mirror of
https://github.com/PixarAnimationStudios/OpenSubdiv
synced 2024-12-05 17:21:04 +00:00
4bf24d9b95
code paths for certain types of feature adaptive patches. The check-in adds a new "limitEval" code example. More to come soon... fixes #45
428 lines
15 KiB
C++
428 lines
15 KiB
C++
//
|
|
// Copyright (C) Pixar. All rights reserved.
|
|
//
|
|
// This license governs use of the accompanying software. If you
|
|
// use the software, you accept this license. If you do not accept
|
|
// the license, do not use the software.
|
|
//
|
|
// 1. Definitions
|
|
// The terms "reproduce," "reproduction," "derivative works," and
|
|
// "distribution" have the same meaning here as under U.S.
|
|
// copyright law. A "contribution" is the original software, or
|
|
// any additions or changes to the software.
|
|
// A "contributor" is any person or entity that distributes its
|
|
// contribution under this license.
|
|
// "Licensed patents" are a contributor's patent claims that read
|
|
// directly on its contribution.
|
|
//
|
|
// 2. Grant of Rights
|
|
// (A) Copyright Grant- Subject to the terms of this license,
|
|
// including the license conditions and limitations in section 3,
|
|
// each contributor grants you a non-exclusive, worldwide,
|
|
// royalty-free copyright license to reproduce its contribution,
|
|
// prepare derivative works of its contribution, and distribute
|
|
// its contribution or any derivative works that you create.
|
|
// (B) Patent Grant- Subject to the terms of this license,
|
|
// including the license conditions and limitations in section 3,
|
|
// each contributor grants you a non-exclusive, worldwide,
|
|
// royalty-free license under its licensed patents to make, have
|
|
// made, use, sell, offer for sale, import, and/or otherwise
|
|
// dispose of its contribution in the software or derivative works
|
|
// of the contribution in the software.
|
|
//
|
|
// 3. Conditions and Limitations
|
|
// (A) No Trademark License- This license does not grant you
|
|
// rights to use any contributor's name, logo, or trademarks.
|
|
// (B) If you bring a patent claim against any contributor over
|
|
// patents that you claim are infringed by the software, your
|
|
// patent license from such contributor to the software ends
|
|
// automatically.
|
|
// (C) If you distribute any portion of the software, you must
|
|
// retain all copyright, patent, trademark, and attribution
|
|
// notices that are present in the software.
|
|
// (D) If you distribute any portion of the software in source
|
|
// code form, you may do so only under this license by including a
|
|
// complete copy of this license with your distribution. If you
|
|
// distribute any portion of the software in compiled or object
|
|
// code form, you may only do so under a license that complies
|
|
// with this license.
|
|
// (E) The software is licensed "as-is." You bear the risk of
|
|
// using it. The contributors give no express warranties,
|
|
// guarantees or conditions. You may have additional consumer
|
|
// rights under your local laws which this license cannot change.
|
|
// To the extent permitted under your local laws, the contributors
|
|
// exclude the implied warranties of merchantability, fitness for
|
|
// a particular purpose and non-infringement.
