OpenSubdiv/opensubdiv/osd/glslPatchGregory.glsl

433 lines
14 KiB
GLSL

//
// Copyright (C) Pixar. All rights reserved.
//
// This license governs use of the accompanying software. If you
// use the software, you accept this license. If you do not accept
// the license, do not use the software.
//
// 1. Definitions
// The terms "reproduce," "reproduction," "derivative works," and
// "distribution" have the same meaning here as under U.S.
// copyright law. A "contribution" is the original software, or
// any additions or changes to the software.
// A "contributor" is any person or entity that distributes its
// contribution under this license.
// "Licensed patents" are a contributor's patent claims that read
// directly on its contribution.
//
// 2. Grant of Rights
// (A) Copyright Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free copyright license to reproduce its contribution,
// prepare derivative works of its contribution, and distribute
// its contribution or any derivative works that you create.
// (B) Patent Grant- Subject to the terms of this license,
// including the license conditions and limitations in section 3,
// each contributor grants you a non-exclusive, worldwide,
// royalty-free license under its licensed patents to make, have
// made, use, sell, offer for sale, import, and/or otherwise
// dispose of its contribution in the software or derivative works
// of the contribution in the software.
//
// 3. Conditions and Limitations
// (A) No Trademark License- This license does not grant you
// rights to use any contributor's name, logo, or trademarks.
// (B) If you bring a patent claim against any contributor over
// patents that you claim are infringed by the software, your
// patent license from such contributor to the software ends
// automatically.
// (C) If you distribute any portion of the software, you must
// retain all copyright, patent, trademark, and attribution
// notices that are present in the software.
// (D) If you distribute any portion of the software in source
// code form, you may do so only under this license by including a
// complete copy of this license with your distribution. If you
// distribute any portion of the software in compiled or object
// code form, you may only do so under a license that complies
// with this license.
// (E) The software is licensed "as-is." You bear the risk of
// using it. The contributors give no express warranties,
// guarantees or conditions. You may have additional consumer
// rights under your local laws which this license cannot change.
// To the extent permitted under your local laws, the contributors
// exclude the implied warranties of merchantability, fitness for
// a particular purpose and non-infringement.
//
#extension GL_EXT_gpu_shader4 : require
//----------------------------------------------------------
// Patches.TessVertexGregory
//----------------------------------------------------------
#ifdef PATCH_VERTEX_GREGORY_SHADER
uniform samplerBuffer g_VertexBuffer;
uniform isamplerBuffer g_ValenceBuffer;
layout (location=0) in vec4 position;
out block {
GregControlVertex v;
} output;
void main()
{
int vID = gl_VertexID;
