mirror of
https://github.com/PixarAnimationStudios/OpenSubdiv
synced 2024-11-29 06:41:09 +00:00
574 lines
22 KiB
C++
574 lines
22 KiB
C++
//
|
|
// Copyright (C) Pixar. All rights reserved.
|
|
//
|
|
// This license governs use of the accompanying software. If you
|
|
// use the software, you accept this license. If you do not accept
|
|
// the license, do not use the software.
|
|
//
|
|
// 1. Definitions
|
|
// The terms "reproduce," "reproduction," "derivative works," and
|
|
// "distribution" have the same meaning here as under U.S.
|
|
// copyright law. A "contribution" is the original software, or
|
|
// any additions or changes to the software.
|
|
// A "contributor" is any person or entity that distributes its
|
|
// contribution under this license.
|
|
// "Licensed patents" are a contributor's patent claims that read
|
|
// directly on its contribution.
|
|
//
|
|
// 2. Grant of Rights
|
|
// (A) Copyright Grant- Subject to the terms of this license,
|
|
// including the license conditions and limitations in section 3,
|
|
// each contributor grants you a non-exclusive, worldwide,
|
|
// royalty-free copyright license to reproduce its contribution,
|
|
// prepare derivative works of its contribution, and distribute
|
|
// its contribution or any derivative works that you create.
|
|
// (B) Patent Grant- Subject to the terms of this license,
|
|
// including the license conditions and limitations in section 3,
|
|
// each contributor grants you a non-exclusive, worldwide,
|
|
// royalty-free license under its licensed patents to make, have
|
|
// made, use, sell, offer for sale, import, and/or otherwise
|
|
// dispose of its contribution in the software or derivative works
|
|
// of the contribution in the software.
|
|
//
|
|
// 3. Conditions and Limitations
|
|
// (A) No Trademark License- This license does not grant you
|
|
// rights to use any contributor's name, logo, or trademarks.
|
|
// (B) If you bring a patent claim against any contributor over
|
|
// patents that you claim are infringed by the software, your
|
|
// patent license from such contributor to the software ends
|
|
// automatically.
|
|
// (C) If you distribute any portion of the software, you must
|
|
// retain all copyright, patent, trademark, and attribution
|
|
// notices that are present in the software.
|
|
// (D) If you distribute any portion of the software in source
|
|
// code form, you may do so only under this license by including a
|
|
// complete copy of this license with your distribution. If you
|
|
// distribute any portion of the software in compiled or object
|
|
// code form, you may only do so under a license that complies
|
|
// with this license.
|
|
// (E) The software is licensed "as-is." You bear the risk of
|
|
// using it. The contributors give no express warranties,
|
|
// guarantees or conditions. You may have additional consumer
|
|
// rights under your local laws which this license cannot change.
|
|
// To the extent permitted under your local laws, the contributors
|
|
// exclude the implied warranties of merchantability, fitness for
|
|
// a particular purpose and non-infringement.
|
|
//
|
|
#ifndef FAR_CATMARK_SUBDIVISION_TABLES_H
|
|
#define FAR_CATMARK_SUBDIVISION_TABLES_H
|
|
|
|
#include <assert.h>
|
|
#include <vector>
|
|
#include <utility>
|
|
|
|
#include "../hbr/mesh.h"
|
|
#include "../hbr/catmark.h"
|
|
|
|
#include "../version.h"
|
|
|
|
#include "../far/subdivisionTables.h"
|
|
|
|
namespace OpenSubdiv {
|
|
namespace OPENSUBDIV_VERSION {
|
|
|
|
// Catmull-Clark tables store the indexing tables required in order to compute
|
|
// the refined positions of a mesh without the help of a hierarchical data
|
|
// structure. The advantage of this representation is its ability to be executed
|
|
// in a massively parallel environment without data dependencies.
