mirror of
https://github.com/PixarAnimationStudios/OpenSubdiv
synced 2025-01-11 17:10:08 +00:00
33bfbf699b
In OpenSubdiv 2.x, we encapsulated subdivision tables into compute context in osd layer since those tables are order-dependent and have to be applied in a certain manner. In 3.0, we adopted stencil table based refinement. It's more simple and such an encapsulation is no longer needed. Also 2.0 API has several ownership issues of GPU kernel caching, and forces unnecessary instantiation of controllers even though the cpu kernels typically don't need instances unlike GPU ones. This change completely revisit osd client facing APIs. All contexts and controllers were replaced with device-specific tables and evaluators. While we can still use consistent API across various device backends, unnecessary complexities have been removed. For example, cpu evaluator is just a set of static functions and also there's no need to replicate FarStencilTables to ComputeContext. Also the new API delegates the ownership of compiled GPU kernels to clients, for the better management of resources especially in multiple GPU environment. In addition to integrating ComputeController and EvalStencilController into a single function Evaluator::EvalStencils(), EvalLimit API is also added into Evaluator. This is working but still in progress, and we'll make a followup change for the complete implementation. -some naming convention changes: GLSLTransformFeedback to GLXFBEvaluator GLSLCompute to GLComputeEvaluator -move LimitLocation struct into examples/glEvalLimit. We're still discussing patch evaluation interface. Basically we'd like to tease all ptex-specific parametrization out of far/osd layer. TODO: -implments EvalPatches() in the right way -derivative evaluation API is still interim. -VertexBufferDescriptor needs a better API to advance its location -synchronization mechanism is not ideal (too global). -OsdMesh class is hacky. need to fix it.
305 lines
11 KiB
Plaintext
305 lines
11 KiB
Plaintext
//
|
|
// Copyright 2013 Pixar
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "Apache License")
|
|
// with the following modification; you may not use this file except in
|
|
// compliance with the Apache License and the following modification to it:
|
|
// Section 6. Trademarks. is deleted and replaced with:
|
|
//
|
|
// 6. Trademarks. This License does not grant permission to use the trade
|
|
// names, trademarks, service marks, or product names of the Licensor
|
|
// and its affiliates, except as required to comply with Section 4(c) of
|
|
// the License and to reproduce the content of the NOTICE file.
|
|
//
|
|
// You may obtain a copy of the Apache License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the Apache License with the above modification is
|
|
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the Apache License for the specific
|
|
// language governing permissions and limitations under the Apache License.
|
|
//
|
|
|
|
#include <assert.h>
|
|
|
|
// -----------------------------------------------------------------------------
|
|
template<int N> struct DeviceVertex {
|
|
|
|
float v[N];
|
|
|
|
__device__ void addWithWeight(DeviceVertex<N> const & src, float weight) {
|
|
#pragma unroll
|
|
for(int i = 0; i < N; ++i){
|
|
v[i] += src.v[i] * weight;
|
|
}
|
|
}
|
|
|
|
__device__ void clear() {
|
|
#pragma unroll
|
|
for(int i = 0; i < N; ++i){
|
|
v[i] = 0.0f;
|
|
}
|
|
}
|
|
};
|
|
|
|
// Specialize DeviceVertex for N=0 to avoid compile error:
|
|
// "flexible array member in otherwise empty struct"
|
|
template<> struct DeviceVertex<0> {
|
|
__device__ void addWithWeight(DeviceVertex<0> &src, float weight) {}
|
|
__device__ void clear() {}
|
|
};
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
__device__ void clear(float *dst, int count)
|
|
{
|
|
for(int i = 0; i < count; ++i) dst[i] = 0;
|
|
}
|
|
|
|
__device__ void addWithWeight(float *dst, float const *src, float weight, int count)
|
|
{
|
|
for(int i = 0; i < count; ++i) dst[i] += src[i] * weight;
|
|
}
|
|
|
|
// --------------------------------------------------------------------------------------------
|
|
|
|
template <int NUM_ELEMENTS> __global__ void
|
|
computeStencils(float const * cvs, float * vbuffer,
|
|
