mirror of
https://github.com/PixarAnimationStudios/OpenSubdiv
synced 2025-01-07 15:30:14 +00:00
1142 lines
44 KiB
C++
1142 lines
44 KiB
C++
//
|
|
// Copyright (C) Pixar. All rights reserved.
|
|
//
|
|
// This license governs use of the accompanying software. If you
|
|
// use the software, you accept this license. If you do not accept
|
|
// the license, do not use the software.
|
|
//
|
|
// 1. Definitions
|
|
// The terms "reproduce," "reproduction," "derivative works," and
|
|
// "distribution" have the same meaning here as under U.S.
|
|
// copyright law. A "contribution" is the original software, or
|
|
// any additions or changes to the software.
|
|
// A "contributor" is any person or entity that distributes its
|
|
// contribution under this license.
|
|
// "Licensed patents" are a contributor's patent claims that read
|
|
// directly on its contribution.
|
|
//
|
|
// 2. Grant of Rights
|
|
// (A) Copyright Grant- Subject to the terms of this license,
|
|
// including the license conditions and limitations in section 3,
|
|
// each contributor grants you a non-exclusive, worldwide,
|
|
// royalty-free copyright license to reproduce its contribution,
|
|
// prepare derivative works of its contribution, and distribute
|
|
// its contribution or any derivative works that you create.
|
|
// (B) Patent Grant- Subject to the terms of this license,
|
|
// including the license conditions and limitations in section 3,
|
|
// each contributor grants you a non-exclusive, worldwide,
|
|
// royalty-free license under its licensed patents to make, have
|
|
// made, use, sell, offer for sale, import, and/or otherwise
|
|
// dispose of its contribution in the software or derivative works
|
|
// of the contribution in the software.
|
|
//
|
|
// 3. Conditions and Limitations
|
|
// (A) No Trademark License- This license does not grant you
|
|
// rights to use any contributor's name, logo, or trademarks.
|
|
// (B) If you bring a patent claim against any contributor over
|
|
// patents that you claim are infringed by the software, your
|
|
// patent license from such contributor to the software ends
|
|
// automatically.
|
|
// (C) If you distribute any portion of the software, you must
|
|
// retain all copyright, patent, trademark, and attribution
|
|
// notices that are present in the software.
|
|
// (D) If you distribute any portion of the software in source
|
|
// code form, you may do so only under this license by including a
|
|
// complete copy of this license with your distribution. If you
|
|
// distribute any portion of the software in compiled or object
|
|
// code form, you may only do so under a license that complies
|
|
// with this license.
|
|
// (E) The software is licensed "as-is." You bear the risk of
|
|
// using it. The contributors give no express warranties,
|
|
// guarantees or conditions. You may have additional consumer
|
|
// rights under your local laws which this license cannot change.
|
|
// To the extent permitted under your local laws, the contributors
|
|
// exclude the implied warranties of merchantability, fitness for
|
|
// a particular purpose and non-infringement.
|
|
//
|
|
#ifndef HBRCATMARK_H
|
|
#define HBRCATMARK_H
|
|
|
|
/*#define HBR_DEBUG */
|
|
#include "../hbr/subdivision.h"
|
|
|
|
template <class T>
|
|
class HbrCatmarkSubdivision : public HbrSubdivision<T> {
|
|
public:
|
|
HbrCatmarkSubdivision<T>()
|
|
: HbrSubdivision<T>(), triangleSubdivision(k_Normal) {}
|
|
|
|
HbrCatmarkSubdivision<T>(const HbrCatmarkSubdivision<T> &old)
|
|
: HbrSubdivision<T>(), triangleSubdivision(old.triangleSubdivision) {}
|
|
|
|
virtual HbrSubdivision<T>* Clone() const {
|
|
return new HbrCatmarkSubdivision<T>(*this);
|
|
}
|
|
|
|
virtual void Refine(HbrMesh<T>* mesh, HbrFace<T>* face);
|
|
virtual HbrFace<T>* RefineFaceAtVertex(HbrMesh<T>* mesh, HbrFace<T>* face, HbrVertex<T>* vertex);
|
|
virtual void GuaranteeNeighbor(HbrMesh<T>* mesh, HbrHalfedge<T>* edge);
|
|
virtual void GuaranteeNeighbors(HbrMesh<T>* mesh, HbrVertex<T>* vertex);
|
|
|
|
virtual bool HasLimit(HbrMesh<T>* mesh, HbrFace<T>* face);
|
|
virtual bool HasLimit(HbrMesh<T>* mesh, HbrHalfedge<T>* edge);
|
|
virtual bool HasLimit(HbrMesh<T>* mesh, HbrVertex<T>* vertex);
|
|
|
|
virtual HbrVertex<T>* Subdivide(HbrMesh<T>* mesh, HbrFace<T>* face);
|
|
virtual HbrVertex<T>* Subdivide(HbrMesh<T>* mesh, HbrHalfedge<T>* edge);
|
|
virtual HbrVertex<T>* Subdivide(HbrMesh<T>* mesh, HbrVertex<T>* vertex);
|
|
|
|
virtual bool VertexIsExtraordinary(HbrMesh<T>* /* mesh */, HbrVertex<T>* vertex) { return vertex->GetValence() != 4; }
|
|
|
|
// Triangle subdivision rules, which modifies the rules for
|
|
// triangular faces in order to make them smoother. The "normal"
|
|
// rule is the standard Catmull-Clark rule. The "old" rule
|
|
// modifies only the subdivision rules for a face to vertex
|
|
// refinement. The "new" rule modifies only the subdivision rules
|
|
// for an edge to vertex refinement. These rules are only applied
|
|
// to the top level face, since only top level faces can be
|
|
// triangular; after one level of refinement everything becomes
|
|
// quads.
|
|
enum TriangleSubdivision {
|
|
k_Normal,
|
|
k_Old,
|
|
k_New
|
|
};
|
|
TriangleSubdivision GetTriangleSubdivisionMethod() const { return triangleSubdivision; }
|
|
void SetTriangleSubdivisionMethod(TriangleSubdivision method) { triangleSubdivision = method; }
|
|
|
|
virtual int GetFaceChildrenCount(int nvertices) const { return nvertices; }
|
|
|
|
private:
|
|
|
|
// Transfers facevarying data from a parent face to a child face
|
|
void transferFVarToChild(HbrMesh<T>* mesh, HbrFace<T>* face, HbrFace<T>* child, int index);
|
|
|
|
// Transfers vertex and edge edits from a parent face to a child face
|
|
void transferEditsToChild(HbrFace<T>* face, HbrFace<T>* child, int index);
|
|
|
|
TriangleSubdivision triangleSubdivision;
|
|
};
|
|
|
|
template <class T>
|
|
void
|
|
HbrCatmarkSubdivision<T>::transferFVarToChild(HbrMesh<T>* mesh, HbrFace<T>* face, HbrFace<T>* child, int index) {
|
|
|
|
typename HbrMesh<T>::InterpolateBoundaryMethod fvarinterp = mesh->GetFVarInterpolateBoundaryMethod();
|
|
const int fvarcount = mesh->GetFVarCount();
|
|
int fvarindex = 0;
|
|
const int nv = face->GetNumVertices();
|
|
bool extraordinary = (nv != 4);
|
|
HbrVertex<T> *v = face->GetVertex(index), *childVertex;
|
|
HbrHalfedge<T>* edge;
|
|
|
|
// We do the face subdivision rule first, because we may reuse the
|
|
// result (stored in fv2) for the other subdivisions.
