].P;
|
|
|
|
vec3 V2 = www * cv[ 5].P + wwu * cv[ 6].P + wuu * cv[ 7].P
|
|
+ uuu * cv[ 8].P + uuv * cv[11].P + uvv * cv[13].P
|
|
+ vvv * cv[14].P + vvw * cv[12].P + vww * cv[ 9].P + uvw * cv[10].P;
|
|
#endif
|
|
|
|
//
|
|
// Compute P, du and dv all from the triangle formed from the three Vi:
|
|
//
|
|
P = w * V0 + u * V1 + v * V2;
|
|
|
|
int dSign = OsdGetPatchIsTriangleRotated(patchParam) ? -1 : 1;
|
|
int level = OsdGetPatchFaceLevel(patchParam);
|
|
|
|
float d1Scale = dSign * level * 4;
|
|
|
|
dPu = (V1 - V0) * d1Scale;
|
|
dPv = (V2 - V0) * d1Scale;
|
|
|
|
// Compute N and test for degeneracy:
|
|
//
|
|
// We need a geometric measure of the size of the patch for a suitable
|
|
// tolerance. Magnitudes of the partials are generally proportional to
|
|
// that size -- the sum of the partials is readily available, cheap to
|
|
// compute, and has proved effective in most cases (though not perfect).
|
|
// The size of the bounding box of the patch, or some approximation to
|
|
// it, would be better but more costly to compute.
|
|
//
|
|
float proportionalNormalTolerance = 0.00001f;
|
|
|
|
float nEpsilon = (length(dPu) + length(dPv)) * proportionalNormalTolerance;
|
|
|
|
N = cross(dPu, dPv);
|
|
float nLength = length(N);
|
|
|
|
|
|
#ifdef OSD_COMPUTE_NORMAL_DERIVATIVES
|
|
//
|
|
// Compute normal derivatives using 2nd order partials, then use the
|
|
// normal derivatives to resolve a degenerate normal:
|
|
//
|
|
float d2Scale = dSign * level * level * 12;
|
|
|
|
vec3 dUU = (Q0 - 2 * Q1 + Q2) * d2Scale;
|
|
vec3 dVV = (Q0 - 2 * Q3 + Q5) * d2Scale;
|
|
vec3 dUV = (Q0 - Q1 + Q4 - Q3) * d2Scale;
|
|
|
|
dNu = cross(dUU, dPv) + cross(dPu, dUV);
|
|
dNv = cross(dUV, dPv) + cross(dPu, dVV);
|
|
|
|
if (nLength < nEpsilon) {
|
|
// Use 1st order Taylor approximation of N(u,v) within patch interior:
|
|
if (w > 0.0) {
|
|
N = dNu + dNv;
|
|
} else if (u >= 1.0) {
|
|
N = -dNu + dNv;
|
|
} else if (v >= 1.0) {
|
|
N = dNu - dNv;
|
|
} else {
|
|
N = -dNu - dNv;
|
|
}
|
|
|
|
nLength = length(N);
|
|
if (nLength < nEpsilon) {
|
|
nLength = 1.0;
|
|
}
|
|
}
|
|
N = N / nLength;
|
|
|
|
// Project derivs of non-unit normal function onto tangent plane of N:
|
|
dNu = (dNu - dot(dNu,N) * N) / nLength;
|
|
dNv = (dNv - dot(dNv,N) * N) / nLength;
|
|
#else
|
|
dNu = vec3(0);
|
|
dNv = vec3(0);
|
|
|
|
//
|
|
// Resolve a degenerate normal using the interior triangle of the
|
|
// intermediate quadratic patch that results from recursive evaluation.
|
|
// This addresses common cases of degenerate or colinear boundaries
|
|
// without resorting to use of explicit 2nd derivatives:
|
|
//
|
|
if (nLength < nEpsilon) {
|
|
float uv = u * v * 2.0;
|
|
float vw = v * w * 2.0;
|
|
float wu = w * u * 2.0;
|
|
|
|
vec3 Q1 = ww * cv[ 1].P + wu * cv[ 2].P + uu * cv[ 3].P +
|
|
uv * cv[ 7].P + vv * cv[10].P + vw * cv[ 6].P;
|
|
vec3 Q3 = ww * cv[ 5].P + wu * cv[ 6].P + uu * cv[ 7].P +
|
|
uv * cv[10].P + vv * cv[12].P + vw * cv[ 9].P;
|
|
vec3 Q4 = ww * cv[ 6].P + wu * cv[ 7].P + uu * cv[ 8].P +
|
|
uv * cv[11].P + vv * cv[13].P + vw * cv[10].P;
|
|
|
|
N = cross((Q4 - Q1), (Q3 - Q1));
|
|
nLength = length(N);
|
|
if (nLength < nEpsilon) {
|
|
nLength = 1.0;
|
|
}
|
|
}
|
|
N = N / nLength;
|
|
#endif
|
|
}
|
|
|
|
void
|
|
OsdEvalPatchGregoryTriangle(ivec3 patchParam, vec2 UV, vec3 cv[18],
|
|
out vec3 P, out vec3 dPu, out vec3 dPv,
|
|
out vec3 N, out vec3 dNu, out vec3 dNv)
|
|
{
|
|
float u = UV.x;
|
|
float v = UV.y;
|
|
float w = 1.0 - u - v;
|
|
|
|
float duv = u + v;
|
|
float dvw = v + w;
|
|
float dwu = w + u;
|
|
|
|
OsdPerPatchVertexBezier bezcv[15];
|
|
|
|
bezcv[ 6].P = (duv == 0.0) ? cv[3] : ((u*cv[ 3] + v*cv[ 4]) / duv);
|
|
bezcv[ 7].P = (dvw == 0.0) ? cv[8] : ((v*cv[ 8] + w*cv[ 9]) / dvw);
|
|
bezcv[10].P = (dwu == 0.0) ? cv[13] : ((w*cv[13] + u*cv[14]) / dwu);
|
|
|
|
bezcv[ 0].P = cv[ 0];
|
|
bezcv[ 1].P = cv[ 1];
|
|
bezcv[ 2].P = cv[15];
|
|
bezcv[ 3].P = cv[ 7];
|
|
bezcv[ 4].P = cv[ 5];
|
|
bezcv[ 5].P = cv[ 2];
|
|
bezcv[ 8].P = cv[ 6];
|
|
bezcv[ 9].P = cv[17];
|
|
bezcv[11].P = cv[16];
|
|
bezcv[12].P = cv[11];
|
|
bezcv[13].P = cv[12];
|
|
bezcv[14].P = cv[10];
|
|
|
|
OsdEvalPatchBezierTriangle(patchParam, UV, bezcv, P, dPu, dPv, N, dNu, dNv);
|
|
}
|
|
|