unsigned char const * sizes,
|
|
int const * offsets,
|
|
int const * indices,
|
|
float const * weights,
|
|
int start, int end) {
|
|
|
|
DeviceVertex<NUM_ELEMENTS> const * src =
|
|
(DeviceVertex<NUM_ELEMENTS> const *)cvs;
|
|
|
|
DeviceVertex<NUM_ELEMENTS> * verts =
|
|
(DeviceVertex<NUM_ELEMENTS> *)vbuffer;
|
|
|
|
int first = start + threadIdx.x + blockIdx.x*blockDim.x;
|
|
|
|
for (int i=first; i<end; i += blockDim.x * gridDim.x) {
|
|
|
|
int const * lindices = indices + offsets[i];
|
|
float const * lweights = weights + offsets[i];
|
|
|
|
DeviceVertex<NUM_ELEMENTS> dst;
|
|
dst.clear();
|
|
|
|
for (int j=0; j<sizes[i]; ++j) {
|
|
dst.addWithWeight(src[lindices[j]], lweights[j]);
|
|
}
|
|
verts[i] = dst;
|
|
}
|
|
}
|
|
|
|
__global__ void
|
|
computeStencils(float const * cvs, float * dst,
|
|
int length,
|
|
int srcStride,
|
|
int dstStride,
|
|
unsigned char const * sizes,
|
|
int const * offsets,
|
|
int const * indices,
|
|
float const * weights,
|
|
int start, int end) {
|
|
|
|
int first = start + threadIdx.x + blockIdx.x*blockDim.x;
|
|
|
|
for (int i=first; i<end; i += blockDim.x * gridDim.x) {
|
|
|
|
int const * lindices = indices + offsets[i];
|
|
float const * lweights = weights + offsets[i];
|
|
|
|
float * dstVert = dst + i*dstStride;
|
|
clear(dstVert, length);
|
|
|
|
for (int j=0; j<sizes[i]; ++j) {
|
|
|
|
float const * srcVert = cvs + lindices[j]*srcStride;
|
|
|
|
addWithWeight(dstVert, srcVert, lweights[j], length);
|
|
}
|
|
}
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
#define USE_NVIDIA_OPTIMIZATION
|
|
#ifdef USE_NVIDIA_OPTIMIZATION
|
|
|
|
template< int NUM_ELEMENTS, int NUM_THREADS_PER_BLOCK >
|
|
__global__ void computeStencilsNv(float const *__restrict cvs,
|
|
float * vbuffer,
|
|
unsigned char const *__restrict sizes,
|
|
int const *__restrict offsets,
|
|
int const *__restrict indices,
|
|
float const *__restrict weights,
|
|
int start,
|
|
int end)
|
|
{
|
|
// Shared memory to stage indices/weights.
|
|
__shared__ int smem_indices_buffer[NUM_THREADS_PER_BLOCK];
|
|
__shared__ float smem_weights_buffer[NUM_THREADS_PER_BLOCK];
|
|
|
|
// The size of a single warp.
|
|
const int WARP_SIZE = 32;
|
|
// The number of warps per block.
|
|
const int NUM_WARPS_PER_BLOCK = NUM_THREADS_PER_BLOCK / WARP_SIZE;
|
|
// The number of outputs computed by a single warp.
|
|
const int NUM_OUTPUTS_PER_WARP = WARP_SIZE / NUM_ELEMENTS;
|
|
// The number of outputs computed by a block of threads.
|
|
const int NUM_OUTPUTS_PER_BLOCK = NUM_OUTPUTS_PER_WARP*NUM_WARPS_PER_BLOCK;
|
|
// The number of active threads in a warp.
|
|
const int NUM_ACTIVE_THREADS_PER_WARP = NUM_OUTPUTS_PER_WARP * NUM_ELEMENTS;
|
|
|
|
// The number of the warp inside the block.
|
|
const int warpId = threadIdx.x / WARP_SIZE;
|
|
const int laneId = threadIdx.x % WARP_SIZE;
|
|
|
|
// We use NUM_ELEMENTS threads per output. Find which output/element a thread works on.
|
|
int outputIdx = warpId*NUM_OUTPUTS_PER_WARP + laneId/NUM_ELEMENTS, elementIdx = laneId%NUM_ELEMENTS;
|
|
|
|
// Each output corresponds to a section of shared memory.
|
|
volatile int *smem_indices = &smem_indices_buffer[warpId*WARP_SIZE + (laneId/NUM_ELEMENTS)*NUM_ELEMENTS];
|
|
volatile float *smem_weights = &smem_weights_buffer[warpId*WARP_SIZE + (laneId/NUM_ELEMENTS)*NUM_ELEMENTS];
|
|
|
|
// Disable threads that have nothing to do inside the warp.
|
|
int i = end;
|
|
if( laneId < NUM_ACTIVE_THREADS_PER_WARP )
|
|
i = start + blockIdx.x*NUM_OUTPUTS_PER_BLOCK + outputIdx;
|
|
|
|
// Iterate over the vertices.
|
|
for( ; i < end ; i += gridDim.x*NUM_OUTPUTS_PER_BLOCK )
|
|
{
|
|
// Each thread computes an element of the final vertex.
|
|
float x = 0.f;
|
|
|
|
// Load the offset and the size for each vertex. We have NUM_THREADS_PER_VERTEX threads loading the same value.
|
|
const int offset_i = offsets[i], size_i = sizes[i];
|
|
|
|
// Iterate over the stencil.
|
|
for( int j = offset_i, j_end = offset_i+size_i ; j < j_end ; )
|
|
{
|
|
int j_it = j + elementIdx;
|
|
|
|
// Load some indices and some weights. The transaction is coalesced.
|
|
smem_indices[elementIdx] = j_it < j_end ? indices[j_it] : 0;
|
|
smem_weights[elementIdx] = j_it < j_end ? weights[j_it] : 0.f;
|
|
|
|
// Thread now collaborates to load the vertices.