|
|
float weight = 1.0f / nv;
|
|
// For the face center vertex, the facevarying data can be cleared
|
|
// and averaged en masse, since the subdivision rules don't change
|
|
// for any of the data - we use the smooth rule for all of it.
|
|
// And since we know that the fvardata for this particular vertex
|
|
// is smooth and therefore shareable amongst all incident faces,
|
|
// we don't have to allocate extra storage for it. We also don't
|
|
// have to compute it if some other face got to it first (as
|
|
// indicated by the IsInitialized() flag).
|
|
HbrFVarData<T>& fv2 = child->GetFVarData(extraordinary ? 2 : (index+2)%4);
|
|
if (!fv2.IsInitialized()) {
|
|
const int totalfvarwidth = mesh->GetTotalFVarWidth();
|
|
fv2.ClearAll(totalfvarwidth);
|
|
for (int j = 0; j < nv; ++j) {
|
|
fv2.AddWithWeightAll(face->GetFVarData(j), totalfvarwidth, weight);
|
|
}
|
|
}
|
|
assert(fv2.IsInitialized());
|
|
|
|
v->GuaranteeNeighbors();
|
|
|
|
// Make sure that that each of the vertices of the child face have
|
|
// the appropriate facevarying storage as needed. If there are
|
|
// discontinuities in any facevarying datum, the vertex must
|
|
// allocate a new block of facevarying storage specific to the
|
|
// child face.
|
|
bool fv0IsSmooth, fv1IsSmooth, fv3IsSmooth;
|
|
|
|
childVertex = child->GetVertex(extraordinary ? 0 : (index+0)%4);
|
|
fv0IsSmooth = v->IsFVarAllSmooth();
|
|
if (!fv0IsSmooth) {
|
|
childVertex->NewFVarData(child);
|
|
}
|
|
HbrFVarData<T>& fv0 = childVertex->GetFVarData(child);
|
|
|
|
edge = face->GetEdge(index);
|
|
GuaranteeNeighbor(mesh, edge);
|
|
assert(edge->GetOrgVertex() == v);
|
|
childVertex = child->GetVertex(extraordinary ? 1 : (index+1)%4);
|
|
fv1IsSmooth = !edge->IsFVarInfiniteSharpAnywhere();
|
|
if (!fv1IsSmooth) {
|
|
childVertex->NewFVarData(child);
|
|
}
|
|
HbrFVarData<T>& fv1 = childVertex->GetFVarData(child);
|
|
|
|
edge = edge->GetPrev();
|
|
GuaranteeNeighbor(mesh, edge);
|
|
assert(edge == face->GetEdge((index + nv - 1) % nv));
|
|
assert(edge->GetDestVertex() == v);
|
|
childVertex = child->GetVertex(extraordinary ? 3 : (index+3)%4);
|
|
fv3IsSmooth = !edge->IsFVarInfiniteSharpAnywhere();
|
|
if (!fv3IsSmooth) {
|
|
childVertex->NewFVarData(child);
|
|
}
|
|
HbrFVarData<T>& fv3 = childVertex->GetFVarData(child);
|
|
fvarindex = 0;
|
|
for (int fvaritem = 0; fvaritem < fvarcount; ++fvaritem) {
|
|
// Vertex subdivision rule. Analyze whether the vertex is on the
|
|
// boundary and whether it's an infinitely sharp corner. We
|
|
// determine the last by checking the propagate corners flag on
|
|
// the mesh; if it's off, we check the two edges of this face
|
|
// incident to that vertex and determining whether they are
|
|
// facevarying boundary edges - this is analogous to what goes on
|
|
// for the interpolateboundary tag (which when set to
|
|
// EDGEANDCORNER marks vertices with a valence of two as being
|
|
// sharp corners). If propagate corners is on, we check *all*
|
|
// faces to see if two edges side by side are facevarying boundary
|
|
// edges. The facevarying boundary check ignores geometric
|
|
// sharpness, otherwise we may swim at geometric creases which
|
|
// aren't actually discontinuous.
|
|
bool infcorner = false;
|
|
const int fvarwidth = mesh->GetFVarWidths()[fvaritem];
|
|
const unsigned char fvarmask = v->GetFVarMask(fvaritem);
|
|
if (fvarinterp == HbrMesh<T>::k_InterpolateBoundaryEdgeAndCorner) {
|
|
if (fvarmask >= HbrVertex<T>::k_Corner) {
|
|
infcorner = true;
|
|
} else if (mesh->GetFVarPropagateCorners()) {
|
|
if (v->IsFVarCorner(fvaritem)) {
|
|
infcorner = true;
|
|
}
|
|
} else {
|
|
if (face->GetEdge(index)->GetFVarSharpness(fvaritem, true) && face->GetEdge(index)->GetPrev()->GetFVarSharpness(fvaritem, true)) {
|
|
infcorner = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Infinitely sharp vertex rule. Applied if the vertex is:
|
|
// - undergoing no facevarying boundary interpolation;
|
|
// - at a geometric crease, in either boundary interpolation case; or
|
|
// - is an infinitely sharp facevarying vertex, in the EDGEANDCORNER case; or
|
|
// - has a mask equal or greater than one, in the "always
|
|
// sharp" interpolate boundary case
|
|
if (fvarinterp == HbrMesh<T>::k_InterpolateBoundaryNone ||
|
|
(fvarinterp == HbrMesh<T>::k_InterpolateBoundaryAlwaysSharp &&
|
|
fvarmask >= 1) ||
|
|
v->GetSharpness() > HbrVertex<T>::k_Smooth ||
|
|
infcorner) {
|
|
fv0.SetWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, 1.0f);
|
|
}
|
|
// Dart rule: unlike geometric creases, because there's two
|
|
// discontinuous values for the one incident edge, we use the
|
|
// boundary rule and not the smooth rule
|
|
else if (fvarmask == 1) {
|
|
