OpenSubdiv/opensubdiv/osd/glslTransformFeedbackKernel.glsl
Takahito Tejima ee061291b7 Interleaved buffer support in OsdCompute. Removed OsdVertexDescriptor and replaced with OsdVertexBufferDescriptor.
All kernels take offset/length/stride to apply subdivision partially in each vertex elements.

Also the offset can be used for client-based VBO aggregation, without modifying index buffers.
This is useful for topology sharing, in conjunction with glDrawElementsBaseVertex etc.
However, gregory patch shader fetches vertex buffer via texture buffer, which index should also
be offsetted too. Although gl_BaseVertexARB extension should be able to do that job, it's a
relatively new extension. So we use OsdBaseVertex() call to mitigate the compatibility
issue as clients can provide it in their way at least for the time being.
2014-05-09 15:44:52 -07:00

421 lines
12 KiB
GLSL

//
// Copyright 2013 Pixar
//
// Licensed under the Apache License, Version 2.0 (the "Apache License")
// with the following modification; you may not use this file except in
// compliance with the Apache License and the following modification to it:
// Section 6. Trademarks. is deleted and replaced with:
//
// 6. Trademarks. This License does not grant permission to use the trade
// names, trademarks, service marks, or product names of the Licensor
// and its affiliates, except as required to comply with Section 4(c) of
// the License and to reproduce the content of the NOTICE file.
//
// You may obtain a copy of the Apache License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the Apache License with the above modification is
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the Apache License for the specific
// language governing permissions and limitations under the Apache License.
//
#version 420
subroutine void computeKernelType();
subroutine uniform computeKernelType computeKernel;
uniform isamplerBuffer _F0_IT;
uniform isamplerBuffer _F0_ITa;
uniform isamplerBuffer _E0_IT;
uniform isamplerBuffer _V0_IT;
uniform isamplerBuffer _V0_ITa;
uniform samplerBuffer _E0_S;
uniform samplerBuffer _V0_S;
uniform isamplerBuffer _editIndices;
uniform samplerBuffer _editValues;
layout(size1x32) uniform imageBuffer _vertexBufferImage;
uniform int vertexOffset = 0; // vertex index offset for the batch
uniform int tableOffset = 0; // offset of subdivision table
uniform int indexStart = 0; // start index relative to tableOffset
uniform int vertexBaseOffset = 0; // base vbo offset of the vertex buffer
uniform int varyingBaseOffset = 0; // base vbo offset of the varying buffer
uniform bool vertexPass;
/*
+-----+---------------------------------+-----
n-1 | Level n |<batch range>| | n+1
+-----+---------------------------------+-----
^ ^
vertexOffset |
indexStart
NUM_VERTEX_ELEMENTS = 3
NUM_VARYING_ELEMENTS = 4
VERTEX_STRIDE = VARYING_STRIDE = 7
*/
//--------------------------------------------------------------------------------
struct Vertex
{
#if NUM_VERTEX_ELEMENTS > 0
float vertexData[NUM_VERTEX_ELEMENTS];
#endif
#if NUM_VARYING_ELEMENTS > 0
float varyingData[NUM_VARYING_ELEMENTS];
#endif
};
#if NUM_VERTEX_ELEMENTS > 0
uniform samplerBuffer vertexData; // float[NUM_VERTEX_ELEMENTS]
#endif
#if NUM_VARYING_ELEMENTS > 0
uniform samplerBuffer varyingData; // float[NUM_VARYING_ELEMENTS]
#endif
// output feedback (mapped as a subrange of vertices)
#if NUM_VERTEX_ELEMENTS > 0
out float outVertexData[NUM_VERTEX_ELEMENTS];
#endif
#if NUM_VARYING_ELEMENTS > 0
out float outVaryingData[NUM_VARYING_ELEMENTS];
#endif
void clear(out Vertex v)
{
#if NUM_VERTEX_ELEMENTS > 0
for (int i = 0; i < NUM_VERTEX_ELEMENTS; i++) {
v.vertexData[i] = 0;
}
#endif
#if NUM_VARYING_ELEMENTS > 0
for(int i = 0; i < NUM_VARYING_ELEMENTS; i++){
v.varyingData[i] = 0;
}
#endif
}
Vertex readVertex(int index)
{
// XXX: should be split into two parts for addWithWeight and addVaryingWithWeight
Vertex v;
