OpenSubdiv/opensubdiv/hbr/bilinear.h
manuelk 2dc8520938 Fix Chaikin rule
The Chaikin crease interpolation mode seems to be broken:
	   - Catmark / Loop / Bilinear are passing the wrong halfedge vertex to the
	     SubdivideCreaseWeight function which results in sub-edge crease weights
	     being swapped
	   - the loop that iterates over adjacent edges needs to check against both
	     the original edge and its opposite, otherwise it may be incorrectly
	     accumulated into summation of these adjacent edges (with a 0.25 weight)

	   The proposed fix:
	   - Swaps the Dest/Org vertex passed to the SubdivideCreaseWeight (and
	     we probably want Julian to confirm that this the correct fix)
	   - Checks against both the original edge and its opposite in the iteration
	     over adjacent edges
	   - Replaces the std::vector based query with an HbrHalfedgeOperator for
	     better performance (hopefully)

	   The similar fix to OpenSubdiv been reviewed by Tony DeRose.

    Also in the fix:
        - fix "obj" tag parsing of the smooth triangle tag that was incorrectly
          associated with the crease method (and reporting the wrong errors)
        - add regression shapes for both Loop & Catmark schemes to hbr_regression
        - add same shapes to the glViewer
        - improve hbr_regression output to be more readable
        - add command-line argument parsing to hbr_regression
        - add functionality to dump an obj file when regression fails for comparison

fixes #235
2013-11-07 17:06:55 -08:00

910 lines
35 KiB
C++

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#ifndef HBRBILINEAR_H
#define HBRBILINEAR_H
/*#define HBR_DEBUG */
#include "../hbr/subdivision.h"
#include "../version.h"
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
template <class T>
class HbrBilinearSubdivision : public HbrSubdivision<T> {
public:
HbrBilinearSubdivision<T>()
: HbrSubdivision<T>() {}
virtual HbrSubdivision<T>* Clone() const {
return new HbrBilinearSubdivision<T>();
}
virtual void Refine(HbrMesh<T>* mesh, HbrFace<T>* face);
virtual HbrFace<T>* RefineFaceAtVertex(HbrMesh<T>* mesh, HbrFace<T>* face, HbrVertex<T>* vertex);
virtual void GuaranteeNeighbor(HbrMesh<T>* mesh, HbrHalfedge<T>* edge);
virtual void GuaranteeNeighbors(HbrMesh<T>* mesh, HbrVertex<T>* vertex);
virtual bool HasLimit(HbrMesh<T>* mesh, HbrFace<T>* face);
virtual bool HasLimit(HbrMesh<T>* mesh, HbrHalfedge<T>* edge);
virtual bool HasLimit(HbrMesh<T>* mesh, HbrVertex<T>* vertex);
virtual HbrVertex<T>* Subdivide(HbrMesh<T>* mesh, HbrFace<T>* face);
virtual HbrVertex<T>* Subdivide(HbrMesh<T>* mesh, HbrHalfedge<T>* edge);
virtual HbrVertex<T>* Subdivide(HbrMesh<T>* mesh, HbrVertex<T>* vertex);
virtual bool VertexIsExtraordinary(HbrMesh<T> const * /* mesh */, HbrVertex<T>* vertex) { return vertex->GetValence() != 4; }
virtual bool FaceIsExtraordinary(HbrMesh<T> const * /* mesh */, HbrFace<T>* face) { return face->GetNumVertices() != 4; }
virtual int GetFaceChildrenCount(int nvertices) const { return nvertices; }
private:
// Transfers facevarying data from a parent face to a child face
void transferFVarToChild(HbrMesh<T>* mesh, HbrFace<T>* face, HbrFace<T>* child, int index);
// Transfers vertex and edge edits from a parent face to a child face
void transferEditsToChild(HbrFace<T>* face, HbrFace<T>* child, int index);
};
template <class T>
void
HbrBilinearSubdivision<T>::transferFVarToChild(HbrMesh<T>* mesh, HbrFace<T>* face, HbrFace<T>* child, int index) {
typename HbrMesh<T>::InterpolateBoundaryMethod fvarinterp = mesh->GetFVarInterpolateBoundaryMethod();
const int fvarcount = mesh->GetFVarCount();
int fvarindex = 0;
const int nv = face->GetNumVertices();
bool extraordinary = (nv != 4);
HbrVertex<T> *v = face->GetVertex(index), *childVertex;
HbrHalfedge<T>* edge;
// We do the face subdivision rule first, because we may reuse the
// result (stored in fv2) for the other subdivisions.
float weight = 1.0f / nv;
// For the face center vertex, the facevarying data can be cleared
// and averaged en masse, since the subdivision rules don't change
// for any of the data - we use the smooth rule for all of it.