|
|
//
|
|
|
|
template <class T, class U=T> class FarCatmarkSubdivisionTables : public FarSubdivisionTables<T,U> {
|
|
|
|
public:
|
|
|
|
// Memory required to store the indexing tables
|
|
virtual int GetMemoryUsed() const;
|
|
|
|
// Compute the positions of refined vertices using the specified kernels
|
|
virtual void Apply( int level, void * data=0 ) const;
|
|
|
|
// Table accessors
|
|
FarTable<unsigned int> const & Get_F_IT( ) const { return _F_IT; }
|
|
|
|
FarTable<int> const & Get_F_ITa( ) const { return _F_ITa; }
|
|
|
|
// Returns the number of indexing tables needed to represent this particular
|
|
// subdivision scheme.
|
|
virtual int GetNumTables() const { return 7; }
|
|
|
|
private:
|
|
|
|
friend class FarMeshFactory<T,U>;
|
|
friend class FarDispatcher<T,U>;
|
|
|
|
// Constructor : build level table at depth 'level'
|
|
FarCatmarkSubdivisionTables( FarMeshFactory<T,U> const & factory, FarMesh<T,U> * mesh, int level );
|
|
|
|
// Compute-kernel applied to vertices resulting from the refinement of a face.
|
|
void computeFacePoints(int offset, int level, int start, int end, void * clientdata) const;
|
|
|
|
// Compute-kernel applied to vertices resulting from the refinement of an edge.
|
|
void computeEdgePoints(int offset, int level, int start, int end, void * clientdata) const;
|
|
|
|
// Compute-kernel applied to vertices resulting from the refinement of a vertex
|
|
// Kernel "A" Handles the k_Smooth and k_Dart rules
|
|
void computeVertexPointsA(int offset, bool pass, int level, int start, int end, void * clientdata) const;
|
|
|
|
// Compute-kernel applied to vertices resulting from the refinement of a vertex
|
|
// Kernel "B" Handles the k_Crease and k_Corner rules
|
|
void computeVertexPointsB(int offset, int level, int start, int end, void * clientdata) const;
|
|
|
|
private:
|
|
|
|
FarTable<int> _F_ITa;
|
|
FarTable<unsigned int> _F_IT;
|
|
};
|
|
|
|
template <class T, class U> int
|
|
FarCatmarkSubdivisionTables<T,U>::GetMemoryUsed() const {
|
|
return FarSubdivisionTables<T,U>::GetMemoryUsed()+
|
|
_F_ITa.GetMemoryUsed()+
|
|
_F_IT.GetMemoryUsed();
|
|
}
|
|
|
|
// Constructor - generates indexing tables matching the Catmull-Clark subdivision scheme.
|
|
//
|
|
// tables codices detail :
|
|
//
|
|
// _F_ITa[0] : offset into _F_IT array of vertices making up the face
|
|
// _F_ITa[1] : valence of the face
|
|
//
|
|
// _E_ITa[0] : index of the org / dest vertices of the parent edge
|
|
// _E_ITa[1] :
|
|
// _E_ITa[2] : index of vertices refined from the faces left / right
|
|
// _E_ITa[3] : of the parent edge
|
|
//
|
|
// _V_ITa[0] : offset to the corresponding adjacent vertices into _V0_IT
|
|
// _V_ITa[1] : number of adjacent indices
|
|
// _V_ITa[2] : index of the parent vertex
|
|
// _V_ITa[3] : index of adjacent edge 0 (k_Crease rule)
|
|
// _V_ITa[4] : index of adjacent edge 1 (k_Crease rule)
|
|
//
|
|
template <class T, class U>
|
|
FarCatmarkSubdivisionTables<T,U>::FarCatmarkSubdivisionTables( FarMeshFactory<T,U> const & factory, FarMesh<T,U> * mesh, int maxlevel ) :
|
|
FarSubdivisionTables<T,U>(mesh, maxlevel),
|
|
_F_ITa(maxlevel+1),
|
|
_F_IT(maxlevel+1)
|
|
{
|
|
std::vector<int> const & remap = factory._remapTable;
|
|
|
|
// Allocate memory for the indexing tables
|
|
_F_ITa.Resize(factory.GetNumFaceVerticesTotal(maxlevel)*2);
|
|
_F_IT.Resize(factory.GetNumFacesTotal(maxlevel) - factory.GetNumFacesTotal(0));
|
|
|
|
this->_E_IT.Resize(factory.GetNumEdgeVerticesTotal(maxlevel)*4);
|
|
this->_E_W.Resize(factory.GetNumEdgeVerticesTotal(maxlevel)*2);
|
|
|
|
this->_V_ITa.Resize(factory.GetNumVertexVerticesTotal(maxlevel)*5);
|
|
this->_V_IT.Resize(factory.GetNumAdjacentVertVerticesTotal(maxlevel)*2);
|
|
this->_V_W.Resize(factory.GetNumVertexVerticesTotal(maxlevel));
|
|
|
|
for (int level=1; level<=maxlevel; ++level) {
|
|
|
|
// pointer to the first vertex corresponding to this level
|
|
this->_vertsOffsets[level] = factory._vertVertIdx[level-1] +
|
|
(int)factory._vertVertsList[level-1].size();
|
|
|
|
typename FarSubdivisionTables<T,U>::VertexKernelBatch * batch = & (this->_batches[level-1]);
|
|
|
|
// Face vertices
|
|
// "For each vertex, gather all the vertices from the parent face."
