OpenSubdiv/opensubdiv/far/patchTables.h
Takahito Tejima 74b78b3d17 Refactor again FarPatchTableFactory.
- rename "Regular end cap" to "BSplineBasis end cap"
- revert templating and add EndCapType into PatchTablesFactory::Options.
- make EndCapFactories internal in PatchTablesFactory.
- move end cap stencils into PatchTables, keep them relative to the max level.
- add a utility StencilTablesFactory::AppendEndCapStencilTables to splice and factorize endcap stencil tables.
2015-04-23 16:58:56 -07:00

570 lines
18 KiB
C++

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#ifndef FAR_PATCH_TABLES_H
#define FAR_PATCH_TABLES_H
#include "../version.h"
#include "../far/interpolate.h"
#include "../far/patchDescriptor.h"
#include "../sdc/options.h"
#include <cstdlib>
#include <cassert>
#include <algorithm>
#include <vector>
#include <map>
namespace OpenSubdiv {
namespace OPENSUBDIV_VERSION {
namespace Far {
/// \brief Container for arrays of parametric patches
///
/// PatchTables contain topology and parametric information about the patches
/// generated by the Refinement process. Patches in the tables are sorted into
/// arrays based on their PatchDescriptor Type.
///
/// Note : PatchTables can be accessed either using a PatchHandle or a
/// combination of array and patch indices.
///
/// XXXX manuelk we should add a PatchIterator that can dereference into
/// a PatchHandle for fast linear traversal of the tables
///
class PatchTables {
public:
/// \brief Handle that can be used as unique patch identifier within PatchTables
class PatchHandle {
// XXXX manuelk members will eventually be made private
public:
friend class PatchTables;
friend class PatchMap;
Index arrayIndex, // Array index of the patch
patchIndex, // Absolute Index of the patch
vertIndex; // Relative offset to the first CV of the patch in array
};
public:
/// \brief Copy constructor
PatchTables(PatchTables const & src);
/// \brief Destructor
~PatchTables();
/// \brief True if the patches are of feature adaptive types
bool IsFeatureAdaptive() const;
/// \brief Returns the total number of control vertex indices in the tables
int GetNumControlVerticesTotal() const {
return (int)_patchVerts.size();
}
/// \brief Returns the total number of patches stored in the tables
int GetNumPatchesTotal() const;
/// \brief Returns max vertex valence
int GetMaxValence() const { return _maxValence; }
/// \brief Returns the total number of ptex faces in the mesh
int GetNumPtexFaces() const { return _numPtexFaces; }
//@{
/// @name Individual patches
///
/// \anchor individual_patches
///
/// \brief Accessors for individual patches
///
/// \brief Returns the PatchDescriptor for the patches in array 'array'
PatchDescriptor GetPatchDescriptor(PatchHandle const & handle) const;
/// \brief Returns the control vertex indices for the patch identified by 'handle'
ConstIndexArray GetPatchVertices(PatchHandle const & handle) const;
/// \brief Returns a PatchParam for the patch identified by 'handle'
PatchParam GetPatchParam(PatchHandle const & handle) const;
/// \brief Returns the control vertex indices for the patch 'patch' in array 'array'
ConstIndexArray GetPatchVertices(int array, int patch) const;
/// \brief Returns the PatchParam for the patch 'patch' in array 'array'
PatchParam GetPatchParam(int array, int patch) const;
//@}
//@{
/// @name Arrays of patches
///
/// \anchor arrays_of_patches
///
/// \brief Accessors for arrays of patches of the same type
///
/// \brief Returns the number of patch arrays in the table
int GetNumPatchArrays() const;
/// \brief Returns the number of patches in patch array 'array'
int GetNumPatches(int array) const;
/// \brief Returns the number of control vertices in patch array 'array'
int GetNumControlVertices(int array) const;
/// \brief Returns the PatchDescriptor for the patches in array 'array'
PatchDescriptor GetPatchArrayDescriptor(int array) const;
/// \brief Returns the control vertex indices for the patches in array 'array'
ConstIndexArray GetPatchArrayVertices(int array) const;
/// \brief Returns the PatchParams for the patches in array 'array'
ConstPatchParamArray const GetPatchParams(int array) const;
//@}
//@{
/// @name End-Cap patches
///
/// \anchor end_cap_patches
///
/// \brief Accessors for end-cap patch additional data
///
typedef Vtr::ConstArray<unsigned int> ConstQuadOffsetsArray;
/// \brief Returns the 'QuadOffsets' for the Gregory patch identified by 'handle'
ConstQuadOffsetsArray GetPatchQuadOffsets(PatchHandle const & handle) const;
typedef std::vector<Index> VertexValenceTable;
/// \brief Returns the 'VertexValences' table (vertex neighborhoods table)
VertexValenceTable const & GetVertexValenceTable() const {
return _vertexValenceTable;
}
/// \brief Returns the basis conversion stencil tables to get endcap patch points.