|
|
#pragma unroll
|
|
for( int k = 0 ; k < NUM_ELEMENTS ; ++k, ++j )
|
|
if( j < j_end )
|
|
x += smem_weights[k] * cvs[smem_indices[k]*NUM_ELEMENTS + elementIdx];
|
|
}
|
|
|
|
// Store the vertex.
|
|
vbuffer[NUM_ELEMENTS*i + elementIdx] = x;
|
|
}
|
|
}
|
|
|
|
template< int NUM_THREADS_PER_BLOCK >
|
|
__global__ void computeStencilsNv_v4(float const *__restrict cvs,
|
|
float * vbuffer,
|
|
unsigned char const *__restrict sizes,
|
|
int const *__restrict offsets,
|
|
int const *__restrict indices,
|
|
float const *__restrict weights,
|
|
int start,
|
|
int end)
|
|
{
|
|
// Iterate over the vertices.
|
|
for( int i = start + blockIdx.x*NUM_THREADS_PER_BLOCK + threadIdx.x ; i < end ; i += gridDim.x*NUM_THREADS_PER_BLOCK )
|
|
{
|
|
// Each thread computes an element of the final vertex.
|
|
float4 x = make_float4(0.f, 0.f, 0.f, 0.f);
|
|
|
|
// Iterate over the stencil.
|
|
for( int j = offsets[i], j_end = offsets[i]+sizes[i] ; j < j_end ; ++j )
|
|
{
|
|
float w = weights[j];
|
|
float4 tmp = reinterpret_cast<const float4 *>(cvs)[indices[j]];
|
|
x.x += w*tmp.x;
|
|
x.y += w*tmp.y;
|
|
x.z += w*tmp.z;
|
|
x.w += w*tmp.w;
|
|
}
|
|
|
|
// Store the vertex.
|
|
reinterpret_cast<float4*>(vbuffer)[i] = x;
|
|
}
|
|
}
|
|
|
|
#endif // USE_NVIDIA_OPTIMIZATION
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
#include "../version.h"
|
|
|
|
#define OPT_KERNEL(NUM_ELEMENTS, KERNEL, X, Y, ARG) \
|
|
if (length==NUM_ELEMENTS && srcStride==length && dstStride==length) { \
|
|
KERNEL<NUM_ELEMENTS><<<X,Y>>>ARG; \
|
|
return; \
|
|
}
|
|
|
|
#ifdef USE_NVIDIA_OPTIMIZATION
|
|
#define OPT_KERNEL_NVIDIA(NUM_ELEMENTS, KERNEL, X, Y, ARG) \
|
|
if (length==NUM_ELEMENTS && srcStride==length && dstStride==length) { \
|
|
int gridDim = min(X, (end-start+Y-1)/Y); \
|
|
KERNEL<NUM_ELEMENTS, Y><<<gridDim, Y>>>ARG; \
|
|
return; \
|
|
}
|
|
#endif
|
|
|
|
extern "C" {
|
|
|
|
void CudaEvalStencils(const float *src,
|
|
float *dst,
|
|
int length,
|
|
int srcStride,
|
|
int dstStride,
|
|
const unsigned char * sizes,
|
|
const int * offsets,
|
|
const int * indices,
|
|
const float * weights,
|
|
int start,
|
|
int end)
|
|
{
|
|
// assert(cvs and dst and sizes and offsets and indices and weights and (end>=start));
|
|
|
|
if (length == 0 or srcStride == 0 or dstStride == 0 or (end <= start)) {
|
|
return;
|
|
}
|
|
|
|
#ifdef USE_NVIDIA_OPTIMIZATION
|
|
OPT_KERNEL_NVIDIA(3, computeStencilsNv, 2048, 256,
|
|
(src, dst, sizes, offsets, indices, weights, start, end));
|
|
//OPT_KERNEL_NVIDIA(4, computeStencilsNv, 2048, 256,
|
|
// (cvs, dst, sizes, offsets, indices, weights, start, end));
|
|
if (length == 4 && srcStride == length && dstStride == length) {
|
|
int gridDim = min(2048, (end-start+256-1)/256);
|
|
computeStencilsNv_v4<256><<<gridDim, 256>>>(
|
|
src, dst, sizes, offsets, indices, weights, start, end);
|
|
return;
|
|
}
|
|
#else
|
|
OPT_KERNEL(3, computeStencils, 512, 32,
|
|
(src, dst, sizes, offsets, indices, weights, start, end));
|
|
OPT_KERNEL(4, computeStencils, 512, 32,
|
|
(src, dst, sizes, offsets, indices, weights, start, end));
|
|
#endif
|
|
|
|
// generic case (slow)
|
|
computeStencils <<<512, 32>>>(
|
|
src, dst, length, srcStride, dstStride,
|
|
sizes, offsets, indices, weights, start, end);
|
|
}
|
|
|
|
// -----------------------------------------------------------------------------
|
|
|
|
} /* extern "C" */
|