// unpacking
#if NUM_VERTEX_ELEMENTS > 0
int vertexIndex = index * VERTEX_STRIDE;
for(int i = 0; i < NUM_VERTEX_ELEMENTS; i++) {
v.vertexData[i] = texelFetch(vertexData, vertexIndex+i+vertexBaseOffset).x;
}
#endif
#if NUM_VARYING_ELEMENTS > 0
int varyingIndex = index * VARYING_STRIDE;
for(int i = 0; i < NUM_VARYING_ELEMENTS; i++){
v.varyingData[i] = texelFetch(varyingData, varyingIndex+i+varyingBaseOffset).x;
}
#endif
return v;
}
void writeVertex(Vertex v)
{
// packing
#if NUM_VERTEX_ELEMENTS > 0
for(int i = 0; i < NUM_VERTEX_ELEMENTS; i++) {
outVertexData[i] = v.vertexData[i];
}
#endif
#if NUM_VARYING_ELEMENTS > 0
for(int i = 0; i < NUM_VARYING_ELEMENTS; i++){
outVaryingData[i] = v.varyingData[i];
}
#endif
}
void writeVertexByImageStore(Vertex v, int index)
{
#if NUM_VERTEX_ELEMENTS > 0
int p = index * VERTEX_STRIDE + vertexBaseOffset;
for(int i = 0; i < NUM_VERTEX_ELEMENTS; i++) {
imageStore(_vertexBufferImage, p+i, vec4(v.vertexData[i], 0, 0, 0));
}
#endif
}
void addWithWeight(inout Vertex v, Vertex src, float weight)
{
#if NUM_VERTEX_ELEMENTS > 0
for(int i = 0; i < NUM_VERTEX_ELEMENTS; i++) {
v.vertexData[i] += weight * src.vertexData[i];
}
#endif
}
void addVaryingWithWeight(inout Vertex v, Vertex src, float weight)
{
#if NUM_VARYING_ELEMENTS > 0
for(int i = 0; i < NUM_VARYING_ELEMENTS; i++){
v.varyingData[i] += weight * src.varyingData[i];
}
#endif
}
//--------------------------------------------------------------------------------
// Face-vertices compute Kernel
subroutine(computeKernelType)
void catmarkComputeFace()
{
int i = gl_VertexID + indexStart + tableOffset;
int h = texelFetch(_F0_ITa, 2*i).x;
int n = texelFetch(_F0_ITa, 2*i+1).x;
float weight = 1.0/n;
Vertex dst;
clear(dst);
for(int j=0; j<n; ++j){
int index = texelFetch(_F0_IT, h+j).x;
addWithWeight(dst, readVertex(index), weight);
addVaryingWithWeight(dst, readVertex(index), weight);
}
writeVertex(dst);
}
// Edge-vertices compute Kernel
subroutine(computeKernelType)
void catmarkComputeEdge()
{
int i = gl_VertexID + indexStart + tableOffset;
Vertex dst;
clear(dst);
#ifdef OPT_E0_IT_VEC4
ivec4 eidx = texelFetch(_E0_IT, i);
#else
int eidx0 = texelFetch(_E0_IT, 4*i+0).x;
int eidx1 = texelFetch(_E0_IT, 4*i+1).x;
int eidx2 = texelFetch(_E0_IT, 4*i+2).x;
int eidx3 = texelFetch(_E0_IT, 4*i+3).x;
ivec4 eidx = ivec4(eidx0, eidx1, eidx2, eidx3);
#endif
#ifdef OPT_E0_S_VEC2
vec2 weight = texelFetch(_E0_S, i).xy;
float vertWeight = weight.x;
#else
float vertWeight = texelFetch(_E0_S, i*2+0).x;
#endif
// Fully sharp edge : vertWeight = 0.5f;
addWithWeight(dst, readVertex(eidx.x), vertWeight);
addWithWeight(dst, readVertex(eidx.y), vertWeight);
if(eidx.z != -1){
#ifdef OPT_E0_S_VEC2
float faceWeight = weight.y;
#else
float faceWeight = texelFetch(_E0_S, i*2+1).x;
#endif
addWithWeight(dst, readVertex(eidx.z), faceWeight);
addWithWeight(dst, readVertex(eidx.w), faceWeight);
}
addVaryingWithWeight(dst, readVertex(eidx.x), 0.5f);
addVaryingWithWeight(dst, readVertex(eidx.y), 0.5f);
writeVertex(dst);
}
// Edge-vertices compute Kernel (bilinear scheme)
subroutine(computeKernelType)
void bilinearComputeEdge()
{
int i = gl_VertexID + indexStart + tableOffset;
Vertex dst;
clear(dst);
#ifdef OPT_E0_IT_VEC4
ivec2 eidx = texelFetch(_E0_IT, i).xy;
#else
ivec2 eidx = ivec2(texelFetch(_E0_IT, 2*i+0).x,
texelFetch(_E0_IT, 2*i+1).x);
#endif
addWithWeight(dst, readVertex(eidx.x), 0.5f);
addWithWeight(dst, readVertex(eidx.y), 0.5f);
addVaryingWithWeight(dst, readVertex(eidx.x), 0.5f);
addVaryingWithWeight(dst, readVertex(eidx.y), 0.5f);
writeVertex(dst);
}
// Vertex-vertices compute Kernel (bilinear scheme)
subroutine(computeKernelType)
void bilinearComputeVertex()
{
int i = gl_VertexID + indexStart + tableOffset;
Vertex dst;
clear(dst);
int p = texelFetch(_V0_ITa, i).x;
addWithWeight(dst, readVertex(p), 1.0f);
addVaryingWithWeight(dst, readVertex(p), 1.0f);
writeVertex(dst);
}
