OpenSubdiv/opensubdiv/osd/mtlComputeKernel.metal
David G Yu ff34c514f5 Improved patch basis eval for Osd to match Far
This updates the patch basis evaluation functions in Osd
to match recent changes to far/patchBasis.

This also exposes a common facility for dealing with PatchCoord,
PatchArray, and PatchParam. These are exposed as global functions
operating on struct data, since C++ style class methods are not
supported by all of the Osd shader and kernel execution envirionments.

Changes:
    - Merged far/patchBasis.cpp to osd/patchBasisCommon{,Types,Eval}.h
    - Exposed PatchCoord, PatchArray, and PatchParam to Osd kernels
    - exposed OsdEvaluatePatchBasis and OsdEvaluatePatchBasisNormalized
    - Updated CPU, TBB, Omp, CUDA, OpenCL, GLSL, HLSL, and Metal evaluators
    - Updated glFVarViewer
2018-11-15 17:11:50 -08:00

321 lines
11 KiB
Metal

#line 0 "osd/mtlComputeKernel.metal"
//
// Copyright 2015 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#include <metal_stdlib>
#ifndef OPENSUBDIV_MTL_COMPUTE_USE_1ST_DERIVATIVES
#define OPENSUBDIV_MTL_COMPUTE_USE_1ST_DERIVATIVES 0
#endif
#ifndef OPENSUBDIV_MTL_COMPUTE_USE_2ND_DERIVATIVES
#define OPENSUBDIV_MTL_COMPUTE_USE_2ND_DERIVATIVES 0
#endif
using namespace metal;
struct KernelUniformArgs
{
int batchStart;
int batchEnd;
int srcOffset;
int dstOffset;
int3 duDesc;
int3 dvDesc;
int3 duuDesc;
int3 duvDesc;
int3 dvvDesc;
};
struct Vertex {
float vertexData[LENGTH];
};
void clear(thread Vertex& v) {
for (int i = 0; i < LENGTH; ++i) {
v.vertexData[i] = 0;
}
}
Vertex readVertex(int index, device const float* vertexBuffer, KernelUniformArgs args) {
Vertex v;
int vertexIndex = args.srcOffset + index * SRC_STRIDE;
for (int i = 0; i < LENGTH; ++i) {
v.vertexData[i] = vertexBuffer[vertexIndex + i];
}
return v;
}
void writeVertex(int index, Vertex v, device float* vertexBuffer, KernelUniformArgs args) {
int vertexIndex = args.dstOffset + index * DST_STRIDE;
for (int i = 0; i < LENGTH; ++i) {
vertexBuffer[vertexIndex + i] = v.vertexData[i];
}
}
void writeVertexSeparate(int index, Vertex v, device float* dstVertexBuffer, KernelUniformArgs args) {
int vertexIndex = args.dstOffset + index * DST_STRIDE;
for (int i = 0; i < LENGTH; ++i) {
dstVertexBuffer[vertexIndex + i] = v.vertexData[i];
}
}
void addWithWeight(thread Vertex& v, const Vertex src, float weight) {
for (int i = 0; i < LENGTH; ++i) {
v.vertexData[i] += weight * src.vertexData[i];
}
}
#if OPENSUBDIV_MTL_COMPUTE_USE_1ST_DERIVATIVES
void writeDu(int index, Vertex du, device float* duDerivativeBuffer, KernelUniformArgs args)
{
int duIndex = args.duDesc.x + index * args.duDesc.z;
for(int i = 0; i < LENGTH; i++) {
duDerivativeBuffer[duIndex + i] = du.vertexData[i];
}
}
void writeDv(int index, Vertex dv, device float* dvDerivativeBuffer, KernelUniformArgs args)
{
int dvIndex = args.dvDesc.x + index * args.dvDesc.z;
for(int i = 0; i < LENGTH; i++) {
dvDerivativeBuffer[dvIndex + i] = dv.vertexData[i];
}
}
#endif
#if OPENSUBDIV_MTL_COMPUTE_USE_2ND_DERIVATIVES
void writeDuu(int index, Vertex duu, device float* duuDerivativeBuffer, KernelUniformArgs args)
{
int duuIndex = args.duuDesc.x + index * args.duuDesc.z;
for(int i = 0; i < LENGTH; i++) {
duuDerivativeBuffer[duuIndex + i] = duu.vertexData[i];
}
}