assert(!v->OnBoundary());
|
|
|
|
// Use 0.75 of the current vert
|
|
fv0.SetWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, 0.75f);
|
|
|
|
// 0.125 of "two adjacent edge vertices", which in actuality
|
|
// are the facevarying values of the same vertex but on each
|
|
// side of the single incident facevarying sharp edge
|
|
HbrHalfedge<T>* start = v->GetIncidentEdge(), *nextedge;
|
|
edge = start;
|
|
while (edge) {
|
|
if (edge->GetFVarSharpness(fvaritem)) {
|
|
break;
|
|
}
|
|
nextedge = v->GetNextEdge(edge);
|
|
if (nextedge == start) {
|
|
assert(0); // we should have found it by now
|
|
break;
|
|
} else if (!nextedge) {
|
|
// should never get into this case - if the vertex is
|
|
// on a boundary, it can never be a facevarying dart
|
|
// vertex
|
|
assert(0);
|
|
edge = edge->GetPrev();
|
|
break;
|
|
} else {
|
|
edge = nextedge;
|
|
}
|
|
}
|
|
HbrVertex<T>* w = edge->GetDestVertex();
|
|
HbrFace<T>* bestface = edge->GetLeftFace();
|
|
int j;
|
|
for (j = 0; j < bestface->GetNumVertices(); ++j) {
|
|
if (bestface->GetVertex(j) == w) break;
|
|
}
|
|
assert(j != bestface->GetNumVertices());
|
|
fv0.AddWithWeight(bestface->GetFVarData(j), fvarindex, fvarwidth, 0.125f);
|
|
bestface = edge->GetRightFace();
|
|
for (j = 0; j < bestface->GetNumVertices(); ++j) {
|
|
if (bestface->GetVertex(j) == w) break;
|
|
}
|
|
assert(j != bestface->GetNumVertices());
|
|
fv0.AddWithWeight(bestface->GetFVarData(j), fvarindex, fvarwidth, 0.125f);
|
|
}
|
|
// Boundary vertex rule
|
|
else if (fvarmask != 0) {
|
|
|
|
// Use 0.75 of the current vert
|
|
fv0.SetWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, 0.75f);
|
|
|
|
// Compute 0.125 of two adjacent edge vertices. However the
|
|
// two adjacent edge vertices we use must be part of the
|
|
// facevarying "boundary". To find the first edge we cycle
|
|
// counterclockwise around the current vertex v and look for
|
|
// the first boundary edge
|
|
|
|
HbrFace<T>* bestface = face;
|
|
HbrHalfedge<T>* bestedge = face->GetEdge(index)->GetPrev();
|
|
HbrHalfedge<T>* starte = bestedge->GetOpposite();
|
|
HbrVertex<T>* w = 0;
|
|
if (!starte) {
|
|
w = face->GetEdge(index)->GetPrev()->GetOrgVertex();
|
|
} else {
|
|
HbrHalfedge<T>* e = starte, *next;
|
|
assert(starte->GetOrgVertex() == v);
|
|
do {
|
|
if (e->GetFVarSharpness(fvaritem) || !e->GetLeftFace()) {
|
|
bestface = e->GetRightFace();
|
|
bestedge = e;
|
|
break;
|
|
}
|
|
next = v->GetNextEdge(e);
|
|
if (!next) {
|
|
bestface = e->GetLeftFace();
|
|
w = e->GetPrev()->GetOrgVertex();
|
|
break;
|
|
}
|
|
e = next;
|
|
} while (e && e != starte);
|
|
}
|
|
if (!w) w = bestedge->GetDestVertex();
|
|
int j;
|
|
for (j = 0; j < bestface->GetNumVertices(); ++j) {
|
|
if (bestface->GetVertex(j) == w) break;
|
|
}
|
|
assert(j != bestface->GetNumVertices());
|
|
fv0.AddWithWeight(bestface->GetFVarData(j), fvarindex, fvarwidth, 0.125f);
|
|
|
|
// Look for the other edge by cycling clockwise around v
|
|
bestface = face;
|
|
bestedge = face->GetEdge(index);
|
|
starte = bestedge;
|
|
w = 0;
|
|
if (HbrHalfedge<T>* e = starte) {
|
|
assert(starte->GetOrgVertex() == v);
|
|
do {
|
|
if (e->GetFVarSharpness(fvaritem) || !e->GetRightFace()) {
|
|
bestface = e->GetLeftFace();
|
|
bestedge = e;
|
|
break;
|
|
}
|
|
assert(e->GetOpposite());
|
|
e = v->GetPreviousEdge(e);
|
|
} while (e && e != starte);
|
|
}
|
|
if (!w) w = bestedge->GetDestVertex();
|
|
for (j = 0; j < bestface->GetNumVertices(); ++j) {
|
|
if (bestface->GetVertex(j) == w) break;
|
|
}
|
|
assert(j != bestface->GetNumVertices());
|
|
fv0.AddWithWeight(bestface->GetFVarData(j), fvarindex, fvarwidth, 0.125f);
|
|
|
|
}
|
|
// Smooth rule. Here, we can take a shortcut if we know that
|
|
// the vertex is smooth and some other vertex has completely
|
|
// computed the facevarying values
|
|
else if (!fv0IsSmooth || !fv0.IsInitialized()) {
|
|
int valence = v->GetValence();
|
|
float invvalencesquared = 1.0f / (valence * valence);
|
|
|
|
// Use n-2/n of the current vertex value
|
|
fv0.SetWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, invvalencesquared * valence * (valence - 2));
|
|
|
|
// Add 1/n^2 of surrounding edge vertices and surrounding face
|
|
// averages. We loop over all surrounding faces..
|
|
HbrHalfedge<T>* start = v->GetIncidentEdge(), *edge;
|
|
edge = start;
|
|
while (edge) {
|
|
HbrFace<T>* g = edge->GetLeftFace();
|
|
weight = invvalencesquared / g->GetNumVertices();
|
|
// .. and compute the average of each face. At the same
|
|
// time, we look for the edge on that face whose origin is
|
|
// the same as v, and add a contribution from its
|
|
// destination vertex value; this takes care of the
|
|
// surrounding edge vertex addition.
