OpenSubdiv/opensubdiv/osd/glslKernel.glsl
2012-06-19 18:57:43 -07:00

390 lines
12 KiB
GLSL

//
// Copyright (C) Pixar. All rights reserved.
//
// This license governs use of the accompanying software. If you
// use the software, you accept this license. If you do not accept
// the license, do not use the software.
//
// 1. Definitions
// The terms "reproduce," "reproduction," "derivative works," and
// "distribution" have the same meaning here as under U.S.
// copyright law. A "contribution" is the original software, or
// any additions or changes to the software.
// A "contributor" is any person or entity that distributes its
// contribution under this license.
// "Licensed patents" are a contributor's patent claims that read
// directly on its contribution.
//
// 2. Grant of Rights
// (A) Copyright Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free copyright license to reproduce its contribution,
// prepare derivative works of its contribution, and distribute
// its contribution or any derivative works that you create.
// (B) Patent Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free license under its licensed patents to make, have
// made, use, sell, offer for sale, import, and/or otherwise
// dispose of its contribution in the software or derivative works
// of the contribution in the software.
//
// 3. Conditions and Limitations
// (A) No Trademark License- This license does not grant you
// rights to use any contributor's name, logo, or trademarks.
// (B) If you bring a patent claim against any contributor over
// patents that you claim are infringed by the software, your
// patent license from such contributor to the software ends
// automatically.
// (C) If you distribute any portion of the software, you must
// retain all copyright, patent, trademark, and attribution
// notices that are present in the software.
// (D) If you distribute any portion of the software in source
// code form, you may do so only under this license by including a
// complete copy of this license with your distribution. If you
// distribute any portion of the software in compiled or object
// code form, you may only do so under a license that complies
// with this license.
// (E) The software is licensed "as-is." You bear the risk of
// using it. The contributors give no express warranties,
// guarantees or conditions. You may have additional consumer
// rights under your local laws which this license cannot change.
// To the extent permitted under your local laws, the contributors
// exclude the implied warranties of merchantability, fitness for
// a particular purpose and non-infringement.
//
#version 400
subroutine void computeKernelType();
subroutine uniform computeKernelType computeKernel;
uniform isamplerBuffer _F0_IT;
uniform isamplerBuffer _F0_ITa;
uniform isamplerBuffer _E0_IT;
uniform isamplerBuffer _V0_IT;
uniform isamplerBuffer _V0_ITa;
uniform samplerBuffer _E0_S;
uniform samplerBuffer _V0_S;
uniform bool vertexPass;
uniform int indexOffset = 0; // index offset for the level
uniform int indexStart = 0; // start index for given batch
uniform int F_IT_ofs;
uniform int F_ITa_ofs;
uniform int E_IT_ofs;
uniform int V_IT_ofs;
uniform int V_ITa_ofs;
uniform int E_W_ofs;
uniform int V_W_ofs;
/*
+-----+---------------------------------+-----
n-1 | Level n |<batch range>| | n+1
+-----+---------------------------------+-----
^ ^
indexOffset |
indexStart
*/
//--------------------------------------------------------------------------------
struct Vertex
{
vec3 position;
vec3 normal;