|
|
int offset = 0;
|
|
int * F_ITa = this->_F_ITa[level-1];
|
|
unsigned int * F_IT = this->_F_IT[level-1];
|
|
batch->kernelF = (int)factory._faceVertsList[level].size();
|
|
for (int i=0; i < batch->kernelF; ++i) {
|
|
|
|
HbrVertex<T> * v = factory._faceVertsList[level][i];
|
|
assert(v);
|
|
|
|
HbrFace<T> * f=v->GetParentFace();
|
|
assert(f);
|
|
|
|
int valence = f->GetNumVertices();
|
|
|
|
F_ITa[2*i+0] = offset;
|
|
F_ITa[2*i+1] = valence;
|
|
|
|
for (int j=0; j<valence; ++j)
|
|
F_IT[offset++] = remap[f->GetVertex(j)->GetID()];
|
|
}
|
|
_F_ITa.SetMarker(level, &F_ITa[2*batch->kernelF]);
|
|
_F_IT.SetMarker(level, &F_IT[offset]);
|
|
|
|
// Edge vertices
|
|
|
|
// Triangular interpolation mode :
|
|
// see "smoothtriangle" tag introduced in prman 3.9 and HbrCatmarkSubdivision<T>
|
|
typename HbrCatmarkSubdivision<T>::TriangleSubdivision triangleMethod =
|
|
dynamic_cast<HbrCatmarkSubdivision<T> *>(factory._hbrMesh->GetSubdivision())->GetTriangleSubdivisionMethod();
|
|
|
|
// "For each vertex, gather the 2 vertices from the parent edege and the
|
|
// 2 child vertices from the faces to the left and right of that edge.
|
|
// Adjust if edge has a crease or is on a boundary."
|
|
int * E_IT = this->_E_IT[level-1];
|
|
float * E_W = this->_E_W[level-1];
|
|
batch->kernelE = (int)factory._edgeVertsList[level].size();
|
|
for (int i=0; i < batch->kernelE; ++i) {
|
|
|
|
HbrVertex<T> * v = factory._edgeVertsList[level][i];
|
|
assert(v);
|
|
HbrHalfedge<T> * e = v->GetParentEdge();
|
|
assert(e);
|
|
|
|
float esharp = e->GetSharpness();
|
|
|
|
// get the indices 2 vertices from the parent edge
|
|
E_IT[4*i+0] = remap[e->GetOrgVertex()->GetID()];
|
|
E_IT[4*i+1] = remap[e->GetDestVertex()->GetID()];
|
|
|
|
float faceWeight=0.5f, vertWeight=0.5f;
|
|
|
|
// in the case of a fractional sharpness, set the adjacent faces vertices
|
|
if (!e->IsBoundary() && esharp <= 1.0f) {
|
|
|
|
float leftWeight, rightWeight;
|
|
HbrFace<T>* rf = e->GetRightFace();
|
|
HbrFace<T>* lf = e->GetLeftFace();
|
|
|
|
leftWeight = ( triangleMethod == HbrCatmarkSubdivision<T>::k_New && lf->GetNumVertices() == 3) ? HBR_SMOOTH_TRI_EDGE_WEIGHT : 0.25f;
|
|
rightWeight = ( triangleMethod == HbrCatmarkSubdivision<T>::k_New && rf->GetNumVertices() == 3) ? HBR_SMOOTH_TRI_EDGE_WEIGHT : 0.25f;
|
|
|
|
faceWeight = 0.5f * (leftWeight + rightWeight);
|
|
vertWeight = 0.5f * (1.0f - 2.0f * faceWeight);
|
|
|
|
faceWeight *= (1.0f - esharp);
|
|
|
|
vertWeight = 0.5f * esharp + (1.0f - esharp) * vertWeight;
|
|
|
|
E_IT[4*i+2] = remap[lf->Subdivide()->GetID()];
|
|
E_IT[4*i+3] = remap[rf->Subdivide()->GetID()];
|