// And since we know that the fvardata for this particular vertex
// is smooth and therefore shareable amongst all incident faces,
// we don't have to allocate extra storage for it. We also don't
// have to compute it if some other face got to it first (as
// indicated by the IsInitialized() flag).
HbrFVarData<T>& fv2 = child->GetFVarData(extraordinary ? 2 : (index+2)%4);
if (!fv2.IsInitialized()) {
const int totalfvarwidth = mesh->GetTotalFVarWidth();
fv2.ClearAll(totalfvarwidth);
for (int j = 0; j < nv; ++j) {
fv2.AddWithWeightAll(face->GetFVarData(j), totalfvarwidth, weight);
}
}
assert(fv2.IsInitialized());
v->GuaranteeNeighbors();
// Make sure that that each of the vertices of the child face have
// the appropriate facevarying storage as needed. If there are
// discontinuities in any facevarying datum, the vertex must
// allocate a new block of facevarying storage specific to the
// child face.
bool fv0IsSmooth, fv1IsSmooth, fv3IsSmooth;
childVertex = child->GetVertex(extraordinary ? 0 : (index+0)%4);
fv0IsSmooth = v->IsFVarAllSmooth();
if (!fv0IsSmooth) {
childVertex->NewFVarData(child);
}
HbrFVarData<T>& fv0 = childVertex->GetFVarData(child);
edge = face->GetEdge(index);
GuaranteeNeighbor(mesh, edge);
assert(edge->GetOrgVertex() == v);
childVertex = child->GetVertex(extraordinary ? 1 : (index+1)%4);
fv1IsSmooth = !edge->IsFVarInfiniteSharpAnywhere();
if (!fv1IsSmooth) {
childVertex->NewFVarData(child);
}
HbrFVarData<T>& fv1 = childVertex->GetFVarData(child);
edge = edge->GetPrev();
GuaranteeNeighbor(mesh, edge);
assert(edge == face->GetEdge((index + nv - 1) % nv));
assert(edge->GetDestVertex() == v);
childVertex = child->GetVertex(extraordinary ? 3 : (index+3)%4);
fv3IsSmooth = !edge->IsFVarInfiniteSharpAnywhere();
if (!fv3IsSmooth) {
childVertex->NewFVarData(child);
}
HbrFVarData<T>& fv3 = childVertex->GetFVarData(child);
fvarindex = 0;
for (int fvaritem = 0; fvaritem < fvarcount; ++fvaritem) {
// Vertex subdivision rule. Analyze whether the vertex is on the
// boundary and whether it's an infinitely sharp corner. We
// determine the last by checking the propagate corners flag on
// the mesh; if it's off, we check the two edges of this face
// incident to that vertex and determining whether they are
// facevarying boundary edges - this is analogous to what goes on
// for the interpolateboundary tag (which when set to
// EDGEANDCORNER marks vertices with a valence of two as being
// sharp corners). If propagate corners is on, we check *all*
// faces to see if two edges side by side are facevarying boundary
// edges. The facevarying boundary check ignores geometric
// sharpness, otherwise we may swim at geometric creases which
// aren't actually discontinuous.