void writeDuv(int index, Vertex duv, device float* duvDerivativeBuffer, KernelUniformArgs args)
{
int duvIndex = args.duvDesc.x + index * args.duvDesc.z;
for(int i = 0; i < LENGTH; i++) {
duvDerivativeBuffer[duvIndex + i] = duv.vertexData[i];
}
}
void writeDvv(int index, Vertex dvv, device float* dvvDerivativeBuffer, KernelUniformArgs args)
{
int dvvIndex = args.dvvDesc.x + index * args.dvvDesc.z;
for(int i = 0; i < LENGTH; i++) {
dvvDerivativeBuffer[dvvIndex + i] = dvv.vertexData[i];
}
}
#endif
// ---------------------------------------------------------------------------
kernel void eval_stencils(
uint thread_position_in_grid [[thread_position_in_grid]],
const device int* sizes [[buffer(SIZES_BUFFER_INDEX)]],
const device int* offsets [[buffer(OFFSETS_BUFFER_INDEX)]],
const device int* indices [[buffer(INDICES_BUFFER_INDEX)]],
const device float* weights [[buffer(WEIGHTS_BUFFER_INDEX)]],
const device float* srcVertices [[buffer(SRC_VERTEX_BUFFER_INDEX)]],
device float* dstVertexBuffer [[buffer(DST_VERTEX_BUFFER_INDEX)]],
#if OPENSUBDIV_MTL_COMPUTE_USE_1ST_DERIVATIVES
const device float* duWeights [[buffer(DU_WEIGHTS_BUFFER_INDEX)]],
const device float* dvWeights [[buffer(DV_WEIGHTS_BUFFER_INDEX)]],
device float* duDerivativeBuffer [[buffer(DU_DERIVATIVE_BUFFER_INDEX)]],
device float* dvDerivativeBuffer [[buffer(DV_DERIVATIVE_BUFFER_INDEX)]],
#endif
#if OPENSUBDIV_MTL_COMPUTE_USE_2ND_DERIVATIVES
const device float* duuWeights [[buffer(DUU_WEIGHTS_BUFFER_INDEX)]],
const device float* duvWeights [[buffer(DUV_WEIGHTS_BUFFER_INDEX)]],
const device float* dvvWeights [[buffer(DVV_WEIGHTS_BUFFER_INDEX)]],
device float* duuDerivativeBuffer [[buffer(DUU_DERIVATIVE_BUFFER_INDEX)]],
device float* duvDerivativeBuffer [[buffer(DUV_DERIVATIVE_BUFFER_INDEX)]],
device float* dvvDerivativeBuffer [[buffer(DVV_DERIVATIVE_BUFFER_INDEX)]],
#endif
const constant KernelUniformArgs& args [[buffer(PARAMETER_BUFFER_INDEX)]]
)
{
auto current = thread_position_in_grid + args.batchStart;
if(current >= (unsigned int)args.batchEnd)
return;
Vertex dst;
clear(dst);
auto offset = offsets[current];
auto size = sizes[current];
for(auto stencil = 0; stencil < size; stencil++)
{
auto vindex = offset + stencil;
addWithWeight(dst, readVertex(indices[vindex], srcVertices, args), weights[vindex]);
}
writeVertex(current, dst, dstVertexBuffer, args);
#if OPENSUBDIV_MTL_COMPUTE_USE_1ST_DERIVATIVES
Vertex du, dv;
clear(du);
clear(dv);
for(auto i = 0; i < size; i++)
{
auto src = readVertex(indices[offset + i], srcVertices, args);
addWithWeight(du, src, duWeights[offset + i]);
addWithWeight(dv, src, dvWeights[offset + i]);
}
writeDu(current, du, duDerivativeBuffer, args);
writeDv(current, dv, dvDerivativeBuffer, args);
#endif
#if OPENSUBDIV_MTL_COMPUTE_USE_2ND_DERIVATIVES
Vertex duu, duv, dvv;
clear(duu);
clear(duv);
clear(dvv);
for(auto i = 0; i < size; i++)
{
auto src = readVertex(indices[offset + i], srcVertices, args);
addWithWeight(duu, src, duuWeights[offset + i]);
addWithWeight(duv, src, duvWeights[offset + i]);
addWithWeight(dvv, src, dvvWeights[offset + i]);
}
writeDuu(current, duu, duuDerivativeBuffer, args);
writeDuv(current, duv, duvDerivativeBuffer, args);
writeDvv(current, dvv, dvvDerivativeBuffer, args);
#endif
}