|
|
for (int j = 0; j < g->GetNumVertices(); ++j) {
|
|
fv0.AddWithWeight(g->GetFVarData(j), fvarindex, fvarwidth, weight);
|
|
if (g->GetEdge(j)->GetOrgVertex() == v) {
|
|
fv0.AddWithWeight(g->GetFVarData((j + 1) % g->GetNumVertices()), fvarindex, fvarwidth, invvalencesquared);
|
|
}
|
|
}
|
|
edge = v->GetNextEdge(edge);
|
|
if (edge == start) break;
|
|
}
|
|
}
|
|
|
|
// Edge subdivision rule
|
|
edge = face->GetEdge(index);
|
|
|
|
if (fvarinterp == HbrMesh<T>::k_InterpolateBoundaryNone ||
|
|
edge->GetFVarSharpness(fvaritem) || edge->IsBoundary()) {
|
|
|
|
// Sharp edge rule
|
|
fv1.SetWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, 0.5f);
|
|
fv1.AddWithWeight(face->GetFVarData((index + 1) % nv), fvarindex, fvarwidth, 0.5f);
|
|
} else if (!fv1IsSmooth || !fv1.IsInitialized()) {
|
|
// Smooth edge subdivision. Add 0.25 of adjacent vertices
|
|
fv1.SetWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, 0.25f);
|
|
fv1.AddWithWeight(face->GetFVarData((index + 1) % nv), fvarindex, fvarwidth, 0.25f);
|
|
// Local subdivided face vertex
|
|
fv1.AddWithWeight(fv2, fvarindex, fvarwidth, 0.25f);
|
|
// Add 0.25 * average of neighboring face vertices
|
|
HbrFace<T>* oppFace = edge->GetRightFace();
|
|
weight = 0.25f / oppFace->GetNumVertices();
|
|
for (int j = 0; j < oppFace->GetNumVertices(); ++j) {
|
|
fv1.AddWithWeight(oppFace->GetFVarData(j), fvarindex, fvarwidth, weight);
|
|
}
|
|
}
|
|
|
|
|
|
// Edge subdivision rule
|
|
edge = edge->GetPrev();
|
|
|
|
if (fvarinterp == HbrMesh<T>::k_InterpolateBoundaryNone ||
|
|
edge->GetFVarSharpness(fvaritem) || edge->IsBoundary()) {
|
|
|
|
// Sharp edge rule
|
|
fv3.SetWithWeight(face->GetFVarData((index + nv - 1) % nv), fvarindex, fvarwidth, 0.5f);
|
|
fv3.AddWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, 0.5f);
|
|
} else if (!fv3IsSmooth || !fv3.IsInitialized()) {
|
|
// Smooth edge subdivision. Add 0.25 of adjacent vertices
|
|
fv3.SetWithWeight(face->GetFVarData((index + nv - 1) % nv), fvarindex, fvarwidth, 0.25f);
|
|
fv3.AddWithWeight(face->GetFVarData(index), fvarindex, fvarwidth, 0.25f);
|
|
// Local subdivided face vertex
|
|
fv3.AddWithWeight(fv2, fvarindex, fvarwidth, 0.25f);
|
|
// Add 0.25 * average of neighboring face vertices
|
|
HbrFace<T>* oppFace = edge->GetRightFace();
|
|
weight = 0.25f / oppFace->GetNumVertices();
|
|
for (int j = 0; j < oppFace->GetNumVertices(); ++j) {
|
|
fv3.AddWithWeight(oppFace->GetFVarData(j), fvarindex, fvarwidth, weight);
|
|
}
|
|
}
|
|
|
|
fvarindex += fvarwidth;
|
|
}
|
|
fv0.SetInitialized();
|
|
fv1.SetInitialized();
|
|
fv3.SetInitialized();
|
|
|
|
// Special handling of ptex index for extraordinary faces: make
|
|
// sure the children get their indices reassigned to be
|
|
// consecutive within the block reserved for the parent.
|
|
if (face->GetNumVertices() != 4 && face->GetPtexIndex() != -1) {
|
|
child->SetPtexIndex(face->GetPtexIndex() + index);
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
void
|
|
HbrCatmarkSubdivision<T>::transferEditsToChild(HbrFace<T>* face, HbrFace<T>* child, int index) {
|
|
|
|
// Hand down pointers to hierarchical edits
|
|
if (HbrHierarchicalEdit<T>** edits = face->GetHierarchicalEdits()) {
|
|
while (HbrHierarchicalEdit<T>* edit = *edits) {
|
|
if (!edit->IsRelevantToFace(face)) break;
|
|
if (edit->GetNSubfaces() > face->GetDepth() &&
|
|
(edit->GetSubface(face->GetDepth()) == index)) {
|
|
child->SetHierarchicalEdits(edits);
|
|
break;
|
|
}
|
|
edits++;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template <class T>
|
|
void
|
|
HbrCatmarkSubdivision<T>::Refine(HbrMesh<T>* mesh, HbrFace<T>* face) {
|
|
|
|
// Create new quadrilateral children faces from this face
|
|
HbrFace<T>* child;
|
|
HbrVertex<T>* vertices[4];
|
|
HbrHalfedge<T>* edge = face->GetFirstEdge();
|
|
HbrHalfedge<T>* prevedge = edge->GetPrev();
|
|
HbrHalfedge<T>* childedge;
|
|
int nv = face->GetNumVertices();
|
|
float sharpness;
|
|
bool extraordinary = (nv != 4);
|
|
// The funny indexing on vertices is done only for
|
|
// non-extraordinary faces in order to correctly preserve
|
|
// parametric space through the refinement. If we split an
|
|
// extraordinary face then it doesn't matter.
|
|
for (int i = 0; i < nv; ++i) {
|
|
if (!face->GetChild(i)) {
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << "Kid " << i << "\n";
|
|
#endif
|
|
HbrVertex<T>* vertex = edge->GetOrgVertex();
|
|
if (extraordinary) {
|
|
vertices[0] = vertex->Subdivide();
|
|
vertices[1] = edge->Subdivide();
|
|
vertices[2] = face->Subdivide();
|
|
vertices[3] = prevedge->Subdivide();
|
|
} else {
|
|
vertices[i] = vertex->Subdivide();
|
|
vertices[(i+1)%4] = edge->Subdivide();
|
|
vertices[(i+2)%4] = face->Subdivide();
|
|
vertices[(i+3)%4] = prevedge->Subdivide();
|
|
}
|
|
child = mesh->NewFace(4, vertices, face, i);
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << "Creating face " << *child << " during refine\n";
|
|
#endif
|
|
|
|
// Hand down edge sharpnesses
|
|
childedge = vertex->Subdivide()->GetEdge(edge->Subdivide());
|
|
assert(childedge);
|
|
if ((sharpness = edge->GetSharpness()) > HbrHalfedge<T>::k_Smooth) {
|
|
HbrSubdivision<T>::SubdivideCreaseWeight(
|
|
edge, edge->GetDestVertex(), childedge);
|
|
}
|
|
childedge->CopyFVarInfiniteSharpness(edge);
|
|
|
|
childedge = prevedge->Subdivide()->GetEdge(vertex->Subdivide());
|
|
assert(childedge);
|
|
if ((sharpness = prevedge->GetSharpness()) > HbrHalfedge<T>::k_Smooth) {
|
|
HbrSubdivision<T>::SubdivideCreaseWeight(
|
|
prevedge, prevedge->GetOrgVertex(), childedge);
|
|
}
|
|
childedge->CopyFVarInfiniteSharpness(prevedge);
|
|
|
|
if (mesh->GetTotalFVarWidth()) {
|
|
transferFVarToChild(mesh, face, child, i);
|
|
}
|
|
|
|
transferEditsToChild(face, child, i);
|
|
}
|
|
prevedge = edge;
|
|
edge = edge->GetNext();
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
HbrFace<T>*
|
|
HbrCatmarkSubdivision<T>::RefineFaceAtVertex(HbrMesh<T>* mesh, HbrFace<T>* face, HbrVertex<T>* vertex) {
|
|
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << " forcing refine on " << *face << " at " << *vertex << '\n';
|
|
#endif
|
|
|
|
// Create new quadrilateral children faces from this face
|
|
HbrHalfedge<T>* edge = face->GetFirstEdge();
|
|
HbrHalfedge<T>* prevedge = edge->GetPrev();
|
|
HbrHalfedge<T>* childedge;
|
|
int nv = face->GetNumVertices();
|
|
float sharpness;
|
|
bool extraordinary = (nv != 4);
|
|
// The funny indexing on vertices is done only for
|
|
// non-extraordinary faces in order to correctly preserve
|
|
// parametric space through the refinement. If we split an
|
|
// extraordinary face then it doesn't matter.