bool infcorner = false;
const int fvarwidth = mesh->GetFVarWidths()[fvaritem];
const unsigned char fvarmask = v->GetFVarMask(fvaritem);
if (fvarinterp == HbrMesh<T>::k_InterpolateBoundaryEdgeAndCorner) {
if (fvarmask >= HbrVertex<T>::k_Corner) {
infcorner = true;
} else if (mesh->GetFVarPropagateCorners()) {
if (v->IsFVarCorner(fvaritem)) {
infcorner = true;
}
} else {
if (face->GetEdge(index)->GetFVarSharpness(fvaritem, true) && face->GetEdge(index)->GetPrev()->GetFVarSharpness(fvaritem, true)) {
infcorner = true;
}
}
}
// Infinitely sharp vertex rule. Applied if the vertex is:
// - undergoing no facevarying boundary interpolation;
// - at a geometric crease, in either boundary interpolation case; or
// - is an infinitely sharp facevarying vertex, in the EDGEANDCORNER case; or
// - has a mask equal or greater than one, in the "always
// sharp" interpolate boundary case
if (fvarinterp == HbrMesh<T>::k_InterpolateBoundaryNone ||
(fvarinterp == HbrMesh<T>::k_InterpolateBoundaryAlwaysSharp &&
fvarmask >= 1) ||
v->GetSharpness() > HbrVertex<T>::k_Smooth ||
infcorner) {
fv0.SetWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, 1.0f);
}
// Dart rule: unlike geometric creases, because there's two
// discontinuous values for the one incident edge, we use the
// boundary rule and not the smooth rule
else if (fvarmask == 1) {
assert(!v->OnBoundary());
// Use 0.75 of the current vert
fv0.SetWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, 0.75f);
// 0.125 of "two adjacent edge vertices", which in actuality
// are the facevarying values of the same vertex but on each
// side of the single incident facevarying sharp edge
HbrHalfedge<T>* start = v->GetIncidentEdge(), *nextedge;
edge = start;
while (edge) {
if (edge->GetFVarSharpness(fvaritem)) {
break;
}
nextedge = v->GetNextEdge(edge);
if (nextedge == start) {
assert(0); // we should have found it by now
break;
} else if (!nextedge) {
// should never get into this case - if the vertex is
// on a boundary, it can never be a facevarying dart
// vertex
assert(0);
edge = edge->GetPrev();
break;
} else {
edge = nextedge;
}
}
HbrVertex<T>* w = edge->GetDestVertex();
HbrFace<T>* bestface = edge->GetLeftFace();
int j;
for (j = 0; j < bestface->GetNumVertices(); ++j) {
if (bestface->GetVertex(j) == w) break;
}
assert(j != bestface->GetNumVertices());
fv0.AddWithWeight(bestface->GetFVarData(j), fvarindex, fvarwidth, 0.125f);
bestface = edge->GetRightFace();
for (j = 0; j < bestface->GetNumVertices(); ++j) {
if (bestface->GetVertex(j) == w) break;
}
assert(j != bestface->GetNumVertices());
fv0.AddWithWeight(bestface->GetFVarData(j), fvarindex, fvarwidth, 0.125f);
}
// Boundary vertex rule
else if (fvarmask != 0) {
// Use 0.75 of the current vert
fv0.SetWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, 0.75f);
// Compute 0.125 of two adjacent edge vertices. However the
// two adjacent edge vertices we use must be part of the
// facevarying "boundary". To find the first edge we cycle
// counterclockwise around the current vertex v and look for
// the first boundary edge
HbrFace<T>* bestface = face;
HbrHalfedge<T>* bestedge = face->GetEdge(index)->GetPrev();
HbrHalfedge<T>* starte = bestedge->GetOpposite();
HbrVertex<T>* w = 0;
if (!starte) {
w = face->GetEdge(index)->GetPrev()->GetOrgVertex();
} else {
HbrHalfedge<T>* e = starte, *next;
assert(starte->GetOrgVertex() == v);
do {
if (e->GetFVarSharpness(fvaritem) || !e->GetLeftFace()) {
bestface = e->GetRightFace();
bestedge = e;
break;
}
next = v->GetNextEdge(e);
if (!next) {
bestface = e->GetLeftFace();
w = e->GetPrev()->GetOrgVertex();
break;
}
e = next;
} while (e && e != starte);
}
if (!w) w = bestedge->GetDestVertex();
int j;
for (j = 0; j < bestface->GetNumVertices(); ++j) {
if (bestface->GetVertex(j) == w) break;
}
assert(j != bestface->GetNumVertices());
fv0.AddWithWeight(bestface->GetFVarData(j), fvarindex, fvarwidth, 0.125f);
// Look for the other edge by cycling clockwise around v
bestface = face;
bestedge = face->GetEdge(index);
starte = bestedge;
w = 0;
if (HbrHalfedge<T>* e = starte) {
assert(starte->GetOrgVertex() == v);
do {
if (e->GetFVarSharpness(fvaritem) || !e->GetRightFace()) {
bestface = e->GetLeftFace();
bestedge = e;
break;
}
assert(e->GetOpposite());
e = v->GetPreviousEdge(e);
} while (e && e != starte);
}
if (!w) w = bestedge->GetDestVertex();
for (j = 0; j < bestface->GetNumVertices(); ++j) {
if (bestface->GetVertex(j) == w) break;
}
assert(j != bestface->GetNumVertices());
fv0.AddWithWeight(bestface->GetFVarData(j), fvarindex, fvarwidth, 0.125f);
}
// Smooth rule. Here, we can take a shortcut if we know that
// the vertex is smooth and some other vertex has completely
// computed the facevarying values
else if (!fv0IsSmooth || !fv0.IsInitialized()) {
int valence = v->GetValence();
float invvalencesquared = 1.0f / (valence * valence);
// Use n-2/n of the current vertex value
fv0.SetWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, invvalencesquared * valence * (valence - 2));
// Add 1/n^2 of surrounding edge vertices and surrounding face
// averages. We loop over all surrounding faces..