#if NUM_VARYING > 0
float varyingData[NUM_VARYING]; // XXX: should use vec4 and packing
#endif
};
uniform samplerBuffer vertex; // vec3[2] (position, normal)
#if NUM_VARYING > 0
uniform samplerBuffer varyingData; // float[NUM_VARYING]
#endif
out vec3 outPosition;
out vec3 outNormal;
#if NUM_VARYING > 0
out float outVaryingData[NUM_VARYING]; // output feedback (mapped as a subrange of vertices)
#endif
//out vec3 outVaryingData; // output feedback (mapped as a subrange of vertices)
void clear(out Vertex v)
{
v.position = vec3(0);
v.normal = vec3(0);
#if NUM_VARYING > 0
for(int i = 0; i < NUM_VARYING; i++){
v.varyingData[i] = 0;
}
#endif
}
Vertex readVertex(int index)
{
// XXX: should be split into two parts for addWithWeight and addVaryingWithWeight
Vertex v;
// unpacking
v.position = texelFetch(vertex, index*2).xyz;
v.normal = texelFetch(vertex, index*2+1).xyz;
#if NUM_VARYING > 0
int stride = NUM_VARYING;
for(int i = 0; i < NUM_VARYING; i++){
v.varyingData[i] = texelFetch(varyingData, index*stride+i).x;
}
#endif
return v;
}
void writeVertex(Vertex v)
{
// packing
outPosition = v.position;
outNormal = normalize(v.normal);
#if NUM_VARYING > 0
for(int i = 0; i < NUM_VARYING; i++){
outVaryingData[i] = v.varyingData[i];
}
#endif
}
void addWithWeight(inout Vertex v, Vertex src, float weight)
{
v.position += weight * src.position;
v.normal += weight * src.normal;
}
void addVaryingWithWeight(inout Vertex v, Vertex src, float weight)
{
#if NUM_VARYING > 0
for(int i = 0; i < NUM_VARYING; i++){
v.varyingData[i] += weight * src.varyingData[i];
}
#endif
}
//--------------------------------------------------------------------------------
// Face-vertices compute Kernel
subroutine(computeKernelType)
void catmarkComputeFace()
{
int i = gl_VertexID + indexStart;
int h = texelFetch(_F0_ITa, F_ITa_ofs+2*i).x;
int n = texelFetch(_F0_ITa, F_ITa_ofs+2*i+1).x;
float weight = 1.0/n;
Vertex dst;
clear(dst);
for(int j=0; j<n; ++j){
int index = texelFetch(_F0_IT, F_IT_ofs+h+j).x;
addWithWeight(dst, readVertex(index), weight);
addVaryingWithWeight(dst, readVertex(index), weight);
}
writeVertex(dst);
}
// Edge-vertices compute Kernel
subroutine(computeKernelType)
void catmarkComputeEdge()
{
int i = gl_VertexID + indexStart;
Vertex dst;
clear(dst);
#ifdef OPT_E0_IT_VEC4
ivec4 eidx = texelFetch(_E0_IT, E_IT_ofs/4+i);
#else
int eidx0 = texelFetch(_E0_IT, E_IT_ofs+4*i+0).x;
int eidx1 = texelFetch(_E0_IT, E_IT_ofs+4*i+1).x;
int eidx2 = texelFetch(_E0_IT, E_IT_ofs+4*i+2).x;
int eidx3 = texelFetch(_E0_IT, E_IT_ofs+4*i+3).x;
ivec4 eidx = ivec4(eidx0, eidx1, eidx2, eidx3);
#endif
#ifdef OPT_E0_S_VEC2
vec2 weight = texelFetch(_E0_S, E_W_ofs/2+i).xy;
float vertWeight = weight.x;
#else
float vertWeight = texelFetch(_E0_S, E_W_ofs+i*2+0).x;
#endif
// Fully sharp edge : vertWeight = 0.5f;
addWithWeight(dst, readVertex(eidx.x), vertWeight);
addWithWeight(dst, readVertex(eidx.y), vertWeight);
if(eidx.z != -1){
#ifdef OPT_E0_S_VEC2
float faceWeight = weight.y;
#else
float faceWeight = texelFetch(_E0_S, E_W_ofs/2+i*2+1).x;
#endif
addWithWeight(dst, readVertex(eidx.z), faceWeight);
addWithWeight(dst, readVertex(eidx.w), faceWeight);
}
addVaryingWithWeight(dst, readVertex(eidx.x), 0.5f);
addVaryingWithWeight(dst, readVertex(eidx.y), 0.5f);
writeVertex(dst);
}
// Edge-vertices compute Kernel (bilinear scheme)
subroutine(computeKernelType)
void bilinearComputeEdge()
{
int i = gl_VertexID + indexStart;
Vertex dst;
clear(dst);
#ifdef OPT_E0_IT_VEC4
ivec2 eidx = texelFetch(_E0_IT, E_IT_ofs/2+i).xy;
#else
ivec2 eidx = ivec2(texelFetch(_E0_IT, E_IT_ofs+2*i+0).x,