/// This stencil is relative to the max level refined vertices.
StencilTables const *GetEndCapVertexStencilTables() const {
return _vertexStencilTables;
}
/// \brief Returns the varying stencil tables for the endcap patches
/// which has same ordering as the endcap vertex stencil tables.
StencilTables const *GetEndCapVaryingStencilTables() const {
return _varyingStencilTables;
}
//@}
//@{
/// @name Single-crease patches
///
/// \anchor single_crease_patches
///
/// \brief Accessors for single-crease patch edge sharpness
///
/// \brief Returns the crease sharpness for the patch identified by 'handle'
/// if it is a single-crease patch, or 0.0f
float GetSingleCreasePatchSharpnessValue(PatchHandle const & handle) const;
/// \brief Returns the crease sharpness for the patch 'patch' in array 'array'
/// if it is a single-crease patch, or 0.0f
float GetSingleCreasePatchSharpnessValue(int array, int patch) const;
//@}
//@{
/// @name Face-varying channels
///
/// \anchor face_varying_channels
///
/// \brief Accessors for face-varying channels
///
/// \brief Returns the number of face-varying channels
int GetNumFVarChannels() const;
/// \brief Returns the interpolation mode for a given channel
Sdc::Options::FVarLinearInterpolation GetFVarChannelLinearInterpolation(int channel) const;
/// \brief Returns a descriptor for a given patch in a channel
PatchDescriptor::Type GetFVarPatchType(int channel, PatchHandle const & handle) const;
/// \brief Returns a descriptor for a given patch in a channel
PatchDescriptor::Type GetFVarPatchType(int channel, int array, int patch) const;
/// \brief Returns an array of descriptors for the patches in a channel
Vtr::ConstArray<PatchDescriptor::Type> GetFVarPatchTypes(int channel) const;
/// \brief Returns the value indices for a given patch in a channel
ConstIndexArray GetFVarPatchValues(int channel, PatchHandle const & handle) const;
/// \brief Returns the value indices for a given patch in a channel
ConstIndexArray GetFVarPatchValues(int channel, int array, int patch) const;
/// \brief Returns an array of value indices for the patches in a channel
ConstIndexArray GetFVarPatchesValues(int channel) const;
//@}
//@{
/// @name Direct accessors
///
/// \warning These direct accessors are left for convenience, but they are
/// likely going to be deprecated in future releases
///
typedef std::vector<Index> PatchVertsTable;
/// \brief Get the table of patch control vertices
PatchVertsTable const & GetPatchControlVerticesTable() const { return _patchVerts; }
/// \brief Returns the PatchParamTable (PatchParams order matches patch array sorting)
PatchParamTable const & GetPatchParamTable() const { return _paramTable; }
/// \brief Returns a sharpness index table for each patch (if exists)
std::vector<Index> const &GetSharpnessIndexTable() const { return _sharpnessIndices; }
/// \brief Returns sharpness values table
std::vector<float> const &GetSharpnessValues() const { return _sharpnessValues; }
typedef std::vector<unsigned int> QuadOffsetsTable;
/// \brief Returns the quad-offsets table
QuadOffsetsTable const & GetQuadOffsetsTable() const {
return _quadOffsetsTable;
}
//@}
/// debug helper
void print() const;
public:
//@{
/// @name Interpolation methods
//
/// \brief Interpolate the (s,t) parametric location of a *bilinear* patch
///
/// \note This method can only be used on uniform PatchTables of quads (see
/// IsFeatureAdaptive() method)
///
/// @param handle A patch handle indentifying the sub-patch containing the
/// (s,t) location
///
/// @param s Patch coordinate (in coarse face normalized space)
///
/// @param t Patch coordinate (in coarse face normalized space)
///
/// @param src Source primvar buffer (control vertices data)
///
/// @param dst Destination primvar buffer (limit surface data)
///
template <class T, class U> void EvaluateBilinear(PatchHandle const & handle,
float s, float t, T const & src, U & dst) const;
/// \brief Interpolate the (s,t) parametric location of a *bicubic* patch
///
/// \note This method can only be used on feature adaptive PatchTables (ie.