HbrHalfedge<T>* start = v->GetIncidentEdge(), *edge;
edge = start;
while (edge) {
HbrFace<T>* g = edge->GetLeftFace();
weight = invvalencesquared / g->GetNumVertices();
// .. and compute the average of each face. At the same
// time, we look for the edge on that face whose origin is
// the same as v, and add a contribution from its
// destination vertex value; this takes care of the
// surrounding edge vertex addition.
for (int j = 0; j < g->GetNumVertices(); ++j) {
fv0.AddWithWeight(g->GetFVarData(j), fvarindex, fvarwidth, weight);
if (g->GetEdge(j)->GetOrgVertex() == v) {
fv0.AddWithWeight(g->GetFVarData((j + 1) % g->GetNumVertices()), fvarindex, fvarwidth, invvalencesquared);
}
}
edge = v->GetNextEdge(edge);
if (edge == start) break;
}
}
// Edge subdivision rule
edge = face->GetEdge(index);
if (fvarinterp == HbrMesh<T>::k_InterpolateBoundaryNone ||
edge->GetFVarSharpness(fvaritem) || edge->IsBoundary()) {
// Sharp edge rule
fv1.SetWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, 0.5f);
fv1.AddWithWeight(face->GetFVarData((index + 1) % nv), fvarindex, fvarwidth, 0.5f);
} else if (!fv1IsSmooth || !fv1.IsInitialized()) {
// Smooth edge subdivision. Add 0.25 of adjacent vertices
fv1.SetWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, 0.25f);
fv1.AddWithWeight(face->GetFVarData((index + 1) % nv), fvarindex, fvarwidth, 0.25f);
// Local subdivided face vertex
fv1.AddWithWeight(fv2, fvarindex, fvarwidth, 0.25f);
// Add 0.25 * average of neighboring face vertices
HbrFace<T>* oppFace = edge->GetRightFace();
weight = 0.25f / oppFace->GetNumVertices();
for (int j = 0; j < oppFace->GetNumVertices(); ++j) {
fv1.AddWithWeight(oppFace->GetFVarData(j), fvarindex, fvarwidth, weight);
}
}
// Edge subdivision rule
edge = edge->GetPrev();
if (fvarinterp == HbrMesh<T>::k_InterpolateBoundaryNone ||
edge->GetFVarSharpness(fvaritem) || edge->IsBoundary()) {
// Sharp edge rule
fv3.SetWithWeight(face->GetFVarData((index + nv - 1) % nv), fvarindex, fvarwidth, 0.5f);
fv3.AddWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, 0.5f);
} else if (!fv3IsSmooth || !fv3.IsInitialized()) {
// Smooth edge subdivision. Add 0.25 of adjacent vertices
fv3.SetWithWeight(face->GetFVarData((index + nv - 1) % nv), fvarindex, fvarwidth, 0.25f);
fv3.AddWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, 0.25f);
// Local subdivided face vertex
fv3.AddWithWeight(fv2, fvarindex, fvarwidth, 0.25f);
// Add 0.25 * average of neighboring face vertices
HbrFace<T>* oppFace = edge->GetRightFace();
weight = 0.25f / oppFace->GetNumVertices();
for (int j = 0; j < oppFace->GetNumVertices(); ++j) {
fv3.AddWithWeight(oppFace->GetFVarData(j), fvarindex, fvarwidth, weight);
}
}
fvarindex += fvarwidth;
}
fv0.SetInitialized();
fv1.SetInitialized();
fv3.SetInitialized();
}
template <class T>
void
HbrBilinearSubdivision<T>::transferEditsToChild(HbrFace<T>* face, HbrFace<T>* child, int index) {
// Hand down hole tag
child->SetHole(face->IsHole());
// Hand down pointers to hierarchical edits
if (HbrHierarchicalEdit<T>** edits = face->GetHierarchicalEdits()) {
while (HbrHierarchicalEdit<T>* edit = *edits) {
if (!edit->IsRelevantToFace(face)) break;
if (edit->GetNSubfaces() > face->GetDepth() &&
(edit->GetSubface(face->GetDepth()) == index)) {
child->SetHierarchicalEdits(edits);
break;
}
edits++;
}
}
}
template <class T>
void
HbrBilinearSubdivision<T>::Refine(HbrMesh<T>* mesh, HbrFace<T>* face) {
// Create new quadrilateral children faces from this face
HbrFace<T>* child;
HbrVertex<T>* vertices[4];
HbrHalfedge<T>* edge = face->GetFirstEdge();
HbrHalfedge<T>* prevedge = edge->GetPrev();
HbrHalfedge<T>* childedge;
int nv = face->GetNumVertices();
float sharpness;
bool extraordinary = (nv != 4);
// The funny indexing on vertices is done only for
// non-extraordinary faces in order to correctly preserve
// parametric space through the refinement. If we split an
// extraordinary face then it doesn't matter.