// ---------------------------------------------------------------------------
// PERFORMANCE: stride could be constant, but not as significant as length
// ---------------------------------------------------------------------------
kernel void eval_patches(
uint thread_position_in_grid [[thread_position_in_grid]],
const constant int* patchArrays [[buffer(PATCH_ARRAYS_BUFFER_INDEX)]],
const device int* patchCoords [[buffer(PATCH_COORDS_BUFFER_INDEX)]],
const device int* patchIndices [[buffer(PATCH_INDICES_BUFFER_INDEX)]],
const device uint* patchParams [[buffer(PATCH_PARAMS_BUFFER_INDEX)]],
const device float* srcVertexBuffer [[buffer(SRC_VERTEX_BUFFER_INDEX)]],
device float* dstVertexBuffer [[buffer(DST_VERTEX_BUFFER_INDEX)]],
#if OPENSUBDIV_MTL_COMPUTE_USE_1ST_DERIVATIVES
device float* duDerivativeBuffer [[buffer(DU_DERIVATIVE_BUFFER_INDEX)]],
device float* dvDerivativeBuffer [[buffer(DV_DERIVATIVE_BUFFER_INDEX)]],
#endif
#if OPENSUBDIV_MTL_COMPUTE_USE_2ND_DERIVATIVES
device float* duuDerivativeBuffer [[buffer(DUU_DERIVATIVE_BUFFER_INDEX)]],
device float* duvDerivativeBuffer [[buffer(DUV_DERIVATIVE_BUFFER_INDEX)]],
device float* dvvDerivativeBuffer [[buffer(DVV_DERIVATIVE_BUFFER_INDEX)]],
#endif
const constant KernelUniformArgs& args [[buffer(PARAMETER_BUFFER_INDEX)]]
)
{
auto current = thread_position_in_grid;
// unpack struct (5 ints unaligned)
OsdPatchCoord patchCoord = OsdPatchCoordInit(patchCoords[current*5+0],
patchCoords[current*5+1],
patchCoords[current*5+2],
as_type<float>(patchCoords[current*5+3]),
as_type<float>(patchCoords[current*5+4]));
OsdPatchArray patchArray = OsdPatchArrayInit(patchArrays[current*6+0],
patchArrays[current*6+1],
patchArrays[current*6+2],
patchArrays[current*6+3],
patchArrays[current*6+4],
patchArrays[current*6+5]);
OsdPatchParam patchParam = OsdPatchParamInit(patchParams[current*3+0],
patchParams[current*3+1],
as_type<float>(patchParams[current*3+2]));
int patchType = OsdPatchParamIsRegular(patchParam)
? patchArray.regDesc : patchArray.desc;
float wP[20], wDu[20], wDv[20], wDuu[20], wDuv[20], wDvv[20];
int nPoints = OsdEvaluatePatchBasis(patchType, patchParam,
patchCoord.s, patchCoord.t, wP, wDu, wDv, wDuu, wDuv, wDvv);
Vertex dst, du, dv, duu, duv, dvv;
clear(dst);
clear(du);
clear(dv);
clear(duu);
clear(duv);
clear(dvv);
auto indexBase = patchArray.indexBase + patchArray.stride *
(patchCoord.patchIndex - patchArray.primitiveIdBase);
for(auto cv = 0; cv < nPoints; cv++)
{
auto index = patchIndices[indexBase + cv];
auto src = readVertex(index, srcVertexBuffer, args);
addWithWeight(dst, src, wP[cv]);
addWithWeight(du, src, wDu[cv]);
addWithWeight(dv, src, wDv[cv]);
addWithWeight(duu, src, wDuu[cv]);
addWithWeight(duv, src, wDuv[cv]);
addWithWeight(dvv, src, wDvv[cv]);
}
writeVertex(current, dst, dstVertexBuffer, args);
#if OPENSUBDIV_MTL_COMPUTE_USE_1ST_DERIVATIVES
if(args.duDesc.y > 0)
writeDu(current, du, duDerivativeBuffer, args);
if(args.dvDesc.y > 0)
writeDv(current, dv, dvDerivativeBuffer, args);
#endif
#if OPENSUBDIV_MTL_COMPUTE_USE_2ND_DERIVATIVES
if(args.duuDesc.y > 0)
writeDuu(current, duu, duuDerivativeBuffer, args);
if(args.duvDesc.y > 0)
writeDuv(current, duv, duvDerivativeBuffer, args);
if(args.dvvDesc.y > 0)
writeDvv(current, dvv, dvvDerivativeBuffer, args);
#endif
}