// Vertex-vertices compute Kernels 'A' / k_Crease and k_Corner rules
subroutine(computeKernelType)
void catmarkComputeVertexA()
{
int i = gl_VertexID + indexStart + tableOffset;
int vid = gl_VertexID + indexStart + vertexOffset;
int n = texelFetch(_V0_ITa, 5*i+1).x;
int p = texelFetch(_V0_ITa, 5*i+2).x;
int eidx0 = texelFetch(_V0_ITa, 5*i+3).x;
int eidx1 = texelFetch(_V0_ITa, 5*i+4).x;
float weight = vertexPass
? texelFetch(_V0_S, i).x
: 1.0 - texelFetch(_V0_S, i).x;
// In the case of fractional weight, the weight must be inverted since
// the value is shared with the k_Smooth kernel (statistically the
// k_Smooth kernel runs much more often than this one)
if (weight>0.0 && weight<1.0 && n > 0)
weight=1.0-weight;
Vertex dst;
if(! vertexPass)
clear(dst);
else
dst = readVertex(vid);
if (eidx0==-1 || (vertexPass==false && (n==-1)) ) {
addWithWeight(dst, readVertex(p), weight);
} else {
addWithWeight(dst, readVertex(p), weight * 0.75f);
addWithWeight(dst, readVertex(eidx0), weight * 0.125f);
addWithWeight(dst, readVertex(eidx1), weight * 0.125f);
}
if(! vertexPass)
addVaryingWithWeight(dst, readVertex(p), 1.0f);
writeVertex(dst);
}
// Vertex-vertices compute Kernels 'B' / k_Dart and k_Smooth rules
subroutine(computeKernelType)
void catmarkComputeVertexB()
{
int i = gl_VertexID + indexStart + tableOffset;
int h = texelFetch(_V0_ITa, 5*i).x;
#ifdef OPT_CATMARK_V_IT_VEC2
int h2 = h/2;
#endif
int n = texelFetch(_V0_ITa, 5*i+1).x;
int p = texelFetch(_V0_ITa, 5*i+2).x;
float weight = texelFetch(_V0_S, i).x;
float wp = 1.0/float(n*n);
float wv = (n-2.0) * n * wp;
Vertex dst;
clear(dst);
addWithWeight(dst, readVertex(p), weight * wv);
for(int j = 0; j < n; ++j){
#ifdef OPT_CATMARK_V_IT_VEC2
ivec2 v0it = texelFetch(_V0_IT, h2+j).xy;
addWithWeight(dst, readVertex(v0it.x), weight * wp);
addWithWeight(dst, readVertex(v0it.y), weight * wp);
#else
addWithWeight(dst, readVertex(texelFetch(_V0_IT, h+j*2).x), weight * wp);
addWithWeight(dst, readVertex(texelFetch(_V0_IT, h+j*2+1).x), weight * wp);
#endif
}
addVaryingWithWeight(dst, readVertex(p), 1.0f);
writeVertex(dst);
}
// Vertex-vertices compute Kernels 'B' / k_Dart and k_Smooth rules
subroutine(computeKernelType)
void loopComputeVertexB()
{
float PI = 3.14159265358979323846264;
int i = gl_VertexID + indexStart + tableOffset;
int h = texelFetch(_V0_ITa, 5*i).x;
int n = texelFetch(_V0_ITa, 5*i+1).x;
int p = texelFetch(_V0_ITa, 5*i+2).x;
float weight = texelFetch(_V0_S, i).x;
float wp = 1.0/n;
float beta = 0.25 * cos(PI*2.0f*wp)+0.375f;
beta = beta * beta;
beta = (0.625f-beta)*wp;
Vertex dst;
clear(dst);
addWithWeight(dst, readVertex(p), weight * (1.0-(beta*n)));
for(int j = 0; j < n; ++j){
addWithWeight(dst, readVertex(texelFetch(_V0_IT, h+j).x), weight * beta);
}
addVaryingWithWeight(dst, readVertex(p), 1.0f);
writeVertex(dst);
}
// vertex edit kernel
uniform int editPrimVarOffset;
uniform int editPrimVarWidth;
subroutine(computeKernelType)
void editAdd()
{
int i = gl_VertexID + indexStart + tableOffset;
int v = texelFetch(_editIndices, i).x;
Vertex dst = readVertex(v + vertexOffset);
// this is tricky. _editValues array contains editPrimVarWidth count of values.
// i.e. if the vertex edit is just for pos Y, editPrimVarOffset = 1 and
// editPrimVarWidth = 1, then _editValues will be an one element array.
// below loops iterate over every elements regardless editing values to be applied or not,
// so we need to make out-of-range edits ineffective.
#if NUM_VERTEX_ELEMENTS > 0
for (int j = 0; j < NUM_VERTEX_ELEMENTS; ++j) {
int index = min(j-editPrimVarOffset, editPrimVarWidth-1);
float editValue = texelFetch(_editValues, i*editPrimVarOffset + index).x;
editValue *= float(j >= editPrimVarOffset);
editValue *= float(j < (editPrimVarWidth + editPrimVarOffset));
dst.vertexData[j] += editValue;
}
#endif
writeVertexByImageStore(dst, v + vertexOffset);
}
void main()
{
// call subroutine
computeKernel();
}