for (int i = 0; i < nv; ++i) {
if (!face->GetChild(i)) {
#ifdef HBR_DEBUG
std::cerr << "Kid " << i << "\n";
#endif
HbrVertex<T>* vertex = edge->GetOrgVertex();
if (extraordinary) {
vertices[0] = vertex->Subdivide();
vertices[1] = edge->Subdivide();
vertices[2] = face->Subdivide();
vertices[3] = prevedge->Subdivide();
} else {
vertices[i] = vertex->Subdivide();
vertices[(i+1)%4] = edge->Subdivide();
vertices[(i+2)%4] = face->Subdivide();
vertices[(i+3)%4] = prevedge->Subdivide();
}
child = mesh->NewFace(4, vertices, face, i);
#ifdef HBR_DEBUG
std::cerr << "Creating face " << *child << " during refine\n";
#endif
// Hand down edge sharpnesses
childedge = vertex->Subdivide()->GetEdge(edge->Subdivide());
assert(childedge);
if ((sharpness = edge->GetSharpness()) > HbrHalfedge<T>::k_Smooth) {
HbrSubdivision<T>::SubdivideCreaseWeight(edge, edge->GetOrgVertex(), childedge);
}
childedge->CopyFVarInfiniteSharpness(edge);
childedge = prevedge->Subdivide()->GetEdge(vertex->Subdivide());
assert(childedge);
if ((sharpness = prevedge->GetSharpness()) > HbrHalfedge<T>::k_Smooth) {
HbrSubdivision<T>::SubdivideCreaseWeight(prevedge, prevedge->GetDestVertex(), childedge);
}
childedge->CopyFVarInfiniteSharpness(prevedge);
if (mesh->GetTotalFVarWidth()) {
transferFVarToChild(mesh, face, child, i);
}
// Special handling of ptex index for extraordinary faces: make
// sure the children get their indices reassigned to be
// consecutive within the block reserved for the parent.
if (face->GetNumVertices() != 4 && face->GetPtexIndex() != -1) {
child->SetPtexIndex(face->GetPtexIndex() + i);
}
transferEditsToChild(face, child, i);
}
prevedge = edge;
edge = edge->GetNext();
}
}
template <class T>
HbrFace<T>*
HbrBilinearSubdivision<T>::RefineFaceAtVertex(HbrMesh<T>* mesh, HbrFace<T>* face, HbrVertex<T>* vertex) {
#ifdef HBR_DEBUG
std::cerr << " forcing refine on " << *face << " at " << *vertex << '\n';
#endif
// Create new quadrilateral children faces from this face
HbrHalfedge<T>* edge = face->GetFirstEdge();
HbrHalfedge<T>* prevedge = edge->GetPrev();
HbrHalfedge<T>* childedge;
int nv = face->GetNumVertices();
float sharpness;
bool extraordinary = (nv != 4);
// The funny indexing on vertices is done only for
// non-extraordinary faces in order to correctly preserve
// parametric space through the refinement. If we split an
// extraordinary face then it doesn't matter.