|
|
//
|
|
|
|
#include "../osd/cpuEvalLimitKernel.h"
|
|
|
|
#include <math.h>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <string.h>
|
|
#include <algorithm>
|
|
#include <vector>
|
|
#include <cassert>
|
|
|
|
namespace OpenSubdiv {
|
|
namespace OPENSUBDIV_VERSION {
|
|
|
|
inline void
|
|
evalCubicBSpline(float u, float B[4], float BU[4])
|
|
{
|
|
float t = u;
|
|
float s = 1.0f - u;
|
|
|
|
float C0 = s * (0.5f * s);
|
|
float C1 = t * (s + 0.5f * t) + s * (0.5f * s + t);
|
|
float C2 = t * ( 0.5f * t);
|
|
|
|
B[0] = 1.f/3.f * s * C0;
|
|
B[1] = (2.f/3.f * s + t) * C0 + (2.f/3.f * s + 1.f/3.f * t) * C1;
|
|
B[2] = (1.f/3.f * s + 2.f/3.f * t) * C1 + ( s + 2.f/3.f * t) * C2;
|
|
B[3] = 1.f/3.f * t * C2;
|
|
|
|
if (BU) {
|
|
BU[0] = - C0;
|
|
BU[1] = C0 - C1;
|
|
BU[2] = C1 - C2;
|
|
BU[3] = C2;
|
|
}
|
|
}
|
|
|
|
void
|
|
evalBSpline(float u, float v,
|
|
unsigned int const * vertexIndices,
|
|
OsdVertexBufferDescriptor const & inDesc,
|
|
float const * inQ,
|
|
OsdVertexBufferDescriptor const & outDesc,
|
|
float * outQ,
|
|
float * outDQU,
|
|
float * outDQV ) {
|
|
|
|
// make sure that we have enough space to store results
|
|
assert( inDesc.length <= (outDesc.stride-outDesc.offset) );
|
|
|
|
bool evalDeriv = (outDQU or outDQV);
|
|
|
|
// XXX these dynamic allocs won't work w/ VC++
|
|
float B[4], D[4],
|
|
*BU=(float*)alloca(inDesc.length*4*sizeof(float)),
|
|
*DU=(float*)alloca(inDesc.length*4*sizeof(float));
|
|
|
|
memset(BU, 0, inDesc.length*4*sizeof(float));
|
|
memset(DU, 0, inDesc.length*4*sizeof(float));
|
|
|
|
evalCubicBSpline(u, B, evalDeriv ? D : 0);
|
|
|
|
float const * inOffset = inQ + inDesc.offset;
|
|
|
|
for (int i=0; i<4; ++i) {
|
|
for (int j=0; j<4; ++j) {
|
|
|
|
float const * in = inOffset + vertexIndices[i+j*4]*inDesc.stride;
|
|
|
|
for (int k=0; k<inDesc.length; ++k) {
|
|
|
|
BU[i*inDesc.length+k] += in[k] * B[j];
|
|
|
|
if (evalDeriv)
|
|
DU[i*inDesc.length+k] += in[k] * D[j];
|
|
}
|
|
}
|
|
}
|
|
|
|
evalCubicBSpline(v, B, evalDeriv ? D : 0);
|
|
|
|
float * Q = outQ + outDesc.offset,
|
|
* dQU = outDQU + outDesc.offset,
|
|
* dQV = outDQV + outDesc.offset;
|
|
|
|
// clear result
|
|
memset(Q, 0, inDesc.length*sizeof(float));
|
|
if (evalDeriv) {
|
|
memset(dQU, 0, inDesc.length*sizeof(float));
|
|
memset(dQV, 0, inDesc.length*sizeof(float));
|
|
}
|
|
|
|
for (int i=0; i<4; ++i) {
|
|
for (int k=0; k<inDesc.length; ++k) {
|
|
Q[k] += BU[inDesc.length*i+k] * B[i];
|
|
|
|
if (evalDeriv) {
|
|
dQU[k] += DU[inDesc.length*i+k] * B[i];
|
|
dQV[k] += BU[inDesc.length*i+k] * D[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
inline void
|
|
univar4x4(float u, float B[4], float D[4])
|
|
{
|
|
float t = u;
|
|