/// IsFeatureAdaptive() is false)
///
/// @param handle A patch handle indentifying the sub-patch containing the
/// (s,t) location
///
/// @param s Patch coordinate (in coarse face normalized space)
///
/// @param t Patch coordinate (in coarse face normalized space)
///
/// @param src Source primvar buffer (control vertices data)
///
/// @param dst Destination primvar buffer (limit surface data)
///
template <class T, class U> void Evaluate(PatchHandle const & handle,
float s, float t, T const & src, U & dst) const;
/// \brief Interpolate the (s,t) parametric location of a *bicubic*
/// face-varying patch
///
/// @param channel The face-varying primvar channel
///
/// @param handle A patch handle indentifying the sub-patch containing the
/// (s,t) location
///
/// @param s Patch coordinate (in coarse face normalized space)
///
/// @param t Patch coordinate (in coarse face normalized space)
///
/// @param src Source primvar buffer (control vertices data)
///
/// @param dst Destination primvar buffer (limit surface data)
///
template <class T, class U> void EvaluateFaceVarying(int channel,
PatchHandle const & handle, float s, float t, T const & src, U & dst) const;
//@}
protected:
friend class PatchTablesFactory;
friend class EndCapLegacyGregoryPatchFactory;
// Factory constructor
PatchTables(int maxvalence);
Index getPatchIndex(int array, int patch) const;
PatchParamArray getPatchParams(int arrayIndex);
Index * getSharpnessIndices(Index arrayIndex);
float * getSharpnessValues(Index arrayIndex);
private:
//
// Patch arrays
//
struct PatchArray;
typedef std::vector<PatchArray> PatchArrayVector;
PatchArray & getPatchArray(Index arrayIndex);
PatchArray const & getPatchArray(Index arrayIndex) const;
void reservePatchArrays(int numPatchArrays);
void pushPatchArray(PatchDescriptor desc, int npatches,
Index * vidx, Index * pidx, Index * qoidx=0);
IndexArray getPatchArrayVertices(int arrayIndex);
Index findPatchArray(PatchDescriptor desc);
//
// FVar patch channels
//
struct FVarPatchChannel;
typedef std::vector<FVarPatchChannel> FVarPatchChannelVector;
FVarPatchChannel & getFVarPatchChannel(int channel);
FVarPatchChannel const & getFVarPatchChannel(int channel) const;
void allocateFVarPatchChannels(int numChannels);
void allocateChannelValues(int channel, int numPatches, int numVerticesTotal);
void setFVarPatchChannelLinearInterpolation(int channel,
Sdc::Options::FVarLinearInterpolation interpolation);
void setFVarPatchChannelPatchesType(int channel, PatchDescriptor::Type type);
PatchDescriptor::Type getFVarPatchType(int channel, int patch) const;
Vtr::Array<PatchDescriptor::Type> getFVarPatchTypes(int channel);
IndexArray getFVarPatchesValues(int channel);
ConstIndexArray getFVarPatchValues(int channel, int patch) const;
void setBicubicFVarPatchChannelValues(int channel, int patchSize, std::vector<Index> const & values);
private:
//
// Topology
//
int _maxValence, // highest vertex valence found in the mesh
_numPtexFaces; // total number of ptex faces
PatchArrayVector _patchArrays; // Vector of descriptors for arrays of patches
std::vector<Index> _patchVerts; // Indices of the control vertices of the patches
PatchParamTable _paramTable; // PatchParam bitfields (one per patch)
//
// Extraordinary vertex closed-form evaluation / endcap basis conversion
//
// XXXtakahito: these data will probably be replaced with mask coefficient or something
// SchemeWorker populates.
//
QuadOffsetsTable _quadOffsetsTable; // Quad offsets (for Gregory patches)
VertexValenceTable _vertexValenceTable; // Vertex valence table (for Gregory patches)
StencilTables const * _vertexStencilTables; // endcap basis conversion stencils
StencilTables const * _varyingStencilTables; // endcap varying stencils (for convenience)
//
// Face-varying data
//
FVarPatchChannelVector _fvarChannels;
//
// 'single-crease' patch sharpness tables
//
std::vector<Index> _sharpnessIndices; // Indices of single-crease sharpness (one per patch)
std::vector<float> _sharpnessValues; // Sharpness values.