for (int i = 0; i < nv; ++i) {
if (edge->GetOrgVertex() == vertex) {
if (!face->GetChild(i)) {
HbrFace<T>* child;
HbrVertex<T>* vertices[4];
if (extraordinary) {
vertices[0] = vertex->Subdivide();
vertices[1] = edge->Subdivide();
vertices[2] = face->Subdivide();
vertices[3] = prevedge->Subdivide();
} else {
vertices[i] = vertex->Subdivide();
vertices[(i+1)%4] = edge->Subdivide();
vertices[(i+2)%4] = face->Subdivide();
vertices[(i+3)%4] = prevedge->Subdivide();
}
#ifdef HBR_DEBUG
std::cerr << "Kid " << i << "\n";
std::cerr << " subdivision created " << *vertices[0] << '\n';
std::cerr << " subdivision created " << *vertices[1] << '\n';
std::cerr << " subdivision created " << *vertices[2] << '\n';
std::cerr << " subdivision created " << *vertices[3] << '\n';
#endif
child = mesh->NewFace(4, vertices, face, i);
#ifdef HBR_DEBUG
std::cerr << "Creating face " << *child << " during refine\n";
#endif
// Hand down edge sharpness
childedge = vertex->Subdivide()->GetEdge(edge->Subdivide());
assert(childedge);
if ((sharpness = edge->GetSharpness()) > HbrHalfedge<T>::k_Smooth) {
HbrSubdivision<T>::SubdivideCreaseWeight(edge, edge->GetOrgVertex(), childedge);
}
childedge->CopyFVarInfiniteSharpness(edge);
childedge = prevedge->Subdivide()->GetEdge(vertex->Subdivide());
assert(childedge);
if ((sharpness = prevedge->GetSharpness()) > HbrHalfedge<T>::k_Smooth) {
HbrSubdivision<T>::SubdivideCreaseWeight(prevedge, prevedge->GetDestVertex(), childedge);
}
childedge->CopyFVarInfiniteSharpness(prevedge);
if (mesh->GetTotalFVarWidth()) {
transferFVarToChild(mesh, face, child, i);
}
// Special handling of ptex index for extraordinary faces: make
// sure the children get their indices reassigned to be
// consecutive within the block reserved for the parent.
if (face->GetNumVertices() != 4 && face->GetPtexIndex() != -1) {
child->SetPtexIndex(face->GetPtexIndex() + i);
}
transferEditsToChild(face, child, i);
return child;
} else {
return face->GetChild(i);
}
}
prevedge = edge;
edge = edge->GetNext();
}
return 0;
}
template <class T>
void
HbrBilinearSubdivision<T>::GuaranteeNeighbor(HbrMesh<T>* mesh, HbrHalfedge<T>* edge) {
if (edge->GetOpposite()) {
return;
}
// For the given edge: if the parent of either of its incident
// vertices is itself a _face_, then ensuring that this parent
// face has refined at a particular vertex is sufficient to
// ensure that both of the faces on each side of the edge have
// been created.
bool destParentWasEdge = true;
HbrFace<T>* parentFace = edge->GetOrgVertex()->GetParentFace();
HbrHalfedge<T>* parentEdge = edge->GetDestVertex()->GetParentEdge();
if (!parentFace) {
destParentWasEdge = false;
parentFace = edge->GetDestVertex()->GetParentFace();
parentEdge = edge->GetOrgVertex()->GetParentEdge();
}
if (parentFace) {
// Make sure we deal with a parent halfedge which is
// associated with the parent face
if (parentEdge->GetFace() != parentFace) {
parentEdge = parentEdge->GetOpposite();
}
// If one of the vertices had a parent face, the other one MUST
// have been a child of an edge
assert(parentEdge && parentEdge->GetFace() == parentFace);
#ifdef HBR_DEBUG
std::cerr << "\nparent edge is " << *parentEdge << "\n";
#endif
// The vertex to refine at depends on whether the
// destination or origin vertex of this edge had a parent
// edge
if (destParentWasEdge) {
RefineFaceAtVertex(mesh, parentFace, parentEdge->GetOrgVertex());
} else {
RefineFaceAtVertex(mesh, parentFace, parentEdge->GetDestVertex());
}
// It should always be the case that the opposite now exists -
// we can't have a boundary case here
assert(edge->GetOpposite());
} else {
HbrVertex<T>* parentVertex = edge->GetOrgVertex()->GetParentVertex();
parentEdge = edge->GetDestVertex()->GetParentEdge();
if (!parentVertex) {
parentVertex = edge->GetDestVertex()->GetParentVertex();
parentEdge = edge->GetOrgVertex()->GetParentEdge();
}
if (parentVertex) {
assert(parentEdge);
#ifdef HBR_DEBUG
std::cerr << "\nparent edge is " << *parentEdge << "\n";
#endif
// 1. Go up to the parent of my face
parentFace = edge->GetFace()->GetParent();
#ifdef HBR_DEBUG
std::cerr << "\nparent face is " << *parentFace << "\n";
#endif
// 2. Ask the opposite face (if it exists) to refine
if (parentFace) {
// A vertex can be associated with either of two
// parent halfedges. If the parent edge that we're
// interested in doesn't match then we should look at
// its opposite
if (parentEdge->GetFace() != parentFace)
parentEdge = parentEdge->GetOpposite();
assert(parentEdge->GetFace() == parentFace);
// Make sure the parent edge has its neighbor as well
GuaranteeNeighbor(mesh, parentEdge);
// Now access that neighbor and refine it
if (parentEdge->GetRightFace()) {
RefineFaceAtVertex(mesh, parentEdge->GetRightFace(), parentVertex);
// FIXME: assertion?