output.v.hullPosition = (ModelViewMatrix * position).xyz;
OSD_PATCH_CULL_COMPUTE_CLIPFLAGS(position);
uint valence = uint(texelFetchBuffer(g_ValenceBuffer,int(vID * (2 * OSD_MAX_VALENCE + 1))).x);
output.v.valence = int(valence);
vec3 f[OSD_MAX_VALENCE];
vec3 pos = position.xyz;
vec3 opos = vec3(0,0,0);
for (uint i=0; i<valence; ++i) {
uint im=(i+valence-1)%valence;
uint ip=(i+1)%valence;
uint idx_neighbor = uint(texelFetchBuffer(g_ValenceBuffer, int(vID * (2*OSD_MAX_VALENCE+1) + 2*i + 0 + 1)).x);
vec3 neighbor =
vec3(texelFetchBuffer(g_VertexBuffer, int(OSD_NUM_ELEMENTS*idx_neighbor)).x,
texelFetchBuffer(g_VertexBuffer, int(OSD_NUM_ELEMENTS*idx_neighbor+1)).x,
texelFetchBuffer(g_VertexBuffer, int(OSD_NUM_ELEMENTS*idx_neighbor+2)).x);
uint idx_diagonal = uint(texelFetchBuffer(g_ValenceBuffer, int(vID * (2*OSD_MAX_VALENCE+1) + 2*i + 1 + 1)).x);
vec3 diagonal =
vec3(texelFetchBuffer(g_VertexBuffer, int(OSD_NUM_ELEMENTS*idx_diagonal)).x,
texelFetchBuffer(g_VertexBuffer, int(OSD_NUM_ELEMENTS*idx_diagonal+1)).x,
texelFetchBuffer(g_VertexBuffer, int(OSD_NUM_ELEMENTS*idx_diagonal+2)).x);
uint idx_neighbor_p = uint(texelFetchBuffer(g_ValenceBuffer, int(vID * (2*OSD_MAX_VALENCE+1) + 2*ip + 0 + 1)).x);
vec3 neighbor_p =
vec3(texelFetchBuffer(g_VertexBuffer, int(OSD_NUM_ELEMENTS*idx_neighbor_p)).x,
texelFetchBuffer(g_VertexBuffer, int(OSD_NUM_ELEMENTS*idx_neighbor_p+1)).x,
texelFetchBuffer(g_VertexBuffer, int(OSD_NUM_ELEMENTS*idx_neighbor_p+2)).x);
uint idx_neighbor_m = uint(texelFetchBuffer(g_ValenceBuffer, int(vID * (2*OSD_MAX_VALENCE+1) + 2*im + 0 + 1)).x);
vec3 neighbor_m =
vec3(texelFetchBuffer(g_VertexBuffer, int(OSD_NUM_ELEMENTS*idx_neighbor_m)).x,
texelFetchBuffer(g_VertexBuffer, int(OSD_NUM_ELEMENTS*idx_neighbor_m+1)).x,
texelFetchBuffer(g_VertexBuffer, int(OSD_NUM_ELEMENTS*idx_neighbor_m+2)).x);
uint idx_diagonal_m = uint(texelFetchBuffer(g_ValenceBuffer, int(vID * (2*OSD_MAX_VALENCE+1) + 2*im + 1 + 1)).x);
vec3 diagonal_m =
vec3(texelFetchBuffer(g_VertexBuffer, int(OSD_NUM_ELEMENTS*idx_diagonal_m)).x,
texelFetchBuffer(g_VertexBuffer, int(OSD_NUM_ELEMENTS*idx_diagonal_m+1)).x,
texelFetchBuffer(g_VertexBuffer, int(OSD_NUM_ELEMENTS*idx_diagonal_m+2)).x);
f[i] = (pos * float(valence) + (neighbor_p + neighbor)*2.0 + diagonal) / (float(valence)+5.0);
opos += f[i];
output.v.r[i] = (neighbor_p-neighbor_m)/3.0 + (diagonal - diagonal_m)/6.0;
}
opos /= valence;
output.v.position = vec4(opos, 1.0f).xyz;
#if OSD_NUM_VARYINGS > 0
for (int i = 0; i < OSD_NUM_VARYINGS; ++i)
output.v.varyings[i] = varyings[i];
#endif
vec3 e;
output.v.e0 = vec3(0,0,0);
output.v.e1 = vec3(0,0,0);
for(uint i=0; i<valence; ++i) {
uint im = (i + valence -1) % valence;
e = 0.5 * (f[i] + f[im]);
output.v.e0 += csf(valence-3, 2*i) *e;
output.v.e1 += csf(valence-3, 2*i + 1)*e;
}
output.v.e0 *= ef[valence - 3];
output.v.e1 *= ef[valence - 3];
}
#endif
//----------------------------------------------------------
// Patches.TessControlGregory
//----------------------------------------------------------
#ifdef PATCH_TESS_CONTROL_GREGORY_SHADER
layout(vertices = 4) out;
uniform isamplerBuffer g_QuadOffsetBuffer;
in block {
GregControlVertex v;