|
} else {
|
|
E_IT[4*i+2] = -1;
|
|
E_IT[4*i+3] = -1;
|
|
}
|
|
E_W[2*i+0] = vertWeight;
|
|
E_W[2*i+1] = faceWeight;
|
|
}
|
|
this->_E_IT.SetMarker(level, &E_IT[4*batch->kernelE]);
|
|
this->_E_W.SetMarker(level, &E_W[2*batch->kernelE]);
|
|
|
|
// Vertex vertices
|
|
|
|
batch->InitVertexKernels( (int)factory._vertVertsList[level].size(), 0 );
|
|
|
|
offset = 0;
|
|
int * V_ITa = this->_V_ITa[level-1];
|
|
unsigned int * V_IT = this->_V_IT[level-1];
|
|
float * V_W = this->_V_W[level-1];
|
|
int nverts = (int)factory._vertVertsList[level].size();
|
|
for (int i=0; i < nverts; ++i) {
|
|
|
|
HbrVertex<T> * v = factory._vertVertsList[level][i],
|
|
* pv = v->GetParentVertex();
|
|
assert(v and pv);
|
|
|
|
// Look at HbrCatmarkSubdivision<T>::Subdivide for more details about
|
|
// the multi-pass interpolation
|
|
int masks[2], npasses;
|
|
float weights[2];
|
|
masks[0] = pv->GetMask(false);
|
|
masks[1] = pv->GetMask(true);
|
|
|
|
// If the masks are identical, only a single pass is necessary. If the
|
|
// vertex is transitioning to another rule, two passes are necessary,
|
|
// except when transitioning from k_Dart to k_Smooth : the same
|
|
// compute kernel is applied twice. Combining this special case allows
|
|
// to batch the compute kernels into fewer calls.
|
|
if (masks[0] != masks[1] and (
|
|
not (masks[0]==HbrVertex<T>::k_Smooth and
|
|
masks[1]==HbrVertex<T>::k_Dart))) {
|
|
weights[1] = pv->GetFractionalMask();
|
|
weights[0] = 1.0f - weights[1];
|
|
npasses = 2;
|
|
} else {
|
|
weights[0] = 1.0f;
|
|
weights[1] = 0.0f;
|
|
npasses = 1;
|
|
}
|
|
|
|
int rank = this->getMaskRanking(masks[0], masks[1]);
|
|
|
|
V_ITa[5*i+0] = offset;
|
|
V_ITa[5*i+1] = 0;
|
|
V_ITa[5*i+2] = remap[ pv->GetID() ];
|
|
V_ITa[5*i+3] = -1;
|
|
V_ITa[5*i+4] = -1;
|
|
|
|
for (int p=0; p<npasses; ++p)
|
|
switch (masks[p]) {
|
|
case HbrVertex<T>::k_Smooth :
|
|
case HbrVertex<T>::k_Dart : {
|
|
HbrHalfedge<T> *e = pv->GetIncidentEdge(),
|
|
*start = e;
|
|
while (e) {
|
|
V_ITa[5*i+1]++;
|
|
|
|
V_IT[offset++] = remap[ e->GetDestVertex()->GetID() ];
|
|
|
|
V_IT[offset++] = remap[ e->GetLeftFace()->Subdivide()->GetID() ];
|
|
|
|
e = e->GetPrev()->GetOpposite();
|
|
|
|
if (e==start) break;
|
|
}
|
|
break;
|
|
}
|
|
case HbrVertex<T>::k_Crease : {
|
|
|
|
class GatherCreaseEdgesOperator : public HbrHalfedgeOperator<T> {
|
|
public:
|
|
HbrVertex<T> * vertex; int eidx[2]; int count; bool next;
|
|
|
|
GatherCreaseEdgesOperator(HbrVertex<T> * v, bool n) : vertex(v), count(0), next(n) { eidx[0]=-1; eidx[1]=-1; }
|
|
|
|
virtual void operator() (HbrHalfedge<T> &e) {
|
|