|
|
for (int i = 0; i < nv; ++i) {
|
|
if (edge->GetOrgVertex() == vertex) {
|
|
if (!face->GetChild(i)) {
|
|
HbrFace<T>* child;
|
|
HbrVertex<T>* vertices[4];
|
|
if (extraordinary) {
|
|
vertices[0] = vertex->Subdivide();
|
|
vertices[1] = edge->Subdivide();
|
|
vertices[2] = face->Subdivide();
|
|
vertices[3] = prevedge->Subdivide();
|
|
} else {
|
|
vertices[i] = vertex->Subdivide();
|
|
vertices[(i+1)%4] = edge->Subdivide();
|
|
vertices[(i+2)%4] = face->Subdivide();
|
|
vertices[(i+3)%4] = prevedge->Subdivide();
|
|
}
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << "Kid " << i << "\n";
|
|
std::cerr << " subdivision created " << *vertices[0] << '\n';
|
|
std::cerr << " subdivision created " << *vertices[1] << '\n';
|
|
std::cerr << " subdivision created " << *vertices[2] << '\n';
|
|
std::cerr << " subdivision created " << *vertices[3] << '\n';
|
|
#endif
|
|
child = mesh->NewFace(4, vertices, face, i);
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << "Creating face " << *child << " during refine\n";
|
|
#endif
|
|
// Hand down edge sharpness
|
|
childedge = vertex->Subdivide()->GetEdge(edge->Subdivide());
|
|
assert(childedge);
|
|
if ((sharpness = edge->GetSharpness()) > HbrHalfedge<T>::k_Smooth) {
|
|
HbrSubdivision<T>::SubdivideCreaseWeight(
|
|
edge, edge->GetDestVertex(), childedge);
|
|
}
|
|
childedge->CopyFVarInfiniteSharpness(edge);
|
|
|
|
childedge = prevedge->Subdivide()->GetEdge(vertex->Subdivide());
|
|
assert(childedge);
|
|
if ((sharpness = prevedge->GetSharpness()) > HbrHalfedge<T>::k_Smooth) {
|
|
HbrSubdivision<T>::SubdivideCreaseWeight(
|
|
prevedge, prevedge->GetOrgVertex(), childedge);
|
|
}
|
|
childedge->CopyFVarInfiniteSharpness(prevedge);
|
|
|
|
if (mesh->GetTotalFVarWidth()) {
|
|
transferFVarToChild(mesh, face, child, i);
|
|
}
|
|
|
|
transferEditsToChild(face, child, i);
|
|
return child;
|
|
} else {
|
|
return face->GetChild(i);
|
|
}
|
|
}
|
|
prevedge = edge;
|
|
edge = edge->GetNext();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
template <class T>
|
|
void
|
|
HbrCatmarkSubdivision<T>::GuaranteeNeighbor(HbrMesh<T>* mesh, HbrHalfedge<T>* edge) {
|
|
if (edge->GetOpposite()) {
|
|
return;
|
|
}
|
|
|
|
// For the given edge: if the parent of either of its incident
|
|
// vertices is itself a _face_, then ensuring that this parent
|
|
// face has refined at a particular vertex is sufficient to
|
|
// ensure that both of the faces on each side of the edge have
|
|
// been created.
|
|
bool destParentWasEdge = true;
|
|
HbrFace<T>* parentFace = edge->GetOrgVertex()->GetParentFace();
|
|
HbrHalfedge<T>* parentEdge = edge->GetDestVertex()->GetParentEdge();
|
|
if (!parentFace) {
|
|
destParentWasEdge = false;
|
|
parentFace = edge->GetDestVertex()->GetParentFace();
|
|
parentEdge = edge->GetOrgVertex()->GetParentEdge();
|
|
}
|
|
|
|
if (parentFace) {
|
|
|
|
// Make sure we deal with a parent halfedge which is
|
|
// associated with the parent face
|
|
if (parentEdge->GetFace() != parentFace) {
|
|
parentEdge = parentEdge->GetOpposite();
|
|
}
|
|
// If one of the vertices had a parent face, the other one MUST
|
|
// have been a child of an edge
|
|
assert(parentEdge && parentEdge->GetFace() == parentFace);
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << "\nparent edge is " << *parentEdge << "\n";
|
|
#endif
|
|
|
|
// The vertex to refine at depends on whether the
|
|
// destination or origin vertex of this edge had a parent
|
|
// edge
|
|
if (destParentWasEdge) {
|
|
RefineFaceAtVertex(mesh, parentFace, parentEdge->GetOrgVertex());
|
|
} else {
|
|
RefineFaceAtVertex(mesh, parentFace, parentEdge->GetDestVertex());
|
|
}
|
|
|
|
// It should always be the case that the opposite now exists -
|
|
// we can't have a boundary case here
|
|
assert(edge->GetOpposite());
|
|
} else {
|
|
HbrVertex<T>* parentVertex = edge->GetOrgVertex()->GetParentVertex();
|
|
parentEdge = edge->GetDestVertex()->GetParentEdge();
|
|
if (!parentVertex) {
|
|
parentVertex = edge->GetDestVertex()->GetParentVertex();
|
|
parentEdge = edge->GetOrgVertex()->GetParentEdge();
|
|
}
|
|
|
|
if (parentVertex) {
|
|
|
|
assert(parentEdge);
|
|
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << "\nparent edge is " << *parentEdge << "\n";
|
|
#endif
|
|
|
|
// 1. Go up to the parent of my face
|
|
|
|
parentFace = edge->GetFace()->GetParent();
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << "\nparent face is " << *parentFace << "\n";
|
|
#endif
|
|
|
|
// 2. Ask the opposite face (if it exists) to refine
|
|
if (parentFace) {
|
|
|
|
// A vertex can be associated with either of two
|
|
// parent halfedges. If the parent edge that we're
|
|
// interested in doesn't match then we should look at
|
|
// its opposite
|
|
if (parentEdge->GetFace() != parentFace)
|
|
parentEdge = parentEdge->GetOpposite();
|
|
assert(parentEdge->GetFace() == parentFace);
|
|
|
|
// Make sure the parent edge has its neighbor as well
|
|
GuaranteeNeighbor(mesh, parentEdge);
|
|
|
|
// Now access that neighbor and refine it
|
|
if (parentEdge->GetRightFace()) {
|
|
RefineFaceAtVertex(mesh, parentEdge->GetRightFace(), parentVertex);
|
|
|
|
// FIXME: assertion?