} input[];
out block {
GregEvalVertex v;
} output[];
uniform isamplerBuffer g_patchLevelBuffer;
OSD_DECLARE_PTEX_INDICES_BUFFER;
#define ID gl_InvocationID
void main()
{
uint i = gl_InvocationID;
uint ip = (i+1)%4;
uint im = (i+3)%4;
uint n = uint(input[i].v.valence);
int base = GregoryQuadOffsetBase;
output[ID].v.position = input[ID].v.position;
uint start = texelFetchBuffer(g_QuadOffsetBuffer, int(4*(gl_PrimitiveID+base) + i)).x & 0x00ff;
uint prev = uint(texelFetchBuffer(g_QuadOffsetBuffer, int(4*(gl_PrimitiveID+base) + i)).x) & 0xff00;
prev=uint(prev/256);
// Control Vertices based on :
// "Approximating Subdivision Surfaces with Gregory Patches for Hardware Tessellation"
// Loop, Schaefer, Ni, Castafio (ACM ToG Siggraph Asia 2009)
//
// P3 e3- e2+ E2
// O--------O--------O--------O
// | | | |
// | | | |
// | | f3- | f2+ |
// | O O |
// e3+ O------O O------O e2-
// | f3+ f2- |
// | |
// | |
// | f0- f1+ |
// e0- O------O O------O e1+
// | O O |
// | | f0+ | f1- |
// | | | |
// | | | |
// O--------O--------O--------O
// P0 e0+ e1- E1
//
vec3 Ep = input[i].v.position + input[i].v.e0 * csf(n-3, 2*start) + input[i].v.e1*csf(n-3, 2*start +1);
vec3 Em = input[i].v.position + input[i].v.e0 * csf(n-3, 2*prev ) + input[i].v.e1*csf(n-3, 2*prev + 1);
uint np = input[ip].v.valence;
uint nm = input[im].v.valence;
uint prev_p = uint(texelFetchBuffer(g_QuadOffsetBuffer, int(4*(gl_PrimitiveID+base) + ip)).x)&0xff00;
prev_p=uint(prev_p/256);
vec3 Em_ip = input[ip].v.position + input[ip].v.e0*csf(np-3,2*prev_p) +input[ip].v.e1*csf(np-3, 2*prev_p+1);
uint start_m = texelFetchBuffer(g_QuadOffsetBuffer, int(4*(gl_PrimitiveID+base) + im)).x&0x00ff;
vec3 Ep_im = input[im].v.position + input[im].v.e0*csf(nm-3, 2*start_m) + input[im].v.e1*csf(nm-3, 2*start_m+1);
float s1 = 3 - 2*csf(n-3,2)-csf(np-3,2);
float s2 = 2*csf(n-3,2);
vec3 Fp = (csf(np-3,2)*input[i].v.position + s1*Ep + s2*Em_ip + input[i].v.r[start])/3.0;
s1 = 3.0 -2.0*cos(2.0*M_PI/float(n)) - cos(2*M_PI/float(nm));
vec3 Fm = (csf(nm-3,2)*input[i].v.position + s1*Em +s2*Ep_im - input[i].v.r[prev])/3.0;
output[ID].v.Ep = Ep;
output[ID].v.Em = Em;
output[ID].v.Fp = Fp;
output[ID].v.Fm = Fm;
int patchLevel = texelFetchBuffer(g_patchLevelBuffer, gl_PrimitiveID + LevelBase).x;
output[ID].v.patchCoord = vec4(0, 0,
patchLevel+0.5,
gl_PrimitiveID+LevelBase+0.5);
OSD_COMPUTE_PTEX_COORD_TESSCONTROL_SHADER;
if (ID == 0) {
OSD_PATCH_CULL(4);
#if OSD_ENABLE_SCREENSPACE_TESSELLATION
gl_TessLevelOuter[0] =
TessAdaptive(input[0].v.hullPosition.xyz, input[1].v.hullPosition.xyz, patchLevel);
gl_TessLevelOuter[1] =
TessAdaptive(input[0].v.hullPosition.xyz, input[3].v.hullPosition.xyz, patchLevel);
gl_TessLevelOuter[2] =
TessAdaptive(input[2].v.hullPosition.xyz, input[3].v.hullPosition.xyz, patchLevel);
gl_TessLevelOuter[3] =
TessAdaptive(input[1].v.hullPosition.xyz, input[2].v.hullPosition.xyz, patchLevel);
gl_TessLevelInner[0] =
max(gl_TessLevelOuter[1], gl_TessLevelOuter[3]);
gl_TessLevelInner[1] =
max(gl_TessLevelOuter[0], gl_TessLevelOuter[2]);
#else
gl_TessLevelInner[0] = GetTessLevel(patchLevel);
gl_TessLevelInner[1] = GetTessLevel(patchLevel);
gl_TessLevelOuter[0] = GetTessLevel(patchLevel);