if (e.IsSharp(next) and count < 2) {
|
|
HbrVertex<T> * a = e.GetDestVertex();
|
|
if (a==vertex)
|
|
a = e.GetOrgVertex();
|
|
eidx[count++]=a->GetID();
|
|
}
|
|
}
|
|
};
|
|
|
|
GatherCreaseEdgesOperator op( pv, p==1 );
|
|
pv->ApplyOperatorSurroundingEdges( op );
|
|
|
|
assert(V_ITa[5*i+3]==-1 and V_ITa[5*i+4]==-1);
|
|
assert(op.eidx[0]!=-1 and op.eidx[1]!=-1);
|
|
V_ITa[5*i+3] = remap[op.eidx[0]];
|
|
V_ITa[5*i+4] = remap[op.eidx[1]];
|
|
break;
|
|
}
|
|
case HbrVertex<T>::k_Corner :
|
|
// in the case of a k_Crease / k_Corner pass combination, we
|
|
// need to set the valence to -1 to tell the "B" Kernel to
|
|
// switch to k_Corner rule (as edge indices won't be -1)
|
|
if (V_ITa[5*i+1]==0)
|
|
V_ITa[5*i+1] = -1;
|
|
|
|
default : break;
|
|
}
|
|
|
|
|
|
if (rank>7)
|
|
// the k_Corner and k_Crease single-pass cases apply a weight of 1.0
|
|
// but this value is inverted in the kernel
|
|
V_W[i] = 0.0;
|
|
else
|
|
V_W[i] = weights[0];
|
|
|
|
batch->AddVertex( i, rank );
|
|
}
|
|
this->_V_ITa.SetMarker(level, &V_ITa[5*nverts]);
|
|
this->_V_IT.SetMarker(level, &V_IT[offset]);
|
|
this->_V_W.SetMarker(level, &V_W[nverts]);
|
|
|
|
batch->kernelB.second++;
|
|
batch->kernelA1.second++;
|
|
batch->kernelA2.second++;
|
|
}
|
|
}
|
|
|
|
template <class T, class U> void
|
|
FarCatmarkSubdivisionTables<T,U>::Apply( int level, void * clientdata ) const {
|
|
|
|
assert(this->_mesh and level>0);
|
|
|
|
typename FarSubdivisionTables<T,U>::VertexKernelBatch const * batch = & (this->_batches[level-1]);
|
|
|
|
FarDispatcher<T,U> const * dispatch = this->_mesh->GetDispatcher();
|
|
assert(dispatch);
|
|
|
|
int offset = this->GetFirstVertexOffset(level);
|
|
if (batch->kernelF>0)
|
|
dispatch->ApplyCatmarkFaceVerticesKernel(this->_mesh, offset, level, 0, batch->kernelF, clientdata);
|
|
|
|
offset += this->GetNumFaceVertices(level);
|
|
if (batch->kernelE>0)
|
|
dispatch->ApplyCatmarkEdgeVerticesKernel(this->_mesh, offset, level, 0, batch->kernelE, clientdata);
|
|
|
|
offset += this->GetNumEdgeVertices(level);
|
|
if (batch->kernelB.first < batch->kernelB.second)
|
|
dispatch->ApplyCatmarkVertexVerticesKernelB(this->_mesh, offset, level, batch->kernelB.first, batch->kernelB.second, clientdata);
|
|
if (batch->kernelA1.first < batch->kernelA1.second)
|
|
dispatch->ApplyCatmarkVertexVerticesKernelA(this->_mesh, offset, false, level, batch->kernelA1.first, batch->kernelA1.second, clientdata);
|
|
if (batch->kernelA2.first < batch->kernelA2.second)
|
|
dispatch->ApplyCatmarkVertexVerticesKernelA(this->_mesh, offset, true, level, batch->kernelA2.first, batch->kernelA2.second, clientdata);
|
|
}
|
|
|
|