|
|
assert(edge->GetOpposite());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
void
|
|
HbrCatmarkSubdivision<T>::GuaranteeNeighbors(HbrMesh<T>* mesh, HbrVertex<T>* vertex) {
|
|
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << "\n\nneighbor guarantee at " << *vertex << " invoked\n";
|
|
#endif
|
|
|
|
// If the vertex is a child of a face, guaranteeing the neighbors
|
|
// of the vertex is simply a matter of ensuring the parent face
|
|
// has refined.
|
|
HbrFace<T>* parentFace = vertex->GetParentFace();
|
|
if (parentFace) {
|
|
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << " forcing full refine on parent face\n";
|
|
#endif
|
|
Refine(mesh, parentFace);
|
|
return;
|
|
}
|
|
|
|
// Otherwise if the vertex is a child of an edge, we need to
|
|
// ensure that the parent faces on either side of the parent edge
|
|
// 1) exist, and 2) have refined at both vertices of the parent
|
|
// edge
|
|
HbrHalfedge<T>* parentEdge = vertex->GetParentEdge();
|
|
if (parentEdge) {
|
|
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << " forcing full refine on adjacent faces of parent edge\n";
|
|
#endif
|
|
HbrVertex<T>* dest = parentEdge->GetDestVertex();
|
|
HbrVertex<T>* org = parentEdge->GetOrgVertex();
|
|
GuaranteeNeighbor(mesh, parentEdge);
|
|
parentFace = parentEdge->GetLeftFace();
|
|
RefineFaceAtVertex(mesh, parentFace, dest);
|
|
RefineFaceAtVertex(mesh, parentFace, org);
|
|
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << " on the right face?\n";
|
|
#endif
|
|
parentFace = parentEdge->GetRightFace();
|
|
// The right face may not necessarily exist even after
|
|
// GuaranteeNeighbor
|
|
if (parentFace) {
|
|
RefineFaceAtVertex(mesh, parentFace, dest);
|
|
RefineFaceAtVertex(mesh, parentFace, org);
|
|
}
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << " end force\n";
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
// The last case: the vertex is a child of a vertex. In this case
|
|
// we have to first recursively guarantee that the parent's
|
|
// adjacent faces also exist.
|
|
HbrVertex<T>* parentVertex = vertex->GetParentVertex();
|
|
if (parentVertex) {
|
|
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << " recursive parent vertex guarantee call\n";
|
|
#endif
|
|
parentVertex->GuaranteeNeighbors();
|
|
|
|
// And then we refine all the face neighbors of the
|
|
// parentVertex
|
|
HbrHalfedge<T>* start = parentVertex->GetIncidentEdge(), *edge;
|
|
edge = start;
|
|
while (edge) {
|
|
HbrFace<T>* f = edge->GetLeftFace();
|
|
RefineFaceAtVertex(mesh, f, parentVertex);
|
|
edge = parentVertex->GetNextEdge(edge);
|
|
if (edge == start) break;
|
|
}
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
bool
|
|
HbrCatmarkSubdivision<T>::HasLimit(HbrMesh<T>* mesh, HbrFace<T>* face) {
|
|
|
|
if (face->IsHole()) return false;
|
|
// A limit face exists if all the bounding edges have limit curves
|
|
for (int i = 0; i < face->GetNumVertices(); ++i) {
|
|
if (!HasLimit(mesh, face->GetEdge(i))) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <class T>
|
|
bool
|
|
HbrCatmarkSubdivision<T>::HasLimit(HbrMesh<T>* mesh, HbrHalfedge<T>* edge) {
|
|
// A sharp edge has a limit curve if both endpoints have limits.
|
|
// A smooth edge has a limit if both endpoints have limits and
|
|
// the edge isn't on the boundary.
|
|
|
|
if (edge->GetSharpness() >= HbrHalfedge<T>::k_InfinitelySharp) return true;
|
|
|
|
if (!HasLimit(mesh, edge->GetOrgVertex()) || !HasLimit(mesh, edge->GetDestVertex())) return false;
|
|
|
|
return !edge->IsBoundary();
|
|
}
|
|
|
|
template <class T>
|
|
bool
|
|
HbrCatmarkSubdivision<T>::HasLimit(HbrMesh<T>* /* mesh */, HbrVertex<T>* vertex) {
|
|
vertex->GuaranteeNeighbors();
|
|
switch (vertex->GetMask(false)) {
|
|
case HbrVertex<T>::k_Smooth:
|
|
case HbrVertex<T>::k_Dart:
|
|
return !vertex->OnBoundary();
|
|
break;
|
|
case HbrVertex<T>::k_Crease:
|
|
case HbrVertex<T>::k_Corner:
|
|
default:
|
|
if (vertex->IsVolatile()) {
|
|
// Search for any incident semisharp boundary edge
|
|
HbrHalfedge<T>* start = vertex->GetIncidentEdge(), *edge, *next;
|
|
edge = start;
|
|
while (edge) {
|
|
if (edge->IsBoundary() && edge->GetSharpness() < HbrHalfedge<T>::k_InfinitelySharp) {
|
|
return false;
|
|
}
|
|
next = vertex->GetNextEdge(edge);
|
|
if (next == start) {
|
|
break;
|
|
} else if (!next) {
|
|
edge = edge->GetPrev();
|
|
if (edge->IsBoundary() && edge->GetSharpness() < HbrHalfedge<T>::k_InfinitelySharp) {
|
|
return false;
|
|
}
|
|
break;
|
|
} else {
|
|
edge = next;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
HbrVertex<T>*
|
|
HbrCatmarkSubdivision<T>::Subdivide(HbrMesh<T>* mesh, HbrFace<T>* face) {
|
|
|
|
// Face rule: simply average all vertices on the face
|
|
HbrVertex<T>* v = mesh->NewVertex();
|
|
T& data = v->GetData();
|
|
int nv = face->GetNumVertices();
|
|
float weight = 1.0f / nv;
|
|
|
|
HbrHalfedge<T>* edge = face->GetFirstEdge();
|
|
for (int i = 0; i < face->GetNumVertices(); ++i) {
|
|
HbrVertex<T>* w = edge->GetOrgVertex();
|
|
// If there are vertex edits we have to make sure the edit
|
|
// has been applied
|
|
if (mesh->HasVertexEdits()) {
|
|
w->GuaranteeNeighbors();
|
|
}
|
|
data.AddWithWeight(w->GetData(), weight);
|
|
data.AddVaryingWithWeight(w->GetData(), weight);
|
|
edge = edge->GetNext();
|
|
}
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << "Subdividing at " << *face << "\n";
|
|
#endif
|
|
|
|
// Set the extraordinary flag if the face had anything other than
|
|
// 4 vertices
|
|
if (nv != 4) v->SetExtraordinary();
|
|
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << " created " << *v << "\n";
|
|
#endif
|
|
return v;
|
|
}
|
|
|
|
#if 0
|
|
// The "old" triangle subdivision method modifies the face subdivision
|
|
// rule. Unfortunately we can't put simply put this code into the
|
|
// standard face Subdivide method, because that would disrupt the
|
|
// averages computed for adjacent edges and vertices (which rely on
|
|
// face averages computed using the standard Catmull-Clark method).