texelFetch(_E0_IT, E_IT_ofs+2*i+1).x);
#endif
addWithWeight(dst, readVertex(eidx.x), 0.5f);
addWithWeight(dst, readVertex(eidx.y), 0.5f);
addVaryingWithWeight(dst, readVertex(eidx.x), 0.5f);
addVaryingWithWeight(dst, readVertex(eidx.y), 0.5f);
writeVertex(dst);
}
// Vertex-vertices compute Kernel (bilinear scheme)
subroutine(computeKernelType)
void bilinearComputeVertex()
{
int i = gl_VertexID + indexStart;
Vertex dst;
clear(dst);
int p = texelFetch(_V0_ITa, V_ITa_ofs+i).x;
addWithWeight(dst, readVertex(p), 1.0f);
addVaryingWithWeight(dst, readVertex(p), 1.0f);
writeVertex(dst);
}
// Vertex-vertices compute Kernels 'A' / k_Crease and k_Corner rules
subroutine(computeKernelType)
void catmarkComputeVertexA()
{
int i = gl_VertexID + indexStart;
int n = texelFetch(_V0_ITa, V_ITa_ofs+5*i+1).x;
int p = texelFetch(_V0_ITa, V_ITa_ofs+5*i+2).x;
int eidx0 = texelFetch(_V0_ITa, V_ITa_ofs+5*i+3).x;
int eidx1 = texelFetch(_V0_ITa, V_ITa_ofs+5*i+4).x;
float weight = vertexPass
? texelFetch(_V0_S, V_W_ofs+i).x
: 1.0 - texelFetch(_V0_S, V_W_ofs+i).x;
// In the case of fractional weight, the weight must be inverted since
// the value is shared with the k_Smooth kernel (statistically the
// k_Smooth kernel runs much more often than this one)
if (weight>0.0 && weight<1.0 && n > 0)
weight=1.0-weight;
Vertex dst;
if(! vertexPass)
clear(dst);
else
dst = readVertex(i + indexOffset);
if (eidx0==-1 || (vertexPass==false && (n==-1)) ) {
addWithWeight(dst, readVertex(p), weight);
} else {
addWithWeight(dst, readVertex(p), weight * 0.75f);
addWithWeight(dst, readVertex(eidx0), weight * 0.125f);
addWithWeight(dst, readVertex(eidx1), weight * 0.125f);
}
if(! vertexPass)
addVaryingWithWeight(dst, readVertex(p), 1);
writeVertex(dst);
}
// Vertex-vertices compute Kernels 'B' / k_Dart and k_Smooth rules
subroutine(computeKernelType)
void catmarkComputeVertexB()
{
int i = gl_VertexID + indexStart;
int h = texelFetch(_V0_ITa, V_ITa_ofs+5*i).x;
#ifdef OPT_CATMARK_V_IT_VEC2
int h2 = h/2;
#endif
int n = texelFetch(_V0_ITa, V_ITa_ofs+5*i+1).x;
int p = texelFetch(_V0_ITa, V_ITa_ofs+5*i+2).x;
float weight = texelFetch(_V0_S, V_W_ofs+i).x;
float wp = 1.0/float(n*n);
float wv = (n-2.0) * n * wp;
Vertex dst;
clear(dst);
addWithWeight(dst, readVertex(p), weight * wv);
for(int j = 0; j < n; ++j){
#ifdef OPT_CATMARK_V_IT_VEC2
ivec2 v0it = texelFetch(_V0_IT, V_IT_ofs/2+h2+j).xy;
addWithWeight(dst, readVertex(v0it.x), weight * wp);
addWithWeight(dst, readVertex(v0it.y), weight * wp);
#else
addWithWeight(dst, readVertex(texelFetch(_V0_IT, V_IT_ofs+h+j*2).x), weight * wp);
addWithWeight(dst, readVertex(texelFetch(_V0_IT, V_IT_ofs+h+j*2+1).x), weight * wp);
#endif
}
addVaryingWithWeight(dst, readVertex(p), 1);
writeVertex(dst);
}
// Vertex-vertices compute Kernels 'B' / k_Dart and k_Smooth rules
subroutine(computeKernelType)
void loopComputeVertexB()
{
float PI = 3.14159265358979323846264;
int i = gl_VertexID + indexStart;
int h = texelFetch(_V0_ITa, V_ITa_ofs+5*i).x;
int n = texelFetch(_V0_ITa, V_ITa_ofs+5*i+1).x;
int p = texelFetch(_V0_ITa, V_ITa_ofs+5*i+2).x;
float weight = texelFetch(_V0_S, V_W_ofs+i).x;
float wp = 1.0/n;
float beta = 0.25 * cos(PI*2.0f*wp)+0.375f;
beta = beta * beta;
beta = (0.625f-beta)*wp;
Vertex dst;
clear(dst);
addWithWeight(dst, readVertex(p), weight * (1.0-(beta*n)));
for(int j = 0; j < n; ++j){
addWithWeight(dst, readVertex(texelFetch(_V0_IT, V_IT_ofs+h+j).x), weight * beta);
}
addVaryingWithWeight(dst, readVertex(p), 1);
writeVertex(dst);
}
void main()
{
// call subroutine
computeKernel();
}