assert(edge->GetOpposite());
}
}
}
}
}
template <class T>
void
HbrBilinearSubdivision<T>::GuaranteeNeighbors(HbrMesh<T>* mesh, HbrVertex<T>* vertex) {
#ifdef HBR_DEBUG
std::cerr << "\n\nneighbor guarantee at " << *vertex << " invoked\n";
#endif
// If the vertex is a child of a face, guaranteeing the neighbors
// of the vertex is simply a matter of ensuring the parent face
// has refined.
HbrFace<T>* parentFace = vertex->GetParentFace();
if (parentFace) {
#ifdef HBR_DEBUG
std::cerr << " forcing full refine on parent face\n";
#endif
Refine(mesh, parentFace);
return;
}
// Otherwise if the vertex is a child of an edge, we need to
// ensure that the parent faces on either side of the parent edge
// 1) exist, and 2) have refined at both vertices of the parent
// edge
HbrHalfedge<T>* parentEdge = vertex->GetParentEdge();
if (parentEdge) {
#ifdef HBR_DEBUG
std::cerr << " forcing full refine on adjacent faces of parent edge\n";
#endif
HbrVertex<T>* dest = parentEdge->GetDestVertex();
HbrVertex<T>* org = parentEdge->GetOrgVertex();
GuaranteeNeighbor(mesh, parentEdge);
parentFace = parentEdge->GetLeftFace();
RefineFaceAtVertex(mesh, parentFace, dest);
RefineFaceAtVertex(mesh, parentFace, org);
#ifdef HBR_DEBUG
std::cerr << " on the right face?\n";
#endif
parentFace = parentEdge->GetRightFace();
// The right face may not necessarily exist even after
// GuaranteeNeighbor
if (parentFace) {
RefineFaceAtVertex(mesh, parentFace, dest);
RefineFaceAtVertex(mesh, parentFace, org);
}
#ifdef HBR_DEBUG
std::cerr << " end force\n";
#endif
return;
}
// The last case: the vertex is a child of a vertex. In this case
// we have to first recursively guarantee that the parent's
// adjacent faces also exist.
HbrVertex<T>* parentVertex = vertex->GetParentVertex();
if (parentVertex) {
#ifdef HBR_DEBUG
std::cerr << " recursive parent vertex guarantee call\n";
#endif
parentVertex->GuaranteeNeighbors();
// And then we refine all the face neighbors of the
// parentVertex
HbrHalfedge<T>* start = parentVertex->GetIncidentEdge(), *edge;
edge = start;
while (edge) {
HbrFace<T>* f = edge->GetLeftFace();
RefineFaceAtVertex(mesh, f, parentVertex);
edge = parentVertex->GetNextEdge(edge);
if (edge == start) break;
}
}
}
template <class T>
bool
HbrBilinearSubdivision<T>::HasLimit(HbrMesh<T>* mesh, HbrFace<T>* face) {
if (face->IsHole()) return false;
// A limit face exists if all the bounding edges have limit curves
for (int i = 0; i < face->GetNumVertices(); ++i) {
if (!HasLimit(mesh, face->GetEdge(i))) {
return false;
}
}
return true;
}
template <class T>
bool
HbrBilinearSubdivision<T>::HasLimit(HbrMesh<T>* /* mesh */, HbrHalfedge<T>* /* edge */) {
return true;
}
template <class T>
bool
HbrBilinearSubdivision<T>::HasLimit(HbrMesh<T>* /* mesh */, HbrVertex<T>* vertex) {
vertex->GuaranteeNeighbors();
switch (vertex->GetMask(false)) {
case HbrVertex<T>::k_Smooth:
case HbrVertex<T>::k_Dart:
return !vertex->OnBoundary();
break;
case HbrVertex<T>::k_Crease:
case HbrVertex<T>::k_Corner:
default:
return true;
}
}
template <class T>
HbrVertex<T>*
HbrBilinearSubdivision<T>::Subdivide(HbrMesh<T>* mesh, HbrFace<T>* face) {
// Face rule: simply average all vertices on the face
HbrVertex<T>* v = mesh->NewVertex();
T& data = v->GetData();