|
|
// Instead we must call this after a face has been Subdivided using
|
|
// the normal rule; this code will modify that face's subdivided
|
|
// vertex value only.
|
|
template <class T>
|
|
HbrVertex<T>*
|
|
HbrCatmarkSubdivision<T>::OldTriangleSubdivide(HbrMesh<T>* mesh, HbrFace<T>* face) {
|
|
assert(face->GetNumVertices() == 3 && triangleSubdivision == k_Old);
|
|
HbrVertex<T>* w = face->Subdivide();
|
|
NgpVVectorItem& data = w->GetData();
|
|
data.Clear();
|
|
|
|
float weight = 1.0f / 6.0f;
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
HbrVertex<T>* w = face->GetVertex(i);
|
|
HbrHalfedge<T>* e = face->GetEdge(i);
|
|
data.AddWithWeight(w->Subdivide()->GetData(), weight);
|
|
data.AddWithWeight(e->Subdivide()->GetData(), weight);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* This comment describe the "new" triangle subdivision method, which
|
|
modifies only the edge subdivision rule:
|
|
|
|
The "smoothtriangles" tag makes triangular faces smoother. This is done
|
|
by modifying the first level of subdivision in order to generate a limit
|
|
surface that is closer to what Loop subdivision would yield. Note that
|
|
there is no extra expense in forcing one level of subdivision, since
|
|
extraordinary faces need to be subdivided at least once anyway.
|
|
|
|
We have two degrees of freedom to play with, namely the weight assigned
|
|
to each neighbouring vertex when subdividing a vertex, and the weight
|
|
assigned to each neighbouring face vertex when subdividing an edge. Our
|
|
initial strategy for choosing these parameters was to derive the limit
|
|
masks (position and tangent) for the Catmull-Clark and Loop schemes at
|
|
three representative points: each original vertex, the center of each
|
|
original edge, and the center of each original face. The parameter
|
|
values were then optimized to get the best least-squares match to the
|
|
limit positions and tangents of the Loop surface at these chosen points.
|
|
(In the case of tangents an extra scale factor was used so that only the
|
|
tangent direction is optimized rather than its magnitude.) All this was
|
|
done using Mathematica.
|
|
|
|
Although the resulting surfaces were much smoother, there was still some
|
|
degree of "ringing" (probably due to the fact that the surface was
|
|
optimized at a discrete set of points, rather than by integrating over
|
|
the surface). We then tried a second strategy, namely choosing the
|
|
vertex weights to minimize surface curvature. This was done by setting
|
|
up test cases for extraordinary vertices of each degree, rendering an
|
|
animation using a range of parameter values, and integrating the
|
|
curvature over each surface (with a shader and some scripts). We chose
|
|
to minimize the squared mean curvature, which seemed to have the best
|
|
correspondence to surfaces that look "smooth".
|
|
|
|
Surprisingly, the vertex weights obtained in this way were not
|
|
significantly different than the standard Catmull-Clark weights.
|
|
Thus the final "smooth triangles" technique only modifies the edge
|
|
subdivision rule: the adjacent face vertices are weighted by
|
|
HBR_SMOOTH_TRI_EDGE_WEIGHT rather than the standard CC value of 0.25.
|
|
If there is a mixture of triangular and non-triangular faces, the
|
|
weights are interpolated. */
|
|
|
|
#define HBR_SMOOTH_TRI_EDGE_WEIGHT 0.470f /* from Mathematica */
|
|
|
|
template <class T>
|
|
HbrVertex<T>*
|
|
HbrCatmarkSubdivision<T>::Subdivide(HbrMesh<T>* mesh, HbrHalfedge<T>* edge) {
|
|
|
|
// Ensure the opposite face exists.
|
|
GuaranteeNeighbor(mesh, edge);
|
|
|
|
float esharp = edge->GetSharpness();
|
|
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << "Subdividing at " << *edge << " (sharpness = " << esharp << ")";
|
|
#endif
|
|
|
|
HbrVertex<T>* v = mesh->NewVertex();
|
|
T& data = v->GetData();
|
|
|
|
// If there's the possibility of vertex edits on either vertex, we
|
|
// have to make sure the edit has been applied
|
|
if (mesh->HasVertexEdits()) {
|
|
edge->GetOrgVertex()->GuaranteeNeighbors();
|
|
edge->GetDestVertex()->GuaranteeNeighbors();
|
|
}
|
|
|
|
if (!edge->IsBoundary() && esharp <= 1.0f) {
|
|
|
|
// Of the two half-edges, pick one of them consistently such
|
|
// that the left and right faces are also consistent through
|
|
// multi-threading. It doesn't matter as far as the
|
|
// theoretical calculation is concerned, but it is desirable
|
|
// to be consistent about it in the face of the limitations of
|
|
// floating point commutativity. So we always pick the
|
|
// half-edge such that its incident face is the smallest of
|
|
// the two faces, as far as the face paths are concerned.
|
|
if (edge->GetOpposite() && edge->GetOpposite()->GetFace()->GetPath() < edge->GetFace()->GetPath()) {
|
|
edge = edge->GetOpposite();
|
|
}
|
|
|
|
// Handle both the smooth and fractional sharpness cases. We
|
|
// lerp between the sharp case (average of the two end points)
|
|
// and the unsharp case (average of two end points plus two
|
|
// face averages).