//
|
|
// Face-vertices compute Kernel - completely re-entrant
|
|
//
|
|
|
|
template <class T, class U> void
|
|
FarCatmarkSubdivisionTables<T,U>::computeFacePoints( int offset, int level, int start, int end, void * clientdata ) const {
|
|
|
|
assert(this->_mesh);
|
|
|
|
U * vsrc = &this->_mesh->GetVertices().at(0),
|
|
* vdst = vsrc + offset + start;
|
|
|
|
const int * F_ITa = _F_ITa[level-1];
|
|
const unsigned int * F_IT = _F_IT[level-1];
|
|
|
|
for (int i=start; i<end; ++i, ++vdst ) {
|
|
|
|
vdst->Clear(clientdata);
|
|
|
|
int h = F_ITa[2*i ],
|
|
n = F_ITa[2*i+1];
|
|
float weight = 1.0f/n;
|
|
|
|
for (int j=0; j<n; ++j) {
|
|
vdst->AddWithWeight( vsrc[ F_IT[h+j] ], weight, clientdata );
|
|
vdst->AddVaryingWithWeight( vsrc[ F_IT[h+j] ], weight, clientdata );
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Edge-vertices compute Kernel - completely re-entrant
|
|
//
|
|
|
|
template <class T, class U> void
|
|
FarCatmarkSubdivisionTables<T,U>::computeEdgePoints( int offset, int level, int start, int end, void * clientdata ) const {
|
|
|
|
assert(this->_mesh);
|
|
|
|
U * vsrc = &this->_mesh->GetVertices().at(0),
|
|
* vdst = vsrc + offset + start;
|
|
|
|
const int * E_IT = this->_E_IT[level-1];
|
|
const float * E_W = this->_E_W[level-1];
|
|
|
|
for (int i=start; i<end; ++i, ++vdst ) {
|
|
|
|
vdst->Clear(clientdata);
|
|
|
|
int eidx0 = E_IT[4*i+0],
|
|
eidx1 = E_IT[4*i+1],
|
|
eidx2 = E_IT[4*i+2],
|
|
eidx3 = E_IT[4*i+3];
|
|
|
|
float vertWeight = E_W[i*2+0];
|
|
|
|
// Fully sharp edge : vertWeight = 0.5f
|
|
vdst->AddWithWeight( vsrc[eidx0], vertWeight, clientdata );
|
|
vdst->AddWithWeight( vsrc[eidx1], vertWeight, clientdata );
|
|
|
|
if (eidx2!=-1) {
|
|
// Apply fractional sharpness
|
|
float faceWeight = E_W[i*2+1];
|
|
|
|
vdst->AddWithWeight( vsrc[eidx2], faceWeight, clientdata );
|
|
vdst->AddWithWeight( vsrc[eidx3], faceWeight, clientdata );
|
|
}
|
|
|
|
vdst->AddVaryingWithWeight( vsrc[eidx0], 0.5f, clientdata );
|
|
vdst->AddVaryingWithWeight( vsrc[eidx1], 0.5f, clientdata );
|
|
}
|
|
}
|
|
|
|
//
|
|
// Vertex-vertices compute Kernels "A" and "B" - completely re-entrant
|
|
//
|
|
|
|
// multi-pass kernel handling k_Crease and k_Corner rules
|
|
template <class T, class U> void
|
|
FarCatmarkSubdivisionTables<T,U>::computeVertexPointsA( int offset, bool pass, int level, int start, int end, void * clientdata ) const {
|
|
|
|
assert(this->_mesh);
|
|
|
|
U * vsrc = &this->_mesh->GetVertices().at(0),
|
|
* vdst = vsrc + offset + start;
|
|
|
|
const int * V_ITa = this->_V_ITa[level-1];
|
|
const float * V_W = this->_V_W[level-1];
|
|
|
|