int nv = face->GetNumVertices();
float weight = 1.0f / nv;
HbrHalfedge<T>* edge = face->GetFirstEdge();
for (int i = 0; i < face->GetNumVertices(); ++i) {
HbrVertex<T>* w = edge->GetOrgVertex();
// If there are vertex edits we have to make sure the edit
// has been applied
if (mesh->HasVertexEdits()) {
w->GuaranteeNeighbors();
}
data.AddWithWeight(w->GetData(), weight);
data.AddVaryingWithWeight(w->GetData(), weight);
edge = edge->GetNext();
}
#ifdef HBR_DEBUG
std::cerr << "Subdividing at " << *face << "\n";
#endif
// Set the extraordinary flag if the face had anything other than
// 4 vertices
if (nv != 4) v->SetExtraordinary();
#ifdef HBR_DEBUG
std::cerr << " created " << *v << "\n";
#endif
return v;
}
template <class T>
HbrVertex<T>*
HbrBilinearSubdivision<T>::Subdivide(HbrMesh<T>* mesh, HbrHalfedge<T>* edge) {
#ifdef HBR_DEBUG
float esharp = edge->GetSharpness();
std::cerr << "Subdividing at " << *edge << " (sharpness = " << esharp << ")";
#endif
HbrVertex<T>* v = mesh->NewVertex();
T& data = v->GetData();
// If there's the possibility of a crease edits, make sure the
// edit has been applied
if (mesh->HasCreaseEdits()) {
edge->GuaranteeNeighbor();
}
// If there's the possibility of vertex edits on either vertex, we
// have to make sure the edit has been applied
if (mesh->HasVertexEdits()) {
edge->GetOrgVertex()->GuaranteeNeighbors();
edge->GetDestVertex()->GuaranteeNeighbors();
}
// Average the two end points
data.AddWithWeight(edge->GetOrgVertex()->GetData(), 0.5f);
data.AddWithWeight(edge->GetDestVertex()->GetData(), 0.5f);
// Varying data is always the average of two end points
data.AddVaryingWithWeight(edge->GetOrgVertex()->GetData(), 0.5f);
data.AddVaryingWithWeight(edge->GetDestVertex()->GetData(), 0.5f);
#ifdef HBR_DEBUG
std::cerr << " created " << *v << "\n";
#endif
return v;
}
template <class T>
HbrVertex<T>*
HbrBilinearSubdivision<T>::Subdivide(HbrMesh<T>* mesh, HbrVertex<T>* vertex) {
HbrVertex<T>* v;
// If there are vertex edits we have to make sure the edit has
// been applied by guaranteeing the neighbors of the
// vertex. Unfortunately in this case, we can't share the data
// with the parent
if (mesh->HasVertexEdits()) {
vertex->GuaranteeNeighbors();
v = mesh->NewVertex();
T& data = v->GetData();
// Just copy the old value
data.AddWithWeight(vertex->GetData(), 1.0f);
// Varying data is always just propagated down
data.AddVaryingWithWeight(vertex->GetData(), 1.0f);
} else {
// Create a new vertex that just shares the same data
v = mesh->NewVertex(vertex->GetData());
}
#ifdef HBR_DEBUG
std::cerr << "Subdividing at " << *vertex << "\n";
std::cerr << " created " << *v << "\n";
#endif
// Inherit extraordinary flag and sharpness
if (vertex->IsExtraordinary()) v->SetExtraordinary();
float sharp = vertex->GetSharpness();
if (sharp >= HbrVertex<T>::k_InfinitelySharp) {
v->SetSharpness(HbrVertex<T>::k_InfinitelySharp);
} else if (sharp > HbrVertex<T>::k_Smooth) {
sharp -= 1.0f;
if (sharp < (float) HbrVertex<T>::k_Smooth) {
sharp = (float) HbrVertex<T>::k_Smooth;
}
v->SetSharpness(sharp);
} else {
v->SetSharpness(HbrVertex<T>::k_Smooth);
}
return v;
}
} // end namespace OPENSUBDIV_VERSION
using namespace OPENSUBDIV_VERSION;
} // end namespace OpenSubdiv
#endif /* HBRBILINEAR_H */