};
// XXXX manuelk evaluation should have the following interface :
// - EvaluateVertex<>()
// - EvaluateVarying<>()
// - EvaluateFaceVarying<>()
// this refactor is pending the move of fvar channels as a private data
// structure inside PatchTables, along with the addition of accessors that
// use PatchHandle and work that hides the indexing of the patches inside
// the tables
// Interpolates primvar limit at the given parametric location on a patch
template <class T, class U>
inline void
PatchTables::Evaluate(PatchHandle const & handle, float s, float t,
T const & src, U & dst) const {
assert(IsFeatureAdaptive());
PatchParam::BitField const & bits = _paramTable[handle.patchIndex].bitField;
PatchDescriptor::Type ptype =
GetPatchArrayDescriptor(handle.arrayIndex).GetType();
dst.Clear();
float Q[16], Qd1[16], Qd2[16];
if (ptype==PatchDescriptor::REGULAR) {
GetBSplineWeights(bits, s, t, Q, Qd1, Qd2);
ConstIndexArray cvs = GetPatchVertices(handle);
InterpolateRegularPatch(cvs.begin(), Q, Qd1, Qd2, src, dst);
// XXXdyu bits InterpolateBoundaryPatch(cvs.begin(), Q, Qd1, Qd2, src, dst);
// XXXdyu bits InterpolateCornerPatch(cvs.begin(), Q, Qd1, Qd2, src, dst);
} else if (ptype==PatchDescriptor::GREGORY_BASIS) {
ConstIndexArray cvs = GetPatchVertices(handle);
GetBezierWeights(bits, s, t, Q, Qd1, Qd2);
InterpolateGregoryPatch(cvs.begin(), s, t, Q, Qd1, Qd2, src, dst);
} else if (ptype==PatchDescriptor::QUADS) {
ConstIndexArray cvs = GetPatchVertices(handle);
GetBilinearWeights(bits, s, t, Q, Qd1, Qd2);
InterpolateBilinearPatch(cvs.begin(), Q, Qd1, Qd2, src, dst);
} else {
assert(0);
}
}
// Interpolates the limit position of a parametric location on a face-varying
// patch
// XXXX manuelk this method is very similar to the vertex Evaluate<>() method
// -> we should eventually merge them
template <class T, class U>
inline void
PatchTables::EvaluateFaceVarying(int channel, PatchHandle const & handle,
float s, float t, T const & src, U & dst) const {
ConstIndexArray cvs = GetFVarPatchValues(channel, handle);
PatchDescriptor::Type type = GetFVarPatchType(channel, handle);
PatchParam::BitField bits;
bits.Clear();
float Q[16], Qd1[16], Qd2[16];
switch (type) {
case PatchDescriptor::QUADS:
GetBilinearWeights(bits, s, t, Q, Qd1, Qd2);
InterpolateBilinearPatch(cvs.begin(), Q, Qd1, Qd2, src, dst);
break;
case PatchDescriptor::TRIANGLES:
assert("not implemented yet");
case PatchDescriptor::REGULAR:
GetBSplineWeights(bits, s, t, Q, Qd1, Qd2);
InterpolateRegularPatch(cvs.begin(), Q, Qd1, Qd2, src, dst);
// XXXdyu bits InterpolateBoundaryPatch(cvs.begin(), Q, Qd1, Qd2, src, dst);
// XXXdyu bits InterpolateCornerPatch(cvs.begin(), Q, Qd1, Qd2, src, dst);
break;
default:
assert(0);
// XXXX manuelk - how do we handle end-patches ?
// - is there a bicubic patch that we could use to reduce
// isolation of bilinear boundaries with smooth a interior ?
}
}
// Interpolates primvar at the given parametric location on a bilinear patch
template <class T, class U>
inline void
PatchTables::EvaluateBilinear(PatchHandle const & handle, float s, float t,
T const & src, U & dst) const {
ConstIndexArray cvs = GetPatchVertices(handle);
assert(cvs.size()==4);
PatchParam::BitField const & bits =
_paramTable[handle.patchIndex].bitField;
dst.Clear();
float Q[4], Qd1[4], Qd2[4];
GetBilinearWeights(bits, s, t, Q, Qd1, Qd2);
InterpolateBilinearPatch(cvs.begin(), Q, Qd1, Qd2, src, dst);
}
} // end namespace Far
} // end namespace OPENSUBDIV_VERSION
using namespace OPENSUBDIV_VERSION;
} // end namespace OpenSubdiv
#endif /* FAR_PATCH_TABLES */