gl_TessLevelOuter[1] = GetTessLevel(patchLevel);
gl_TessLevelOuter[2] = GetTessLevel(patchLevel);
gl_TessLevelOuter[3] = GetTessLevel(patchLevel);
#endif
}
}
#endif
//----------------------------------------------------------
// Patches.TessEvalGregory
//----------------------------------------------------------
#ifdef PATCH_TESS_EVAL_GREGORY_SHADER
layout(quads) in;
layout(cw) in;
in block {
GregEvalVertex v;
} input[];
out block {
OutputVertex v;
} output;
void main()
{
float u = gl_TessCoord.x,
v = gl_TessCoord.y;
vec3 p[20];
p[0] = input[0].v.position;
p[1] = input[0].v.Ep;
p[2] = input[0].v.Em;
p[3] = input[0].v.Fp;
p[4] = input[0].v.Fm;
p[5] = input[1].v.position;
p[6] = input[1].v.Ep;
p[7] = input[1].v.Em;
p[8] = input[1].v.Fp;
p[9] = input[1].v.Fm;
p[10] = input[2].v.position;
p[11] = input[2].v.Ep;
p[12] = input[2].v.Em;
p[13] = input[2].v.Fp;
p[14] = input[2].v.Fm;
p[15] = input[3].v.position;
p[16] = input[3].v.Ep;
p[17] = input[3].v.Em;
p[18] = input[3].v.Fp;
p[19] = input[3].v.Fm;
vec3 q[16];
float U = 1-u, V=1-v;
float d11 = u+v; if(u+v==0.0f) d11 = 1.0f;
float d12 = U+v; if(U+v==0.0f) d12 = 1.0f;
float d21 = u+V; if(u+V==0.0f) d21 = 1.0f;
float d22 = U+V; if(U+V==0.0f) d22 = 1.0f;
q[ 5] = (u*p[3] + v*p[4])/d11;
q[ 6] = (U*p[9] + v*p[8])/d12;
q[ 9] = (u*p[19] + V*p[18])/d21;
q[10] = (U*p[13] + V*p[14])/d22;
q[ 0] = p[0];
q[ 1] = p[1];
q[ 2] = p[7];
q[ 3] = p[5];
q[ 4] = p[2];
q[ 7] = p[6];
q[ 8] = p[16];
q[11] = p[12];
q[12] = p[15];
q[13] = p[17];
q[14] = p[11];
q[15] = p[10];
float B[4], D[4];
Univar4x4(u, B, D);
vec3 BUCP[4], DUCP[4];
for (int i=0; i<4; ++i) {
BUCP[i] = vec3(0, 0, 0);
DUCP[i] = vec3(0, 0, 0);
for (uint j=0; j<4; ++j) {
// reverse face front
vec3 A = q[i + 4*j];
BUCP[i] += A * B[j];
DUCP[i] += A * D[j];
}
}
vec3 WorldPos = vec3(0, 0, 0);
vec3 Tangent = vec3(0, 0, 0);
vec3 BiTangent = vec3(0, 0, 0);
Univar4x4(v, B, D);
for (uint i=0; i<4; ++i) {
WorldPos += B[i] * BUCP[i];
Tangent += B[i] * DUCP[i];
BiTangent += D[i] * BUCP[i];
}
BiTangent = (ModelViewMatrix * vec4(BiTangent, 0)).xyz;
Tangent = (ModelViewMatrix * vec4(Tangent, 0)).xyz;
vec3 normal = normalize(cross(BiTangent, Tangent));
output.v.position = ModelViewMatrix * vec4(WorldPos, 1.0);
output.v.normal = normal;
output.v.tangent = BiTangent;
output.v.patchCoord = input[0].v.patchCoord;
output.v.patchCoord.xy = vec2(v, u);
OSD_COMPUTE_PTEX_COORD_TESSEVAL_SHADER;
OSD_DISPLACEMENT_CALLBACK;
gl_Position = ProjectionMatrix * output.v.position;
}
#endif
//----------------------------------------------------------
// Patches.Vertex
//----------------------------------------------------------
#ifdef VERTEX_SHADER
layout (location=0) in vec4 position;
layout (location=1) in vec3 normal;
layout (location=2) in vec4 color;
out block {
OutputVertex v;
} output;
void main() {
gl_Position = ModelViewProjectionMatrix * position;
output.v.color = color;
}
#endif
//----------------------------------------------------------
// Patches.FragmentColor
//----------------------------------------------------------
#ifdef FRAGMENT_SHADER
in block {
OutputVertex v;
} input;
void main() {
gl_FragColor = input.v.color;
}
#endif