float s = 1.0f - u;
|
|
|
|
float A0 = s * s;
|
|
float A1 = 2 * s * t;
|
|
float A2 = t * t;
|
|
|
|
B[0] = s * A0;
|
|
B[1] = t * A0 + s * A1;
|
|
B[2] = t * A1 + s * A2;
|
|
B[3] = t * A2;
|
|
|
|
if (D) {
|
|
D[0] = - A0;
|
|
D[1] = A0 - A1;
|
|
D[2] = A1 - A2;
|
|
D[3] = A2;
|
|
}
|
|
}
|
|
|
|
inline float
|
|
csf(unsigned int n, unsigned int j)
|
|
{
|
|
if (j%2 == 0) {
|
|
return cosf((2.0f * float(M_PI) * float(float(j-0)/2.0f))/(float(n)+3.0f));
|
|
} else {
|
|
return sinf((2.0f * float(M_PI) * float(float(j-1)/2.0f))/(float(n)+3.0f));
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
evalGregory(float u, float v,
|
|
int const * vertexValenceBuffer,
|
|
unsigned int const * quadOffsetBuffer,
|
|
int maxValence,
|
|
unsigned int const * vertexIndices,
|
|
OsdVertexBufferDescriptor const & inDesc,
|
|
float const * inQ,
|
|
OsdVertexBufferDescriptor const & outDesc,
|
|
float * outQ,
|
|
float * outDQU,
|
|
float * outDQV )
|
|
{
|
|
static float const ef[7] = {
|
|
0.813008f, 0.500000f, 0.363636f, 0.287505f,
|
|
0.238692f, 0.204549f, 0.179211f
|
|
};
|
|
|
|
|
|
// make sure that we have enough space to store results
|
|
assert( inDesc.length <= (outDesc.stride-outDesc.offset) );
|
|
|
|
bool evalDeriv = (outDQU or outDQV);
|
|
|
|
int valences[4], length=inDesc.length;
|
|
|
|
float const * inQo = inQ + inDesc.offset;
|
|
|
|
float *r=(float*)alloca(length*4*maxValence*sizeof(float)), *rp=r,
|
|
*e0=(float*)alloca(length*4*sizeof(float)),
|
|
*e1=(float*)alloca(length*4*sizeof(float));
|
|
|
|
float *opos=(float*)alloca(length*4*sizeof(float));
|
|
|
|
for (int vid=0; vid < 4; ++vid, rp+=maxValence*length) {
|
|
|
|
int vertexID = vertexIndices[vid];
|
|
|
|
const int *valenceTable = vertexValenceBuffer + vertexID * (2*maxValence+1);
|
|
int valence = valenceTable[0];
|
|
valences[vid] = valence;
|
|
|
|
float *f=(float*)alloca(maxValence*length*sizeof(float)), *fp=f,
|
|
*Q=(float*)alloca(length*sizeof(float)),
|
|
*oQ=(float*)alloca(length*sizeof(float));
|
|
memcpy(Q, inQo + vertexID*inDesc.stride, length*sizeof(float));
|
|
memset(oQ, 0, length*sizeof(float));
|
|
|
|
|
|
for (int i=0; i<valence; ++i) {
|
|
int im = (i+valence-1)&valence;
|
|
int ip = (i+1)%valence;
|
|
|
|
int idx_neighbor = valenceTable[2*i + 0 + 1];
|
|
int idx_diagonal = valenceTable[2*i + 1 + 1];
|
|
int idx_neighbor_p = valenceTable[2*ip + 0 + 1];
|
|
int idx_neighbor_m = valenceTable[2*im + 0 + 1];
|
|
int idx_diagonal_m = valenceTable[2*im + 1 + 1];
|
|
|
|
float const * neighbor = inQo + idx_neighbor * inDesc.stride;
|
|
float const * diagonal = inQo + idx_diagonal * inDesc.stride;
|
|
float const * neighbor_p = inQo + idx_neighbor_p * inDesc.stride;
|
|