for (int i=start; i<end; ++i, ++vdst ) {
|
|
|
|
if (not pass)
|
|
vdst->Clear(clientdata);
|
|
|
|
int n=V_ITa[5*i+1], // number of vertices in the _VO_IT array (valence)
|
|
p=V_ITa[5*i+2], // index of the parent vertex
|
|
eidx0=V_ITa[5*i+3], // index of the first crease rule edge
|
|
eidx1=V_ITa[5*i+4]; // index of the second crease rule edge
|
|
|
|
float weight = pass ? V_W[i] : 1.0f - V_W[i];
|
|
|
|
// In the case of fractional weight, the weight must be inverted since
|
|
// the value is shared with the k_Smooth kernel (statistically the
|
|
// k_Smooth kernel runs much more often than this one)
|
|
if (weight>0.0f and weight<1.0f and n>0)
|
|
weight=1.0f-weight;
|
|
|
|
// In the case of a k_Corner / k_Crease combination, the edge indices
|
|
// won't be null, so we use a -1 valence to detect that particular case
|
|
if (eidx0==-1 or (pass==false and (n==-1)) ) {
|
|
// k_Corner case
|
|
vdst->AddWithWeight( vsrc[p], weight, clientdata );
|
|
} else {
|
|
// k_Crease case
|
|
vdst->AddWithWeight( vsrc[p], weight * 0.75f, clientdata );
|
|
vdst->AddWithWeight( vsrc[eidx0], weight * 0.125f, clientdata );
|
|
vdst->AddWithWeight( vsrc[eidx1], weight * 0.125f, clientdata );
|
|
}
|
|
vdst->AddVaryingWithWeight( vsrc[p], 1.0f, clientdata );
|
|
}
|
|
}
|
|
|
|
// multi-pass kernel handling k_Dart and k_Smooth rules
|
|
template <class T, class U> void
|
|
FarCatmarkSubdivisionTables<T,U>::computeVertexPointsB( int offset, int level, int start, int end, void * clientdata ) const {
|
|
|
|
assert(this->_mesh);
|
|
|
|
U * vsrc = &this->_mesh->GetVertices().at(0),
|
|
* vdst = vsrc + offset + start;
|
|
|
|
const int * V_ITa = this->_V_ITa[level-1];
|
|
const unsigned int * V_IT = this->_V_IT[level-1];
|
|
const float * V_W = this->_V_W[level-1];
|
|
|
|
for (int i=start; i<end; ++i, ++vdst ) {
|
|
|
|
vdst->Clear(clientdata);
|
|
|
|
int h = V_ITa[5*i ], // offset of the vertices in the _V0_IT array
|
|
n = V_ITa[5*i+1], // number of vertices in the _VO_IT array (valence)
|
|
p = V_ITa[5*i+2]; // index of the parent vertex
|
|
|
|
float weight = V_W[i],
|
|
wp = 1.0f/(n*n),
|
|
wv = (n-2.0f)*n*wp;
|
|
|
|
vdst->AddWithWeight( vsrc[p], weight * wv, clientdata );
|
|
|
|
for (int j=0; j<n; ++j) {
|
|
vdst->AddWithWeight( vsrc[V_IT[h+j*2 ]], weight * wp, clientdata );
|
|
vdst->AddWithWeight( vsrc[V_IT[h+j*2+1]], weight * wp, clientdata );
|
|
}
|
|
vdst->AddVaryingWithWeight( vsrc[p], 1.0f, clientdata );
|
|
}
|
|
}
|
|
|
|
} // end namespace OPENSUBDIV_VERSION
|
|
using namespace OPENSUBDIV_VERSION;
|
|
|
|
} // end namespace OpenSubdiv
|
|
|
|
#endif /* FAR_CATMARK_SUBDIVISION_TABLES_H */
|