|
|
|
|
float leftWeight, rightWeight, faceWeight, vertWeight;
|
|
HbrFace<T>* rf = edge->GetRightFace();
|
|
HbrFace<T>* lf = edge->GetLeftFace();
|
|
|
|
// The standard catmull-clark rule for face weights is 0.25.
|
|
// The modified, new triangle subdivision rule uses a value of
|
|
// SMOOTH_TRI_EDGE_WEIGHT as defined above. We lerp between
|
|
// the right and left weights as needed.
|
|
leftWeight = (triangleSubdivision == k_New && lf->GetNumVertices() == 3) ? HBR_SMOOTH_TRI_EDGE_WEIGHT : 0.25f;
|
|
rightWeight = (triangleSubdivision == k_New && rf->GetNumVertices() == 3) ? HBR_SMOOTH_TRI_EDGE_WEIGHT : 0.25f;
|
|
faceWeight = 0.5f * (leftWeight + rightWeight);
|
|
vertWeight = 0.5f * (1.0f - 2.0f * faceWeight);
|
|
|
|
// Lerp the face weight between non sharp contribution and
|
|
// sharp contribution (which is zero)
|
|
faceWeight *= (1.0f - esharp);
|
|
|
|
// Lerp the vert weight between non sharp contribution and
|
|
// sharp contribution of 0.5f
|
|
vertWeight = 0.5f * esharp + (1.0f - esharp) * vertWeight;
|
|
|
|
data.AddWithWeight(edge->GetOrgVertex()->GetData(), vertWeight);
|
|
data.AddWithWeight(edge->GetDestVertex()->GetData(), vertWeight);
|
|
|
|
data.AddWithWeight(lf->Subdivide()->GetData(), faceWeight);
|
|
data.AddWithWeight(rf->Subdivide()->GetData(), faceWeight);
|
|
} else {
|
|
// Fully sharp edge, just average the two end points
|
|
data.AddWithWeight(edge->GetOrgVertex()->GetData(), 0.5f);
|
|
data.AddWithWeight(edge->GetDestVertex()->GetData(), 0.5f);
|
|
}
|
|
|
|
// Varying data is always the average of two end points
|
|
data.AddVaryingWithWeight(edge->GetOrgVertex()->GetData(), 0.5f);
|
|
data.AddVaryingWithWeight(edge->GetDestVertex()->GetData(), 0.5f);
|
|
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << " created " << *v << "\n";
|
|
#endif
|
|
return v;
|
|
}
|
|
|
|
template <class T>
|
|
HbrVertex<T>*
|
|
HbrCatmarkSubdivision<T>::Subdivide(HbrMesh<T>* mesh, HbrVertex<T>* vertex) {
|
|
|
|
// Ensure the ring of faces around this vertex exists before
|
|
// we compute the valence
|
|
vertex->GuaranteeNeighbors();
|
|
|
|
float valence = static_cast<float>(vertex->GetValence());
|
|
float invvalencesquared = 1.0f / (valence * valence);
|
|
|
|
|
|
HbrVertex<T>* v = mesh->NewVertex();
|
|
T& data = v->GetData();
|
|
|
|
// Due to fractional weights we may need to do two subdivision
|
|
// passes
|
|
int masks[2];
|
|
float weights[2];
|
|
int passes;
|
|
masks[0] = vertex->GetMask(false);
|
|
masks[1] = vertex->GetMask(true);
|
|
// If the masks are different, we subdivide twice: once using the
|
|
// current mask, once using the mask at the next level of
|
|
// subdivision, then use fractional mask weights to weigh
|
|
// each weighing
|
|
if (masks[0] != masks[1]) {
|
|
weights[1] = vertex->GetFractionalMask();
|
|
weights[0] = 1.0f - weights[1];
|
|
passes = 2;
|
|
} else {
|
|
weights[0] = 1.0f;
|
|
weights[1] = 0.0f;
|
|
passes = 1;
|
|
}
|
|
for (int i = 0; i < passes; ++i) {
|
|
switch (masks[i]) {
|
|
case HbrVertex<T>::k_Smooth:
|
|
case HbrVertex<T>::k_Dart: {
|
|
// Compute n-2/n of the old vertex value
|
|
data.AddWithWeight(vertex->GetData(), weights[i] * invvalencesquared * valence * (valence - 2));
|
|
// Add 1 / n^2 * surrounding edge vertices and surrounding face
|
|
// subdivided vertices
|
|
HbrSubdivision<T>::AddSurroundingVerticesWithWeight(
|
|
mesh, vertex, weights[i] * invvalencesquared, &data);
|
|
|
|
HbrHalfedge<T>* start = vertex->GetIncidentEdge(), *edge;
|
|
edge = start;
|
|
while (edge) {
|
|
HbrFace<T>* f = edge->GetLeftFace();
|
|
data.AddWithWeight(f->Subdivide()->GetData(), weights[i] * invvalencesquared);
|
|
edge = vertex->GetNextEdge(edge);
|
|
if (edge == start) break;
|
|
}
|
|
break;
|
|
}
|
|
case HbrVertex<T>::k_Crease: {
|
|
// Compute 3/4 of old vertex value
|
|
data.AddWithWeight(vertex->GetData(), weights[i] * 0.75f);
|
|
|
|
// Add 0.125f of the (hopefully only two!) neighbouring
|
|
// sharp edges
|
|
HbrSubdivision<T>::AddCreaseEdgesWithWeight(
|
|
mesh, vertex, i == 1, weights[i] * 0.125f, &data);
|
|
break;
|
|
}
|
|
case HbrVertex<T>::k_Corner:
|
|
default: {
|
|
// Just copy the old value
|
|
data.AddWithWeight(vertex->GetData(), weights[i]);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Varying data is always just propogated down
|
|
data.AddVaryingWithWeight(vertex->GetData(), 1.0f);
|
|
|
|
#ifdef HBR_DEBUG
|
|
std::cerr << "Subdividing at " << *vertex << "\n";
|
|
std::cerr << " created " << *v << "\n";
|
|
#endif
|
|
// Inherit extraordinary flag and sharpness
|
|
if (vertex->IsExtraordinary()) v->SetExtraordinary();
|
|
float sharp = vertex->GetSharpness();
|
|
if (sharp >= HbrVertex<T>::k_InfinitelySharp) {
|
|
v->SetSharpness(HbrVertex<T>::k_InfinitelySharp);
|
|
} else if (sharp > HbrVertex<T>::k_Smooth) {
|
|
sharp -= 1.0f;
|
|
if (sharp < (float) HbrVertex<T>::k_Smooth) {
|
|
sharp = (float) HbrVertex<T>::k_Smooth;
|
|
}
|
|
v->SetSharpness(sharp);
|
|
} else {
|
|
v->SetSharpness(HbrVertex<T>::k_Smooth);
|
|
}
|
|
return v;
|
|
}
|
|
|
|
#endif /* HBRCATMARK_H */
|