float const * neighbor_m = inQo + idx_neighbor_m * inDesc.stride;
|
|
float const * diagonal_m = inQo + idx_diagonal_m * inDesc.stride;
|
|
|
|
for (int k=0; k<length; ++k, ++fp, ++rp) {
|
|
*fp = (Q[k]*float(valence) + (neighbor_p[k]+neighbor[k])*2.0f + diagonal[k])/(float(valence)+5.0f);
|
|
oQ[k] += *fp;
|
|
// XXXX manuelk rp indexing is clunky
|
|
*rp = (neighbor_p[k]-neighbor_m[k])/3.0f + (diagonal[k]-diagonal_m[k])/6.0f;
|
|
}
|
|
|
|
}
|
|
|
|
for (int k=0; k<length; ++k)
|
|
opos[vid*length+k] = oQ[k]/valence;
|
|
|
|
for (int i=0; i<valence; ++i) {
|
|
|
|
int im = (i+valence-1)%valence;
|
|
for (int k=0; k<length; ++k) {
|
|
|
|
float e = 0.5f*(f[i*length+k]+f[im*length+k]);
|
|
e0[vid*length+k] += csf(valence-3, 2*i) * e;
|
|
e1[vid*length+k] += csf(valence-3, 2*i+1) * e;
|
|
}
|
|
}
|
|
|
|
for (int k=0; k<length; ++k) {
|
|
e0[vid*length+k] *= ef[valence-3];
|
|
e1[vid*length+k] *= ef[valence-3];
|
|
}
|
|
}
|
|
|
|
// tess control
|
|
|
|
float *Ep=(float*)alloca(length*4*sizeof(float)),
|
|
*Em=(float*)alloca(length*4*sizeof(float)),
|
|
*Fp=(float*)alloca(length*4*sizeof(float)),
|
|
*Fm=(float*)alloca(length*4*sizeof(float));
|
|
for (int vid=0; vid<4; ++vid) {
|
|
int ip = (vid+1)%4;
|
|
int im = (vid+3)%4;
|
|
int n = valences[vid];
|
|
const unsigned int *quadOffsets = quadOffsetBuffer;
|
|
|
|
int start = quadOffsets[vid] & 0x00ff;
|
|
int prev = (quadOffsets[vid] & 0xff00) / 256;
|
|
|
|
for (int k=0, ofs=vid*length; k<length; ++k, ++ofs) {
|
|
|
|
Ep[ofs] = opos[ofs] + e0[ofs] * csf(n-3, 2*start) + e1[ofs]*csf(n-3, 2*start +1);
|
|
Em[ofs] = opos[ofs] + e0[ofs] * csf(n-3, 2*prev ) + e1[ofs]*csf(n-3, 2*prev + 1);
|
|
}
|
|
|
|
unsigned int np = valences[ip],
|
|
nm = valences[im];
|
|
|
|
unsigned int prev_p = quadOffsets[ip] & 0xff00 / 256;
|
|
|
|
|
|
float *Em_ip=(float*)alloca(length*sizeof(float)),
|
|
*Ep_im=(float*)alloca(length*sizeof(float));
|
|
|
|
unsigned int start_m = quadOffsets[im] & 0x00ff;
|
|
|
|
for (int k=0, ipofs=ip*length, imofs=im*length; k<length; ++k, ++ipofs, ++imofs) {
|
|
|
|
Em_ip[k] = opos[ipofs] + e0[ipofs]*csf(np-3, 2*prev_p) + e1[ipofs]*csf(np-3, 2*prev_p+1);
|
|
Ep_im[k] = opos[imofs] + e0[imofs]*csf(nm-3, 2*start_m) + e1[imofs]*csf(nm-3, 2*start_m+1);
|
|
}
|
|
|
|
float s1 = 3.0f - 2.0f*csf(n-3,2)-csf(np-3,2),
|
|
s2 = 2.0f*csf(n-3,2),
|
|
s3 = 3.0f -2.0f*cos(2.0f*float(M_PI)/float(n)) - cos(2.0f*float(M_PI)/float(nm));
|
|
|
|
rp = r + vid*maxValence*length;
|
|
for (int k=0, ofs=vid*length; k<length; ++k, ++ofs) {
|
|
Fp[ofs] = (csf(np-3,2)*opos[ofs] + s1*Ep[ofs] + s2*Em_ip[k] + rp[start*length+k])/3.0f;
|
|
Fm[ofs] = (csf(nm-3,2)*opos[ofs] + s3*Em[ofs] + s2*Ep_im[k] - rp[prev*length+k])/3.0f;
|
|
}
|
|
}
|
|
|
|
float * p[20];
|
|
for (int i=0, ofs=0; i<4; ++i, ofs+=length) {
|
|
p[i*5+0] = opos + ofs;
|
|
p[i*5+1] = Ep + ofs;
|
|
p[i*5+2] = Em + ofs;
|
|
p[i*5+3] = Fp + ofs;
|
|
p[i*5+4] = Fm + ofs;
|
|
}
|
|
|
|
float U = 1-u, V=1-v;
|
|
float d11 = u+v; if(u+v==0.0f) d11 = 1.0f;
|
|
float d12 = U+v; if(U+v==0.0f) d12 = 1.0f;
|
|
float d21 = u+V; if(u+V==0.0f) d21 = 1.0f;
|
|
float d22 = U+V; if(U+V==0.0f) d22 = 1.0f;
|
|
|
|
float *q=(float*)alloca(length*16*sizeof(float));
|
|
for (int k=0; k<length; ++k) {
|
|
q[ 5*length+k] = (u*p[ 3][k] + v*p[ 4][k])/d11;
|
|
q[ 6*length+k] = (U*p[ 9][k] + v*p[ 8][k])/d12;
|
|
q[ 9*length+k] = (u*p[19][k] + V*p[18][k])/d21;
|
|
q[10*length+k] = (U*p[13][k] + V*p[14][k])/d22;
|
|
}
|
|
|
|
memcpy(q+0*length, p[0], length*sizeof(float));
|
|
memcpy(q+1*length, p[1], length*sizeof(float));
|
|
memcpy(q+2*length, p[7], length*sizeof(float));
|
|
memcpy(q+3*length, p[5], length*sizeof(float));
|
|
memcpy(q+4*length, p[2], length*sizeof(float));
|
|
memcpy(q+7*length, p[6], length*sizeof(float));
|
|
memcpy(q+8*length, p[16], length*sizeof(float));
|
|
memcpy(q+11*length, p[12], length*sizeof(float));
|
|
memcpy(q+12*length, p[15], length*sizeof(float));
|
|
memcpy(q+13*length, p[17], length*sizeof(float));
|
|
memcpy(q+14*length, p[11], length*sizeof(float));
|
|
memcpy(q+15*length, p[10], length*sizeof(float));
|
|
|
|
float B[4], D[4],
|
|
*BU=(float*)alloca(inDesc.length*4*sizeof(float)),
|
|
*DU=(float*)alloca(inDesc.length*4*sizeof(float));
|
|
|
|
memset(BU, 0, inDesc.length*4*sizeof(float));
|
|
memset(DU, 0, inDesc.length*4*sizeof(float));
|
|
|
|
univar4x4(u, B, evalDeriv ? D : 0);
|
|
|
|
float const * inOffset = inQ + inDesc.offset;
|
|
|
|
for (int i=0; i<4; ++i) {
|
|
for (int j=0; j<4; ++j) {
|
|
|
|
float const * in = inOffset + vertexIndices[i+j*4]*inDesc.stride;
|
|
|
|
for (int k=0; k<inDesc.length; ++k) {
|
|
|
|
BU[i*inDesc.length+k] += in[k] * B[j];
|
|
|
|
if (evalDeriv)
|
|
DU[i*inDesc.length+k] += in[k] * D[j];
|
|
}
|
|
in += inDesc.stride;
|
|
}
|
|
}
|
|
|
|
univar4x4(v, B, evalDeriv ? D : 0);
|
|
|
|
float * Q = outQ + outDesc.offset;
|
|
float * dQU = outDQU + outDesc.offset;
|
|
float * dQV = outDQV + outDesc.offset;
|
|
|
|
// clear result
|
|
memset(Q, 0, outDesc.length*sizeof(float));
|
|
if (evalDeriv) {
|
|
memset(dQU, 0, outDesc.length*sizeof(float));
|
|
memset(dQV, 0, outDesc.length*sizeof(float));
|
|
}
|
|
|
|
for (int i=0; i<4; ++i) {
|
|
for (int k=0; k<inDesc.length; ++k) {
|
|
Q[k] += BU[i] * B[i];
|
|
|
|
if (evalDeriv) {
|
|
dQU[k] += DU[i] * B[i];
|
|
dQV[k] += BU[i] * D[i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // end namespace OPENSUBDIV_VERSION
|
|
} // end namespace OpenSubdiv
|